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Squeezed excited states in exciton-phonon systems
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In earlier work unusual excited exciton-phonon states have been found for prototype exciton-phonon
Hamiltonians (dimer, trimer). These states have been calculated numerically by diagonalizing the
respective Fulton-Gouterman equations. Their physical character is such that the motion of the
effective exciton becomes free whereas in the vibrational subspace the dynamics is governed by an
effective stiffening of the nearest-neighbor interaction. In the present work it is shown analytically by
means of a Frohlich-type transformation, how the stiffening in the phonon dynamics is generated, such
that the phononic part for these nonconventional exciton-phonon states is well described by squeezed os-
cillatory functional forms.

I. INTRODUCTION

The experimental background motivation for the
present and also for preceding work was the phenomenon
of retarded luminescence which has been found both in
rare-gas crystals' and in alkali halides. The convention-
al theoretical description of this phenomenon is provided
by the so-called "barrier model" of self-trapping, origi-
nally proposed by Rashba and Toyozawa. This model
relies heavily on the adiabatic approximation and, as
shown in earlier work, leads to divergence problems, if
nonadiabatic terms are included. To avoid these prob-
lems an alternate type of concept has been introduced '

which is based on the use of the Fulton-Gouterman trans-
formation. The dominant favorable quality of this con-
cept is the fact that it leads to the diagonalization of the
excitonic (electronic) subspace. In this manner
Schrodinger-like equations for the vibrational subspace
are derived, which are of nonharmonic nature, but are
well-suited for computational handling. Moreover these
Fulton-Gouterman equations display the fundamental
two antagonistic tendencies inherent in each exciton-
phonon dynamics in a highly suggestive way, such that
the analytic character of the vibrational wave functions is
elucidated. This type of analysis in earlier work has
yielded an unusual type of excited exciton-phonon states,
which followed from a numerical diagonalization of the
Fulton-Gouterman equations. The most pronounced
feature of these solutions with regard to the vibrational
part ~P(Q) & of the wave function (Q = vibrational coor-
dinate) is their compressed, practically undisplaced form
("squeezed states") indicating a liberation from its ten-
dency to self-trapping. The aim of the present paper is to
understand the numerically found unusual excited states
in an analytic manner.

The basic frame of the present work will be the
Fulton-Gouterman transformation. The evolving
Fulton-Gouterman Hamiltonian in the vibrational sub-
space is handled by three different sequences of unitary
transformations. In the 6rst of these three approaches a
product of unitary transformations aims at simulating the

dominant antagonistic tendencies ' in the Fulton-
Gouterman (FG) Hamiltonian. In the second approach a
Frohlich-type transformation" is used for a further tran-
scription of the FG Hamiltonian which then displays a
squeezed nature in the phononic subspace. By means of
this, direct analytical evidence is given that squeezed os-
cillatory solutions pertain to this transformed Hamiltoni-
an. A deficiency of the Frohlich-type transformation is
that the transformed Hamiltonian cannot be written
down in a closed form. This can be overcome by the
third sequence of transformations, which is deduced from
the Frohlich approach.

In Sec. II we introduce the model Hamiltonian and the
FG transformation. In Secs. III—V the three aforemen-
tioned sequences of unitary transformations are dis-
cussed. Section VI presents the description of the states
within the Born-Oppenheimer approximation. Finally,
we close the paper in Sec. VII with a summary.

II. BACKGROUND: THE FUI.TON-GOUTERMAN
TRANSFORMATION (DIMER)

where T represents the excitonic transfer and D the
exciton-phonon coupling constants. This model has been
considered by Shore and Sander, ' who used the Fulton-
Gouterman transformation (FGT) to calculate the
ground state. Later many other researchers have dis-
cussed this model.

%'e introduce the unitary operator

U„o= —Q I[ I&+p~r&Rg](p~ j,2p
(2)

where R& is the reAection operator in Q space,
&gQ = —QR&, &&~P(Q) &

= ~P(
—Q) &, and p denotes the

We consider an archetype exciton-phonon model (di-
mer, two-site model) characterized by the Hamiltonian

II=—I(P'+Q') —T (~t &(r~+[r &(l ~)
0
2

+D Q.(II &&II —lr &&rl) j,
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=+1. Then the fundamental transformationparity p= . en
:le&=U'„ole &properties of TFG. A = UFO A UFO, TFG ..

are given by

T„o:(Il&&rl +lr && Il)=+pip &&plug,

T„o:(II&&rl —Ir &&tl)=apl —p&&plRg,

T o.(l~&&I —lr &&rl)=& I

—p &&pl,

:Q=& I

—p &&pig

T„o:P=g I

—p&&plP,

—(II &If(Q) &+plr &&&If(Q) &)= lp &If QPcs' ~2
2The operators Q and P remain unaltered (T„o:Q =~,

TFG
The Hamiltonian (1) is diagonahzed yb T with

respect to the parity states Ip & in the excitonic subspace

:II= U' IIU =y Ip & & p IHg' (g, P)

In this manner the problem is reduce,e, to the solution of
Schrodinger-like equations (FG equations) of the form
Hg' Iy'„'&=@„' 'Iy'„'& o

P'+g'+ Dg — pTR~ Ivh'„"(Q) &

self-trapping anti-self-trapping
tendency tendency

=E„"'lying'(Q) & .

The total wave function of the original Hamiltonian then
reads

l~' &=U, lp&l@'„"&

—
I II & lying'&+p I.&~, ly'„" &] .+2

The Fulton-Gouterman Hamiltonian exhibits two anta-
gonistic tendencies ("displacement" and "reflection" or
likewise "self-trapping" and "anti-self-trapping"), w ic
in their counteraction generate different species of wave
functions in different energy regions.

The global picture of the eigenfunctions and energies,
f nd b numerical diagonalization of the FG equa-

tions (5), is shown in Figs. 1 and 2. In Fig. , o sp
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FIG. 1. Ei enfunctions of the FG equat'uation (5) for p = —1,
= 15 T= 50. All functions below n =54 display an odd num-

s n =54 and n =57ber of nodes, whereas the eigenfunctions n-
display an even number of nodes.

FIG. 2. Energetic arrangement of eigenstates o D =D =15 and
T=50. lhs: parity p = + 1, rhs: p = —1.
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space, we present only the vibrational wave functions
( —&)(Q)) pertaining to the odd parity case (p = —1)

where the terminus "odd" is fixed by the convention that
the bare excitonic site functions

I
I ) and

I
r ) are assumed

to be of even nature

(R,„:excitonic reflection operator). If we had chosen the
bare exciton functions to be of odd t,panty,
R,„ l ) = —r ), R,„Ir ) = —Il ), which actually corre-
sponds to the situation in rare-gas crystals, the sign in
front of the T term in the FG equations (5) would be re-
versed, which would amount also in a reversal of the par-
ity assignments of the vibrational wave functions.

From Fcg. 1 we note that there are two different species
of vibrational wave functions. For lower quantum num-
bers the dominant part of IP'„~'(Q)) exhibits a displace-
ment in Q space. This displacement reflects the self-
trapping tendency of the FG equations, since it indicates
the displaced atomic structure. The displaced dominant
part of the vibrational wave function is supplemented by
a mirror image of diminished weight, which reflects the
anti-self-trapping tendency of the FCz equatio d
tiall libtea y I crates the exciton from its elastic encasement.
Taken together, both parts of IP'„~'(Q)) represent an
eFective broadening of the total extension of IP'„~') in Q
space ("antisqueezing"). However, for strong exciton-
oscillator coupling values ( Tia « I ), one should remain
aware of the disintegration of the vibrational wave func-
tion into two parts located in different spatial areas. '

For dominating excitonic transfer (T/D )) I), on the
other hand, both maxima merge together into a single
structural form located near the undisplaced equilibrium
position Q =0. In this manner one indeed would have a
broadened form of the wave function.

For higher quantum numbers another type of vibra-

ttonal wave functions makes its appearance. For the
chosen parameter pair of Figs. 1 and 2 (D =15, T=50
the lowest of these states appears for the quantum num-
ber n =54. We note that these unconventional types of
states display functional forms which again start with a
small number of ~odes. They practically do not exhibit a

isplacement of the oscillatory equilibrium. Also, com-
pared to the corresponding vibrational forms of the un-
coup ed oscillator, their spatial extension turns out to be
reduced (squeezing). In addition we observe that the
functional forms of the vibrational states in the energetic
neighborhood of the unconventional states are of strongly
extended nature with a high number of nod

In
no es.

n total, the node arrangement of the two types of vi-
brational wave functions is very peculiar. For the chosen
example of odd parity (p = —1) the conventional, i.e., the
self-trapped, states have an odd number of nodes,
whereas those in the series of nonconventional states have
an even number. For even parity (p =+ 1) the situation
is just reversed.

In Fi . 2'g. the respective sequences of states are shown
in their energetic arrangement. It turns out that the con-

energe ic spacingventional states generally have an ener t
which for the chosen parameter pair is close to the undis-
turbed decoupled oscillator, whereas for the unconven-
tional states the spacing is distinctively larger.

In Fig. 3 the overall behavior of the eigenstates for a
given transfer parameter T and "=—1

'
h i s1s s own ln its

dependence on the coupling value D. The conventional
states are those attached to the descending lines whereas
the nonconventional ones pertain to the ascending lines.
In those regions where two lines come close together and
display a strong curvature, a clear distinction between the
two types of states no longer is possible. In passing we
note that similar results were found by Reik for related
systems.

20

10

F&G. 3. Dependence of the
energy eigenvalues on the cou-
pling D for p= —1, T=10. The
descending lines pertain to the
conventional states, the ascend-
ing lines to the nonconventional
states.

-10

Coupling D
10 15
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III. UNITARY GENERATION OF SQUEEZED
DISPLACED TRIAL FUNCTIONS

SdUd=e ", Sd=SdP,
S

U, =e ', S, = —is(PQ+QP) .

(8)

(9)

We assume that the unitary product transformation
Hz~z =( U, Ud ) H/G~( U, U& ) establishes a Hamiltonian
which in its effective dynamics is represented by an undis-
turbed oscillator Hamiltonian in the respective energy re-
gime of the unconventional states. For the odd parity
case p = —1, its ground state then would be given ap-
proxirnately by that of the uncoupled oscillator

Motivated by the numerical finding of the peculiar ex-
cited states given in Fig. 1 and in Ref. 8, we now attempt
to obtain an analytical justification for the unconvention-
al behavior. This is most easily achieved by means of un-
itary transforrnations. In considering the spatial form of
the numerically found unconventional vibrational wave
functions, it would seem suggestive to use a product of
unitary transformations with one constituent producing
an effective squeezing of the vibrational wave functions,
whereas the other constituent could account for the re-
sidual small displacement. Realizing this philosophy we
introduce the two unitary operators

NFG Q Us UdNFG (Q) Us Ud PO(Q

We consider this form as a trial wave function depending
on the parameters s and d of the two unitary operators (8)
and (9). The unitary transformation operators (8) and (9)
have the properties

Udf (Q) =f(Q+d»
U,f(Q)=e 'f(e "Q) .

(12)

:—P(d, s) . (14)

For further details about unitary transformations we
refer to a book by one of us. ' Taking a glance at the
structural form of the right-hand side (rhs) of Eq. (14) we
note that indeed it is of a squeezed, displaced Gaussian
type which may be assumed to yield a good simulation of
the lowest unconventional state (n =54 of Fig. 1). The
two transformation parameters d and s are fixed by em-
ploying the trial wave function P(d, s), given in (14), in an
optimization procedure. As a variational principle we
adopt the minimization of the squared variance of the en-
ergetic expectation value

Specifically, if we apply the product of operators onto
po(Q), we obtain

P'FG"(Q) =m. '~ e 'exp[ —1/2(e 'Q+d) ]

NFG (Q)=eo(Q)=~ exp( Q ~2) . (10)

This, inversely, would mean that the lowest state is ap-
proxirnated by

5(& ylH'„-'" ly &
—

& ylH'„-„" ly &') =0 .

For this variance we find

(15)

2d2 T d2=0 . (1—e )+—de " [De ' 2d cosh(4—s)]+—sinh (4s)+ e'(D —2de—')
4 2 2 8

(16)

Applying the variation with respect to the two parame-
ters d and s we find two equations which we refrain from
writing down explicitly. These two equations fix the two
parameters d and s as functions of the intrinsic material
constants D and T of the original Hamiltonian. The re-
sult is shown in Figs. 4 and 5. The magnitude of both the
displacement parameter d and the squeezing parameter s
increases with a growing exciton-oscillator interaction
constant D and decreases with an enhanced excitonic
transfer rate T. The limiting analytical behavior of d and
s for D «( T 1)reads—

1 D T D
2 T—1 16 T—1

2

3

4

D
T—1

'S

+0 (18)
16 T—1 T—1

The quality of the squeezed displaced ansatz may be
characterized by the square root of the variance (16) itself
((HFG) —(HFG) ) ', which is a measure for the non-
diagonality of the variational ansatz. This is shown in

Fig. 6. For D =0, the trial wave function (14) is an exact
eigenfunction of 0F&" with d =s =0, i.e.,
p~&G' (Q)=go(Q). For a fixed value of the transfer pa-
rameter T and ascending values of D the energetic uncer-
tainty of the trial wave function increases. For a fixed
value of D and ascending values of T the nondiagonality
is diminished. Comparing the optimized values for
((HFG) —(HFG) ) with the energetic spacing be-
tween two eigenstates, which is in the order of 0, we con-
clude that for D « T the ansatz (14) yields a rather accu-
rate trial wave function.

Figure 7 depicts the contrast in the functional forms of
the lowest conventional state and that of the lowest un-
conventional state for parity p= —1. The squeezed na-
ture of the latter, as contrasted to the undisturbed oscilla-
tor function, is shown in Fig. 8. As one realizes, the ex-
act numerical result for the chosen model parameters
(D = 15,T=50) practically coincides with our optimized
trial wave function (14). The energetic uncertainty of
the trial state (for D = 15,T=50) is ( ( H FG )

(H, )')'—"=004n.
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FIG. 4. Optimized variational
parameter d of the unitary dis-
placement operator (8) and of
the approximate FG wave func-
tion (14) for p = —1. Solid line:
T=5, short dashes: T=15, long
dashes: T=50.
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IV. ANALYTICAL VERIFICATION OF SQUEEZING:
FROHLICH TRANSFORMATION

Squeezed oscillatory wave functions are manifestations
of a hardening in the effective oscillatory system. There-
fore it would be desirable to verify in a direct analytical
manner the effective spring hardening which pertains to
the nonconventional states. It turns out that this indeed
can be demonstrated by means of a Frohlich-type unitary
transformation. The Frohlich transformation is perhaps
the most famous of all unitary transformations. It has
been devised originally to establish the effective electron-
electron interaction in an originally coupled electron-

phonon system. " The famous BCS Hamiltonian of su-
perconductivity constitutes a simplified version of the
transformed Frohlich Hamiltonian. The transformation
can also be applied to our exciton-phonon Hamiltonian
(1). In this case the transformation operator
UF =exp(S~ ) is of a mixed exciton-phonon nature

S =a(ll &&rl —lr &&ll)Q+ib(ll &&ll —lr &&rl)g

+c(ll &&rl —lr &&ll)l'+id(ll &&ll —lr &&rl)&,

(19)

(a, b, c,d real). The terms in SF are chosen to be linear in

-0.1

-0.2

-0.3

FIG. 5. Optimized variational
parameter s of the unitary
squeezing operator (9) and of the
approximate FG wave function
(14) for p = —1. Solid line:
T=5, short dashes: T=15, long
dashes: T=50.
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Coupling D
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UF —UF~UF UFG . (21)
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0.8

numerically exact
squeezing Ansatz

' t b d oscillator

0.6

0.2

FIG. 8. Comparison of the
ground-state wave function of
the undisturbed harmonic oscil-
lator (long dashes) with the
lowest nonconventional state,
represented both by the exact
numerical solution of the FG
equation (5) (solid line) and by
the optimized trial wave func-
tion (14} (short dashes). The
latter practically coincides with
the exact result.
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Coordinate Q

where SF~~'(Q, P) pertains to the vibrational subspace
only. In order to apply the Frohlich operator in the FG
frame, exp( —SF~ )H~g&~exp(SF~ ), we split up the FG
Hamiltonian into two parts, Hgo' =H~~'+ W,

the Frohlich condition

which yields

(25)

H ()~' = (P +Q p—TR g ), —() Q
(23)

0W= DQ . —
2

(24)

The transformation parameters a to d of (22) are fixed by

DT D b=c=O .
2( T 1) 2( T—2 1)— (26)

The Frohlich transformed FG Hamiltonian then assumes
the form

—s'&' s'&'
e H'f'e =HI'+ ———[WS' ']+ ———[[WSP'],S' ']6 lf 2I

' 2f 3'I

D2 TDP +Q pTR + — —p QR
2 4(T 1) 2(T 1—)—

TD
( TQ'+pQR&+ipQ PR& ) +0 (D ) .

3( T 1)— (27)

For the moment we restrict our discussion to the terms
up to second order in D. Then the expression (27)
displays a reAection symmetry and it has parity-ordered
eigenfunctions PI' ', where p further pertains to the pari-
ty of the full eigenstate (6), whereas rr=+1 is the artificial
parity of the eigenfunction of (27), which appears if
anharmonic terms are neglected. The most interesting
term in the transformed Hamiltonian (27) is the Q R
term which is a positive or negative correction to the un-
disturbed Q term depending on the parity p =+1 of the

total wave function and on the parity m of the approxi-
mate Q-space wave function Pz~' (Q) = UFP'~'(Q).

From Eq. (27) we note that if is applied to Pg' ' for

p sr= —1, the Q correction term in (27) establishes an
increased effective oscillatory frequency which corre-
sponds to an elastic hardening and to a squeezing of the
oscillatory wave functions. This situation then would
pertain to the unconventional states.

For p m=+1 on the .other hand, the Q correction
term produces an elastic softening and pertains to the
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states of conventional nature (broadened in Q space). It
is worth noting that in this case the correction term tends
to compensate the undisturbed Q term and may produce
a harmonic instability. It is in this critical range of pa-
rameters where the functional form of the conventional
states turns from a one-peak (antisqueezed broadened)
form to a form with two peaks (mirror images with
different weight). '

Thus for a fixed value of p we find two distinct se-
quences of eigenstates, depending on their symmetry
properties in Q space. For p = —1 the symmetric wave
functions (sr=+1, even number of nodes) display a
squeezing and their energetic spacing is increased (cf. Fig.
2). The antisymmetric eigenstates (m= —1, odd number
of nodes) are spatially broadened and energetically
compressed. For p = + 1 the situation is reversed.

If we disregard in Hamiltonian (27) the anharmonic
terms, the lowest state for p= —1 and m. =+1 is a
squeezed oscillatory function

P'p~ ' +"=(m.Q/0) ' exp[ —(Q/Q)Q /2],
Q=Q[1+[TD ]/[2(T 1)]['~— (28)

X exp[ —(Q/Q)Q /2],
N=VmQ/Q[1+ [Q/(2Q)][a+(Q/Q)d] J,

(29)

Reversing the Frohlich transformation, we find the
Fulton-Gouterman wave function Pj'" '= U~P+I' '

[1—[a+(Q/Q)d ]Q]

of the latter is that the calculations for the truncated
Hamiltonian can be performed analytically. However, a
residual problem of the Frohlich transformation is that
the fully transformed Hamiltonian (27) cannot be written
down in a closed form. It only can be expressed by an
operator series in the coupling constant D.

Sl S~
U, =e ', Uz =e ', S, =paQR&, S2=idP . (30)

The resulting sequence of transformations is not
equivalent to the one given by exp(S&+Sz) due to
[S„Sz]%0, but choosing the coeKcients a and d as
defined in (26), the product transformation again satisfies
the Frohlich condition (25). Both the transformation
defined by the exponential exp(S, ) (reflective transforma-
tion) as well as the transformation given by exp(Sz ) (dis-

placement transformation in Q space} yield transforma-
tion rules for P, Q, and R& that can be represented by
closed forms (T;:A = U, AU; },

T, :Q =cos(2aQ)Q+p sin(2aQ)QR&,

T, :P=cos(2aQ)P +p sin(2aQ)PR &

V. ALTERNATIVE ANALYTIC VERIFICATION
OF SQUEEZING

One way out of the aforementioned difhculty is to sub-
stitute the transformation operator U~=exp(S, +Sz) by
the product U& U2 =exp(S, ) exp(S2 ), where

which for D=15 and T=50 practically coincides with
the numerically found exact solution of Fig. 8. The non-
diagonality of the wave function (29) can be estimated by
calculating the variance of the terms of (27), which are of
third order in the coupling D. For large transfer rates T,
which is the parameter regime we are primarily
interested in, the nondiagonality is proportional to
((PI'' '~Q ~PI'' '))' . The results are shown in Fig. 6.

Contrasting the approach via the trial wave function of
Sec. III and the Frohlich approach, the main advantage

+ia sin(2aQ) —ipa cos(2aQ)R&,

T, :R&=cos(2aQ)R& —p sin(2aQ),

T~:Q =Q —d,
T, :P=P,
T:g =~ e2

Q Q

The transformed FG Hamiltonian then reads

(31)

UzU, H/~U, U2= —P 2ipaPR e '—+a +(Q d)—0

+D cos[2a (Q —d)](Q d)+pD sin[2a(—Q —d)](Q —d)R&e '"

pT cos[2a (Q ——d)]R&e ' + T sin[2a (Q —d)] ' (32)

P +Q pTR +—0 D 2

2 4( T 1)—
TD TD

2(T —1) ~ 2(T —1)
—p Q R +p (Q —P )R .+O(D ). (33)

Comparing the expansion (33) with the harmonic form of (27) we recognize an additional term in (33) which arises from
the noncommutativity of S

&
and S2

TD
2 2(T —1)
—[&0,[S„S2]]=p (Q —P )Rg . (34)
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If we neglect the anharmonic terms the transformed Hamiltonian (32) for p = —1 is diagonal with respect to the sym-
metric wave function (m =+1)

PU=U ' =+"=(mQ/0) ' exp[ —(II/Q)Q /2], (35)

2(T 1)—+TD (T 1)——TDQ=Q
2(T 1)—+TD

In the FG space the wave function Pg' U
= U, U2$ ~~' U then assumes the form

(36)

+"=(mQ/0) 'i cos(aQ)exp[ —(0/Q)(Q+d) /2] (37)

—sin(ag)exp[ —(0/Q)(Q —d) /2] ' . (38)

For the case of a large transfer parameter T the results of the product transformation and that of the Frohlich transfor-
mation are practically identical because the additional term (34) appearing in the expression (33) is smaller than the first

Q R& correction term by a factor ( T 1) «—1.

VI. CONTRASTING FRAME: THE ADIABATIC APPROXIMATION

For the sake of completeness we also demonstrate the description of the states in the frame of the adiabatic or Born-
Oppenheimer approximation. ' In this approach the unconventional states appear as solutions pertaining to the upper
adiabatic potential. In a preceding paper' the Born-Oppenheimer formalism was discussed in connection with the
ground state of the Hamiltonian (1), and we refer to this work for more details.

In the adiabatic approximation it is assumed that the total wave function I+,d(x, Q) & can be written as a product of
the form

I+.,(x, Q) &
= ly(x, Q) & I& (Q) & .

The Q-dependent exciton state Iy(x, Q) & satisfies the "adiabatic" eigenvalue equation

—[ —T(ll &&rl+Ir &&ll)+Dg(ll &&ll —Ir &&rl)] ly(x, g) &=IV(g)lx(x, g) &,
Q

(39)

(40)

for the solution of which we employ the two forms

Iy, (x, g) & =sing(Q). ll &+cosg(Q). lr &,

Ig„(x,Q) & =cosg(Q) ll &
—sing(Q) lr &,

resulting in

sing(Q)=(1/2 DQ/2+—T +D Q )'i2

cosg(Q)=(1/2+DQ/2VT +D Q )'i

The Q-dependent eigenvalues W(Q) are given by

W, „(Q)=T 'i/T +D Q—

(41)

(42)

(43)

(44)

where the minus sign is assigned to the subscript c (con-
ventional) and the plus sign to the subscript u (unconven-
tional). The oscillatory function IN(Q) & is defined by the
equation

1 '&=cosg(g) ~ IC' (Q)& . (48)

Due to the inversion symmetry of V;„(Q), Eq. (45) has
parity-ordered eigenfunctions I@', „'(Q) &

Rg I@...(Q) &
=m. l@...(Q) &, ~=+1 . (47)

In Fig. 9 the potentials V;„(Q) are depicted for various
values of D and a fixed T. It is evident that for D )0 the
upper adiabatic potential V„' ( Q) corresponds to a
compressed parabola and its eigenfunctions can be rough-
ly approximated by squeezed versions of harmonic oscil-
lator wave functions.

From Eq. (43) we note the symmetry relation
Rising(Q)=cosg(Q)R&. Then a comparison of the total
wave function (6) and the adiabatic ansatz (39) with (42)
reveals that the exact FG wave functions IP'~'& for the
unconventional states can be approximated by the adia-
batic oscillatory wave functions I@'„'(Q)& via

—l' +v;„(Q) lc, „(Q)&=E' lc, „(Q)&

with the adiabatic potential

V;„(Q)=—Q +W, „(Q) .

(45)

(46)

The connection between the parity p of the exact total
wave function [cf. Eq. (6)] and the parity of the adiabatic
oscillatory wave function

I
N'„"'(Q) & is established by

p = —m. Thus the eigenfunctions of (45) which have an
even number of nodes and which pertain to the upper
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FIG. 9. Adiabatic potentials
V; (Q) and V„' (Q) [see Eq. (46)]
for fixed transfer T=50 and the
coupling constants D =0 (long
dashes), D = 10 (short dashes),
D =20 (solid line). For finite D
the upper adiabatic potential ap-
proximately corresponds to a
squeezed parabola and its
squeezed eigenstates are con-
nected with the nonconventional
states.
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adiabatic potential are approximative forms of the uncon-
ventional states with parity p = —1.

The lowest of these states is calculated by a numerical
diagonalization of Eq. (45). From Fig. 6 we recognize
that its energetic uncertainty is remarkably larger than
that of the optimized trial wave function (14), what is
even true for large transfer parameters T, as also noted
from Fig. 6. This is caused by the fact that the nonadia-
batic contributions to the Hamiltonian are centered in
the same spatial region as the wave function i@(„)(Q)).
For details about the separation of the Harniltonian in
adiabatic and nonadiabatic parts we refer to Refs. 14 and
16.

VII. SUMMARY AND PERSPECTIVES

In the present investigation we have discussed the ex-
cited states of an exciton-phonon system, which plays an
archetypal role. This work has been motivated by
preceding numerical findings of excited exciton-phonon
states of nonconventional nature, which display a squeez-
ing in the vibrational Q space. Our study employs the
FG transcription of the original Harniltonian as a pri-
mary step. The further analysis has been done in an
analytical manner, using unitary transformations both to
establish trial wave functions as well as to transform the
vibrational FG Hamiltonian to a form in which the
squeezing characteristics appear in a direct way. The ac-

curacy of our analytical approaches has been evaluated
by regarding the mean-square uncertainty of the con-
sidered states, which turned out to be much smaller than
the energetic spacing between the oscillatory levels. In
particular we have shown that the corresponding eigen-
functions found by means of an adiabatic approximation
lead to a considerably higher energy uncertainty than
those of our approach.

The main goal of our work is to probe analytical tools
by applying them to the archetype exciton-phonon mod-
el. These tools, which can be referred to as "construction
of trial wave functions by means of unitary transforma-
tions, " are hoped to be useful also for the finding of
exciton-phonon wave functions in more extended sys-
tems. In particular it is the Frohlich-type of construc-
tion, applied in succession to the Fulton-Gouterman tran-
scription, which may be expected to be helpful for finding
appropriate exciton-phonon wave functions in the
squeezing and antisqueezing regime. This, on the one
hand, would allow for a quantitative discussion of the
seminal approach introduced by Holstein' and used by
many researchers, ' ' in which an adiabatic semiclassical
philosophy is adopted. On the other hand, it would per-
mit a direct evaluation of transport quantities in the
exciton-phonon system without relying on transport
equations and the introduction of semiphenomenological
relaxation times for the scattering processes.
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