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Calculation of the upper critical field of V/Ag and Nb/Cu superlattices
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The Takahashi-Tachiki equations, describing the critical properties of proximity-effect systems in the
dirty limit, are solved exactly using the full eigenfunction expansion. Both parallel and perpendicular
critical fields are calculated. The theory is applied to experimental data of Kanoda et aI. for V/Ag and
of Chun et aI. for Nb/Cu, using the T, of the superconducting material and the diffusion coefficients of
both materials as fit parameters. For the three-dimensional (3D) systems the fits compare nicely with the
experimental results, but for 2D systems this is not always the case. It is found that the V and Nb criti-
cal temperatures necessary to fit the data can be larger than the corresponding bulk critical tempera-
tures. This contrasts with what has been observed for single V and Nb films. Attempts to remedy this

by choosing unconventional system parameters and using boundary conditions for less transparent inter-
faces turn out to be only limitedly successful. In the light of these anomalies earlier less complete calcu-
lations are reconsidered. It turns out that several assertions are superficial and cannot be affirmed by the
results of the present work.

I. INTRODUCTION

In recent years the proximity effect in metallic multi-
layers has been subjected to detailed research, both exper-
imentally and theoretically. ' Advances in thin-film tech-
nology enabled the manufacturing of high-quality multi-
layer samples with layer thicknesses down to 15 A.
These were found to exhibit a variety of features that
could be understood qualitatively by considering the lay-
ered nature of the samples.

A great deal of the experimental activities were focused
on the Nb/Cu system. Banerjee et al. measured the
layer-thickness dependence of the multilayer critical tem-
perature. In subsequent articles of Schuller and co-
workers this work was extended to include measurements
of the upper critical field H, 2. In these studies the lay-
ered nature of the samples had a clear manifestation in
the dimensional crossover that was observed in the tem-
perature dependence of the parallel upper critical field
H, 2 I~. A system that is expected to be comparable to
Nb/Cu is the V/Ag multilayer, whose two constituent
metals belong to the same groups of the periodic system.
Kanoda et al. ' studied the upper critical field proper-
ties of V/Ag experimentally. For intermediate layer
thicknesses H, 2

~~

showed a dimensional crossover that
looked qualitatively the same as that for Nb/Cu. The
two-dimensionality of these multilayers was also refiected
in H, 2 ~ in terms of a positive second derivative of this
quantity versus temperature. A few attempts were made
to compare Nb/Cu results to the proximity efFect theories
available at the time. Banerjee et al. analyzed their own
T, measurements using the Werthamer approximation
and the Cooper —de Gennes limit. *' Biagi, Kogan, and
Clem" tried to fit the outcome of the Werthamer theory
to measurements of the perpendicular upper critical field.
However, for the dimensional cross-over in H, 2

~~

no com-
parison with theory has bpen made as yet to our
knowledge.

A great leap forward in the camp of the theorists was
made in 1986.' ' That year Takahashi and Tachiki'
presented an advanced theory of the proximity effect in
metallic multilayers. In fact, up to then the Werthamer
approximation and the Cooper —de Gennes limit ' were
the only descriptions available. But the Werthamer ap-
proximation, while working well for thick-layer systems,
always overestimates T, and H, 2 when the layer thick-
ness decreases. ' On the other hand, the Cooper —de
Gennes limit gives the correct T, in the thin-layer limit,
but yields an underestimation for layers of finite thick-
ness. The Takahashi-Tachiki formalism was shown' to
bridge the gap between these limiting behaviors. Exact
solutions of the Takahashi-Tachiki equations were com-
puted by Auvil and Ketterson' for the case of zero mag-
netic field. The results were used to reconsider the
analysis of Banerjee et al. of multilayer T, measure-
ments.

Radovic, Ledvij, and Dobrosavljevic-Grujic'
developed a formalism that was shown' to be equivalent
to that of Takahashi and Tachiki in the limit that one of
the constituent metals has a vanishing T„as is the case
for Nb/Cu. They applied it to a model system for zero
and perpendicular magnetic field only. Simultaneously,
Takanaka' performed calculations in which the
Takahashi- Tachiki equations were solved exactly, for
both parallel and perpendicular fields. Again, only model
systems were investigated and no comparison was made
to any real system.

Generally speaking, the effort to compare theory with
measurements has been limited. ' Many of the experimen-
tal data were presented without reference to theory,
whereas many of the theoretical exertions restricted
themselves to model systems. The comparative studies
that have been made were incomplete in the sense that
the three critical quantities T„H,2 ~, and H, 2

i~

were nev-
er treated together. Moreover, Takahashi and Tachiki'
presented their results by comparing only reduced quan-
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tities. Interestingly, in subjecting earlier studies to a sup-
plementary analysis, striking inconsistencies show up,
which could not be noticed at the time due to their in-
completeness. It comes out that in order to check the
status and applicability of the proximity-effect theory a
full approach is indispensable. It is the aim of the present
paper to meet this requirement.

This paper is organized as follows. After an introduc-
tion to the formalism of Takahashi and Tachiki in Sec. II,
in Sec. III a critical review is given of previous studies.
Subsequently, Secs. IV and V give a detailed comparison
of the exact solution of the Takahashi-Tachiki equations
with experimental data. We do not compare reduced
quantities, for which satisfactory fits can more easily be
obtained, but always consider the absolute values of T„
H Q J and H, z

~i

~ The measurements that will be analyzed
concern the V/Ag system and the Nb/Cu system. The
main point of attention is the problem of the input pa-
rameters that one should use in order to bring the theory
into agreement with experiment and how these parame-
ters relate to their equivalents for a bulk metal.

II. THEORY

The starting point of the Takahashi-Tachiki theory' '
is Gorkov s linearized integral equation for the pair po-
tential'

and (3) by using an expansion of Q (r, r') and E(r) in
terms of the eigenfunctions gi(r) of the operator L(V),
with corresponding eigenvalues c&.

r(r) =yc, 1t,(r)

and

Q„(r,r')= ga" . itj'. (r')g (r) .

The eigenfunctions have to obey the de Gennes boundary
conditions' demanding the continuity of 1(t~(r)/N(r) and
D(r)[V —2ie A(r)/fic]Pi(r). The orthogonality and clo-
sure properties read as

1f~"A(r)
N r

ggi (r)gi(r') =N(r)5(r —r'),

refiecting the discontinuous nature of N(r). Substitution
of (5) in Eqs. (1) and (3) finally leads to a matrix equation
for the coef5cients c&.

1
ci =g 2~kTQ

b,(r) = JIC(r, r')b, (r')d r' .

The kernel E(r, r') can be expanded as

K(r, r') = V(r)k'r+Q„(r, r'), (2)

1
det 5&i

—2m.kTQ, Vii =0
2ico) +cg

(9)

where V&& is the matrix element (f&~ V~/&. ). When the
secular equation

[2~co~+L(V )]Q„(r,r') =2nN(r)5(r —r'), (3)

where N(r) is the position-dependent density of states at
the Fermi energy. The differential operator L(V ) is given
by

L(V ) = —iriD(r) V——
Ac

which contains a position-dependent BCS electron-
electron interaction coupling constant V(r) and a sum-
mation over discrete frequencies co=(2n+1)mkT. The
summation is restricted to frequencies ~co~ co~, coD being
the Debye frequency. According to Takahashi and Ta-
chiki, Q„(r,r') can be derived from a set of coupled
difFerential equations, including diamagnetic and
paramagnetic efFects. Auvil, Ketterson, and Song' gen-
eralized these equations to include also magnetic impuri-
ty scattering and spin-orbit scattering. For nonmagnetic
dirty type-II superconductors, however, these reduce to
the single Green s-function-like differential equation

+ + 1 e +
2mkT 4m.kT 4m.kT 2

(10)

The de Gennes boundary conditions mentioned above
do not account for the possible effect of a finite tran-
sparency of the metal-metal interfaces. In the present
work, however, the consequences of this will be discussed
as well. Kuprianov and t.ukichev' have shown how this
effect of electron scattering at the interfaces can be in-
cluded by modifying the boundary conditions. Rewritten
to the above formulation, ' ' these were found to read as

is satisfied, there are nontrivial solutions for the
coefficients c& and consequently for the pair function
E(r). The highest temperature for which such a solution
exists is the field-dependent critical temperature. The
present authors showed' that the frequency summation
appearing in (9) can be evaluated exactly in terms of the
digamma function %'(x), using the identity

1
2m. k Tg

r

D(r) being the position-dependent electronic diffusion
constant and A(r) the vector potential of the applied
magnetic field. For multilayers, the three functions N(r),
V(r), and D(r) are assumed to be constant within a single
material, making discontinuous jumps at the interfaces.

We now define the pair function F(r)—:h(r)/V(r). It
was the idea of Takahashi and Tachiki to solve Eqs. (1)

D(r) gi(r) =D(r) 1(i(r)
a 8
az r=r+ az

fear )

e Rii N(r+)
r

N(r )
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where R~ is the effective resistance of the boundary, mul-
tiplied by its area. The symbols r and r+ denote the vec-
tors (x,y, z —e) and (x,y, z+s), respectively, where
(x,y, z) is the vector that points at the interface, s is an
infinitesimal positive quantity, and z is assumed to be the
direction perpendicular to the interfaces, that is, the
direction in which D(r ) and N(r) show discontinuities.
The vector potential A(r) is assumed to have no z com-
ponent. Equation (11) reduces to the de Gennes bound-
ary conditions when the first and second members on the
left-hand side are much smaller than either of the terms
on the right-hand side. Since Bfz(r)/Bz is of the order
g~( r ) /g;, with g; the smallest coherence length'3 and
where i can refer to either of the metals adjacent to the
interface, this is true when g; »e N;D;R~. From the
microscopic transport equations it can be derived' that
R~ is of the order p;l;/t;, where l, is the electron mean
free path and t,. is the transmission coefficient. Since
p; =1/e N;D, , this implies that the de Gennes boundary
conditions are valid when g; » l;/t; Whe. n t; is of the
order of unity this condition is precisely the dirty-limit
requirement, assumed to be satisfied in the present
theory, but when t; is much smaller than unity this condi-
tion may also be violated. Then Eq. (11) has to be used
instead of the de Gennes boundary conditions. Note that
Rz is finite even for a unit transmission coefficient, while
the de Gennes boundary conditions are exact only for
R&=0. Therefore the latter are an approximation even
for the case of fully transparent boundaries and it might
be advisable to use expression (11) for all cases.

III. CRITICAL RKVIK%

This section is a review of previous publications in
which proximity-eQ'ect theories are compared with exper-
iment. These studies concern the Nb/Cu system only.
For V/Ag no comparison is available as yet. The
analysis is focused on the material parameters that have
been employed by the various authors. As was seen in
Sec. II, the theory requires four parameters to character-
ize a metal. These are the density of states at the Fermi
energy, N, the BCS coupling constant V, the electronic
diffusion coefficient D, and the Debye temperature 8L, .
The theory does not account for the two metals having
difFerent Debye temperatures. In all cases where this
quantity is needed 295 K is used for both Nb and Cu.
This is the average of the two individual Debye ternpera-
tures, which are 6& Nb

=275 K and 0& c„=315 K.
Sometimes T, Nb is used as a material parameter instead
of V». In that case VNb is chosen such as to yield the
given niobium T, . This can be done since the theory
defines a unique relationship between T„V, and N for a
bulk material.

In 1982 Banerjee et al. studied the dependence of the
multilayer critical temperature T, on the individual layer
thicknesses. As expected theoretically, the proximity
effect reduced T, when the layer thicknesses were de-
creased. However, the amount of reduction was larger
than could be explained by either the Werthamer theory
or the Cooper —de Gennes limit. ' This led Banerjee
et al. to the conclusion that the critical temperature of

dwb
DNb=min 1, . X3.47cm /s

160A

and (12)

d« 2D«=min 1, , X 65.7 crn /s,
2000 A

where d Nb and d«denote the respective layer
thicknesses. The minimal-value operators appearing in
these equations reflect the fact that the mean free path is
limited by the layer thickness when the latter is less than
the bulk mean free path. The diffusion coefficient itself is
proportional to the mean free path according to the free-
electron formula D =

—,'uzi. As can be inferred from Eq.
(12), bulk mean free paths of 160 A for niobium and 2000
A for copper were used by Banerjee et al. A vanishing
T, was assumed for copper, whereas T, Nb was used as a
free parameter to fit the multilayer critical temperature
to the experimental data. This fit resulted in a T, » that
decreases for decreasing layer thickness. This decrease is
somewhat less than in the plot of Wolf, Kennedy, and
Nisendorf for the T, of single niobium films, but it is in
qualitative agreement with it. The bulk critical tempera-
ture for niobium was 8.91 K.

To determine the actual status of this seemingly satis-
factory result it is necessary to draw attention to the limi-
tations of the approach that has been followed. The first
is that the Werthamer approximation is used. In the
description of Banerjee et al. the observed decrease in
the multilayer T, is attributed to two mechanisms: the

proximity effect on the one hand and on the other hand
the decrease of the niobium T, . The Wertharner theory
underestimates the decrease due to the proximity effect
and therefore necessarily overestimates the decrease due
to the niobium T, . In a more exact approach a lesser de-
crease of T, Nb would be needed to fit the data. A second
limitation is that the result depends strongly on the
choice of the material parameters, in particular, the
diffusion coefficients. In order to judge the reasonable-
ness of these parameters it is an absolute necessity to in-

the niobium itself is a decreasing function of its layer
thickness. This argument was based on the assumption
that the electronic mean free path is limited by the layer
thickness. For increasingly thin layers this causes a
suppression of the mean free path that smears out the
electronic density of states. For niobium this leads to a
reduction of the density of states at the Fermi energy
and, consequently, to a lower T, . This effect has been
conjectured by Wolf, Kennedy, and Nisendorf for single
niobium films.

To carry out the Werthamer calculations, Banerjee
et al. proposed a set of system parameters that was
based on measurements of the normal-state resistivity p,
the coefficient of normal-state electronic specific heat y,
and the electronic mean free path l. Using free-electron
formulas their values for p, y, and l can be shown to lead
to the parameter values NNb = 12.0 X 10 /J m and
Nc„=1.98X10 /Jm and to the following recipes for
determining the diffusion coefficients:
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elude the theoretical predictions for the upper critical
fields into the argument. Since this has not been done by
the authors, it is premature to draw conclusions concern-
ing the correspondence between theory and experiment.
Another choice of parameters might be needed to fit
upper critical field data, parameters, as we will show, that
can lead to qualitatively different behavior of the niobium
critical temperature.

In later work the anisotropic behavior of the upper
critical field H, 2 of Nb/Cu was mapped out extensively.
It was found that for intermediate layer thicknesses the
parallel upper critical field H, z

~~

shows a clearly observ-
able dimensional crossover from anisotropic three-
dimensional (3D) behavior at higher temperatures to 2D
thin-film-like behavior at lower temperatures. These
were purely experimental articles. No comparison was
made with theory. Figure 1 is a comparison of these ex-
periments with the analysis of Banerjee et al. It shows
the data of Chun et al. and the exact solution of the
Takahashi-Tachiki equations for the above set of parame-
ters. The T, of niobium was taken to be 8.4 K, consistent
with the decrease of the niobium T, that was inferred by
Banerjeee et a/. It is seen that these parameters do not
reproduce the measurements in a satisfactory way.

A second comparison between theory and experiment
was given by Biagi, Kogan, and Clem. " They analyzed
the perpendicular upper critical field H, 2 ~ of the Nb/Cu
system in the framework of the Werthamer theory. It
was found that the theory could be brought into agree-
ment with the data of Banerjee and Schuller only when
the mean free paths of both the niobium and the copper
were assumed to be considerably smaller than the esti-
mates obtained from longitudinal resistivity measure-
ments. It was also shown that the experimentally ob-
served positive curvature of H,21(T) can be reproduced
using Werthamer theory.

To judge the significance of these findings we will sub-
ject their treatment of the system parameters to a supple-
mentary analysis and reconsider their findings from the
viewpoint of a more complete approach. The authors
studied two Nb/Cu multilayer systems with equal layer

30

20
Hc2, jl

30

thicknesses 1=dNb=d«, d being either 420.5 or 171.5
0
A. Copper was assumed to have zero T„whereas for
T, Nb layer-thickness-dependent values were used. The
latter were taken from the fit to multilayer T, data made
by Banerjee et al. The three remaining independent pa-
rameters, Dc„, DNb, and the ratio Nc„/NNb, were used
to fit the theoretical results to the H, 2 ~ data of Banerjee
and Schuller. The results are shown in Table I. With
these parameters the theoretical curves coincide with the
H, 2 ~ data over the whole temperature range.

The diffusion coefficients were analyzed in terms of the
corresponding mean free paths. These were determined
by making use of the free-electron formula D =

—,
' vol and

the Fermi velocities v+ Nb
=2.73 X 10 cm/s and

U~ c„=1.57X10 cm/s. Table I shows that the resulting
mean free paths are in all cases smaller than both the lay-
er thickness and the respective bulk mean free paths as
estimated by Banerjee et al. Consequently, one may ar-
gue that there is a discrepancy between the findings of Bi-
agi, Kogan, and Clem" and the above-described model of
a layer-thickness-limited electronic mean free path.
However, this conclusion depends crucially on the choice
of the values for the Fermi velocities. Note that the
above values differ by an order of magnitude from the
Fermi velocities one can derive from the system parame-
ters of Banerjee et al. These lead to v~ Nb=0. 651X10
cm/s and v~ c„=0.985X10 cm/s, respectively. When
we directly compare the diffusion coefficients of Table I
with what Eq. (12) yields a difFerent picture arises. Then
the DNb of Biagi, Kogan, and Clem" is still smaller than
in Ref. 2, but their Dc„ is unexpectedly large.

Apart from this somewhat arbitrary choice of Fermi
velocities, we have to consider the fact that H, z

~~

is not
included in the analysis. Using the exact solution of the
Takahashi-Tachiki equations for the 171.5 A system with
the parameters of Table I, the following findings turn up.
First, as a consequence of the extremely large ratio
Dc„/DNb, the nucleation center of the pair function is
situated in the middle of the copper layer over the whole
iemperature range. Secondly, the dimensional crossover
shown by the measurements is not reproduced by the
theory. And, finally, at low temperatures the theory un-
derestimates H, z

~~

by more than a factor of 2, although
this may be partly due to the occurrence of surface super-
conductivity in the samples of Banerjee et aI. We must
conclude that the parameters do not suffice to give an
adequate description of H, 2 ~~.

More generally, it can be
stated that it is easier to fit H, z ~( T) than to fit H, 2 ~~(

T).
The reason for this is that the former shows considerably
less structure than the latter. In H, 2

~~

the dimensional
crossover has its most dramatic appearance.

0
0

0~ Q

2 3 4 5 6
T (K)

TABLE I. Fitting parameters of Biagi, Kogan, and Clem
(Ref. 11).

FIG. 1. Upper critical Seld curve of Nb(171 A)/Cu(376 A).
The lines show the exact solution of the Takahashi-Tachiki
equations, using the material parameters of Banerjee et al. (Ref.
2). The circles show the experimental data of Chun et al. (Ref.
5).

d
(A)

420.5
171.5

Tc, Nb

(K)

8.91
8.4

2.18
1.27

59.1

50.2

DNb Dcu
(cm /s) (cm /s)

Ncu /NNb

0.118
0.132

lNb

(A)

24
14

113
96
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Although Takahashi and Tachiki' provided the means
for doing advanced calculations, they themselves only ap-
plied their equations in an approximate form. This so-
called diagonal approximation underestimates H, z and T,
for any real system, but is exact in the thin-layer limit. '

In fact, the diagonal approximation is an extension of the
Cooper —de Gennes limit to the finite-field case. Still,
this approximate form. can also reveal some qualitative
properties of the upper critical field as a function of tem-
perature, the most profound of these being the dimen-
sional crossover in H, 2 ~~(T). Takahashi and Tachiki'
demonstrated this by applying it to a set of model sys-
tems, mostly ones whose constituent metals differed only
in one material parameter. For multilayers differing only
in their densities of states a continuous dimensional
crossover was found. This crossover was clearly of a
different nature than the one found for systems differing
only in their diffusion coefficients, e.g., Nb/Nbo 6Tio ~. In
the latter case a discontinuous derivative could be
found in H, 2 ~~(T). Karkut et al. have experimentally
affirmed that this anomalous behavior can really occur.

It was claimed' that the H, 2
~~

measurements on
Nb/Cu multilayers could be well fitted by assuming that
both metals differ only in their density of states at the
Fermi energy, the ratio Nc„/N» being equal to 0.15.
This compares remarkably well with the value 0.165 that
Banerjee et al. estimated from the coefficients of
normal-state electronic specific heat. However, the coin-
cidence of the measured and calculated curves may well
be fortuitous for reasons that will be discussed in the sub-
sequent analysis. Takahashi and Tachiki' do not show
absolute quantities. What is plot ted is the ratio
H, z ~~/H, z Nb(0) as a function of T/T„H, 2 Nb(0) being
the upper critical field of bulk niobium at zero tempera-
ture and T, being the multilayer critical temperature.
The implication of this is that there are several combina-
tions of system parameters that yield the same curve.
These sets can have wildly different values for the
diffusion coefficients, which in turn can give rise to wildly
different absolute values for H, 2 ~~,

but leave the ratio
H, 2 ~~/H, 2 Nb(0) intact. The reason for this is that both
H, 2

~~

and H, 2 Nb(0) are roughly inversely proportional to
D, so that the ratio calculated by Takahashi and Ta-
chiki' is almost independent of D. Table II shows two
combinations of parameters that are consistent with the
requirements for the data-fitting curve, namely,
~Nb ~C D Nb D C +Cu /+Nb
dNb=dc„=0. 70/Nb(0). Here, /Nb(0) is the Ginzburg-
Landau coherence length of niobium at zero temperature,
defined by /Nb(0) =+go/2mH, 2 Nb(0). For a bulk super-
conductor this quantity can be related to the diffusion
coefficient and the critical temperature by the formula

TABLE II. Parameters of the Takahashi-Tachiki system
(Ref. 12).

1/2

(Nb(0) = exp[ —0'( —,
'

) j
c,Nb

(13)

IV. RESULTS FOR THE V/Ag SYSTEM

which was implicitly used by Takahashi and Tachiki. To
keep in line with their treatment we did not use the exact
frequency summation (10) to calculate the values of Table
II, but the large-coD approximation' employed by all pre-
vious authors. Equation (13) is only valid within this ap-
proximation. Remarkably, for both systems there is a
nonzero Vc„, due to the requirement VNb = Vc„, and con-
sequently a nonzero T, c„. However, since Xc„ is much
smaller than %Nb, this value is extremely smaH, in the or-
der of 10 K, and therefore well below the detection
limit of any experiment. In the first set of parameters
T, Nb is set to its bulk value and DNb is chosen such that
we have a layer thickness of d=0. 70/Nb(0)=200 A.
This is the layer thickness of the sample to which the
model system was compared by Takahashi and Tachiki.
Applying the diagonal approximation reveals that this set
of parameters has a diffusion coefficient of niobium that is
much too large, causing this set to yield upper critical
fields that underestimate the data by more than a factor
of 3, In the second set T, Nb and Dzb are adjusted such
that the diagonal approximation yields absolute values
for T, and H, 2

~~

that are in quantitative agreement with
the data of the same sample. In that case an anomalously
high T, Nb is needed and the value used for the layer
thickness, namely, d =0.70/Nb(0), differs from the sam-

ple layer thickness. Moreover, these parameters yield an
underestimation of H, 2 ~ by a factor of about —', over the
whole temperature range. Therefore the inevitable con-
clusion arises that Takahashi and Tachiki could only
"fit" the data by limiting themselves to reduced quanti-
ties, by which important information appears to be ob-
scured. For a real comparison the results should be
presented in terms of absolute values, not by using ratios.

Auvil and Ketterson' solved the Takahashi-Tachiki
equations exactly for the zero-magnetic-field case. They
performed a fit to the Nb/Cu T, data measured by Ban-
erjee et al. by using the niobium T, as a free parameter.
The exact theory yielded a decrease of the niobium criti-
cal temperature as a function of niobium layer thickness
that was less dramatic than found earlier using Wertha-
mer theory. Now, the results were in quantitative agree-
ment with the findings of Park and Geballe for single
niobium films. Both the fit procedure and the system pa-
rameters employed in this calculation were copied from
Banerjee et al. Therefore this study suffers from the
same incompleteness as was discussed in connection with
the latter publication. If upper critical fields had been
studied as well, it would have come out that the exact
theory also cannot adequately describe the reality with
this set of parameters.

(A)

200
112

Tc,Nb

(K)

8.91
10.7

DNb
(cm /s)

16.8
6.35

Dc.
(cm /s)

16.8
6.35

&cu /NNb

0.15
0.15

We recall that to characterize a specific metal the
theory requires the four parameters X, V, D, and eD.
The theory does not account for the two metals having
different Debye temperatures. Therefore the average
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TABLE III. Fitting parameters for the V/Ag multilayer sys-
tems.

dv/dAg
(A/A)

30/15
40/20

100/50
100/100
100/200
150/50

160/320
200/400
240/480

T.
(K)

2.42
2.87
3.69
3.41
2.57
4.21
2.88
3.48
3.40

T
(K)

1.6
1.6
1.6
1.6
1.6
1.5
1.5
1.5
1.6

Tc,v
(K)

4.00
4.59
5.45
6.50
7.42
5.44
6.87
6.88
5.75

Dv
(cm /s)

1.00
1.11
1.39
1.96
4.51
1.54
2.52
1.87
2.29

DAg
cm'/s)

1.07
1.48
2.97
4.54
6.97
3.07

10.7
11.1
5.46

value of 302.5 K is used for both V and Ag, their actual
Debye temperatures being 390 and 215 K, respectively.
N~z and V~~ are assumed to be independent of the silver
layer thickness. For NAI this is justifiable, because the
Fermi energy is situated in the low, flat sp tail of the den-
sity of states curve. Therefore neither a shift in the Fer-
mi energy nor a broadening of the density of states can
result in a substantial change of the density of states at
the Fermi energy. We use N~ =1.00X10 /Jm, con-
sistent with the measured value of the coefficient of elec-
tronic specific heat. Since silver is not a superconduct-
ing metal we assume that Vzz =0 for all layer
thicknesses. From Nv~b„&k~ and T, v~b„&k~ for bulk vanadi-
um (infinite layer thickness) it is possible to determine
Vv~„„&„~. We assume Vv to retain this value in vanadium
layers of finite thickness, in contrast with Nv and T, v
themselves. This can be justified by realizing that the
main influence of Vv in the calculations is via the prod-
uct Nv Vv which fully fixes the vanadium critical temper-
ature. Only small variations of Nv Vv can occur, because
T, v shows a very strong dependence on this product.
This means that a possible layer-thickness dependence of
Vv can easily be subsumed in the layer-thickness depen-
dence of Nv without seriously disturbing the effect of the
N-dependent boundary condition. We use

Nv~b„~i, ~
=4.5 X 10 /Jm and T, v~b„ii, ~=4.24 K. The

first value is based on the calculations of Soukoulis and
Papaconstantopoulos for disordered vanadium, substi-
tuting the measured bulk residual resistivity of 15
pQcm. Note that this is significantly lower than the
value of 18.3 X 10 /J m that one would derive from the
coefficient of electronic specific heat. The value for T, v
originates from a measurement on a thick V film. The
three remaining quantities, Nv, Dv, and D&g are used as
free parameters to fit the experimental multilayer T, and
the critical fields H, z i(T) and H, z i(T) at some tempera-
ture T to be chosen. Consequently, these quantities are al-
lowed to vary from system to system and are expected to
show a dependence on the thickness of the layers.

The results of the fit procedure applied to the data of
Kanoda et al. are shown in Table III. The first two
columns show the respective layer thicknesses and the
measured T, of the multilayer system. The third column
shows the temperature T at which H, 2 ~ and H, 2

~~

are

fitted, always chosen at the lower bound of what was ex-
perimentally accessible. The remaining columns show
the fitted values for the three free parameters. The calcu-
lations were done for infinite multilayers. These can, nev-
ertheless, be compared with measurements in finite sam-
ples, because all samples were thick compared to the
coherence lengths and protected against surface effects by
using Ag layers of at least 100 A as the outer two layers.
The extent to which the experimental error is transferred
to the calculated results is estimated and never found to
be dramatic. Assuming an error of l%%uo in T„H,2 i(T),
and H, 2 i( T), we find an error of 1% in T, v and errors
ranging from 2% to 3% in Dv and from 2% to 5% in

DAg.
Although the scattering in the results is considerable,

the T, v we found shows a clear tendency to decrease
when the vanadium layers become thinner. This is con-
sistent with the expectation that the density of states is
reduced when the mean free path becomes layer-
thickness limited. However, in contrast with what was
reported for single vanadium films, for most of the sam-
ples T v exceeds the bulk critical temperature of 4.24 K,
V(30 A)/Cu(15 A) being the only exception. There seems
to be no evidence either experimentally or theoretically
that such an enhanced T, is physical. Most likely, there-
fore, it should rather be regarded as a deficiency of the
theory itself or of the choice of parameters. At the end of
this section we will discuss the possibilities to overcome
this anomaly.

The diffusion coefFicients of both materials also depend
on layer thickness, as can be seen in Figs. 2 and 3. The
points in the first graph can roughly be grouped onto an
ascending straight line, the D v found for V(100
A)/Ag(200 A) being an exception to this behavior. But in
contrast with the concept of a layer-thickness-limited
mean free path, this line would not extrapolate to zero
diffusion coefficient for zero layer thickness. For the
samples with dAI 400 A the silver diffusion coefficient
increases with the silver layer thickness, with a slight ten-
dency to saturate at larger thicknesses. The D& found
for V(240 A)/Ag(480 A), however, falls far below the
curve that an extrapolation of this tendency would yield.

Using the free-electron formula D =
—,'Uzl and the Fer-

mi velocities v&v=3. 73X10 cm/s and vz~ =1.39X10
cm/s, we can calculate the mean free path. For vanadi-
um this quantity ranges from 8 to 36 A and for silver
from 2 to 24 A. Kanoda et al. estimated a mean free
path of 22 A for vanadium in multilayers with large layer
thicknesses. This value falls within the range determined
above for vanadium, but the fact that for dv & 200 A the
mean free path is still an increasing function of dv sug-
gests that lv exceeds the value of 200 A. In the case of
silver, the mean free path is always much less than the
bulk mean free path, but in all cases also much less than
the silver layer thickness. Therefore the procedure intro-
duced by Banerjee et al. , in which the actual mean free
path is taken to be the minimum of the bulk mean free
path and the respective layer thickness, cannot model the
behavior of the silver mean free path. Since these deviant
values are needed to fit the data, it seems that the
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FIG. 2. Layer-thickness dependence of the fitting vanadium
difFusion coefficient as listed in Table III.

FIG. 3. Layer thickness dependence of the fitting silver
coefficient as listed in Table III.

diffusion coefficient to be used in the Takahashi-Tachiki
formalism cannot be directly associated with the diffusion
coefficient responsible for the normal-state resistivity. It
would, however, also be useful to investigate whether the
use of free-electron formulas is justified for the noble and
transition metals in the system under consideration.

For the three-dimensional multilayers, i.e., the systems
for which no dimensional crossover was observed, the
above parameters can reproduce the graphs of Kanoda
et al. satisfactorily. In both the calculations and the ex-
periments the anisotrophy H, 2 ~~/H, z ~ is essentially con-
stant over the whole temperature range, meaning that
fitting the curve at T= 1.6 K results in a curve that fits
the data at all temperatures. For H',

2 ~~(T) the pair func-
tion shows no preference for nucleation in a specific lay-
er. Only at lower temperatures do the systems with
dv =100 A show a slight preference for nucleation in the
V layer. Both the constant anisotropy and the lack of
preference for the nucleation position are hallmarks of
three-dimensional behavior. In these systems the specific
properties of V and Ag are averaged out and the multi-
layer can be regarded as an effective anisotropic bulk ma-
terial. For V(150 A)/Ag(50 A) the experimental data
show a discontinuity in the derivative of H, 2 ~~(T) at 2.57
K, attributed to a commensurability between the multi-
layer period and the vortex lattice. This effect is not
reproduced by the Takahashi-Tachiki theory, but other-
wise the calculated upper critical fields are in accordance
with the measurements. At temperatures below 3 K the
theory predicts that the pair function shows a preference
for nucleation in the vanadium layer, but the onset of this
does not cause an observable upturn of the curve. For
V(160 A)/Ag(320 A) the experiment shows the onset of a
dimensional crossover in H, 2 l(T). This is well repro-
duced by the calculated curve. Again, at lower tempera-
tures nucleation occurs in vanadium. For the two
remaining systems, V(200 A)/Ag(400 A) and V(240
A)/Ag(480 A), the experiments clearly show a dimension-
al crossover. The calculations show a dimensional cross-
over too, but the curves do not reproduce the experimen-
tal data well. For V(240 A)/Ag(480 A) the experimental
curve shows the crossover in H, 2

~~

at T=0.79T, . The
same crossover, was found to be reAected in H, z ~ in

15

& 10

0
1.5 2.0 2.5

T (K)
3.0 3.5

FIG. 4. Upper critical field curve of V(240 A)/Ag(480 A).
The solid circles show the data points of Kanoda et al. (Ref. 7)
at which the curves have been fitted.

terms of a positive curvature. For these experimental
curves we refer to Fig. 12 of Ref. 7. Figure 4 shows the
corresponding calculated upper critical fields for this sys-
tem with the parameters of Table III. In this curve H, 2

~~

has its dimensional crossover almost immediately below
T, . Below this crossover point it shows the square-root-
like behavior characteristic for decoupled thin films. The
perpendicular upper critical field also contrasts with the
experimental data by having a negative curvature over
the whole temperature range. It is still an open question
whether another choice of the fixed parameters can cure
this deviation from experiment.

We now return to the problem of the anomalously high
vanadium critical temperature. We consider three op-
tions to overcome this anomaly. The first is the choice of
a lower value for the ratio NA /Nv, the second the use of
a finite VA, and the third the implementation of a finite
boundary transparency in the way discussed in Sec. II.
For each of these options it can be argued that it in-
creases the multilayer T, when the other parameters are
kept fixed. The effect of both a more extreme N~z/Nv
and a finite boundary resistance Rz is that the behavior
of the superconducting layer is shifted towards single-film
behavior. In both cases it becomes more difficult for
Cooper pairs to diffuse into the normal layers, in the one
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case due to the lack of available states and in the other
due to the difficulty in crossing the interface. Therefore
the proximity effect with the nonsuperconducting layer is
reduced and a lesser depression of T, with respect to T, v
is expected. Evidently, when the silver layer is assumed
to be a little superconducting by itself, by choosing a
finite and positive V~, the reduction of T, induced by
the proximity effect with the silver layer is also expected
to be less. When one of the above alternatives is used in
the fit procedure we presented, this tendency to increase
the multilayer T, has to be compensated by a change in
the parameter values T, v, Dv, and D&g since the experi-
mental T, to be fitted obviously remains the same. T, v
can contribute to this compensation by lowering its value.
Therefore the above mechanisms are expected to reduce
the vanadium T, that comes out of our fit procedure.

To give a quantitative illustration we consider the
V(160 A)/Ag(320 A) system. The parameters given in
Table III (with T, v =6.87 K) were forced to fit the multi-
layer T, of 2.88 K. Merely setting Nzg/Nv(bulk) to half
its original value and leaving the other parameters un-
changed causes the multilayer T, to increase to 4.41 K.
However, again applying the fit procedure causes T, v,
Dv, and D& to change their values in order to keep the
multilayer T, at 2.88 K. The T, v we then find is 5.13 K.
Similarly, setting V~ equal to Vv increases the multilay-
er T, to 3.30 K, whereas renewed application of the fit

procedure yields T, v=6. 19 K. In this case we have

N&g V&g 0 050 This compares nicely to the data of
Deutscher et al. , who reported that the silver layer in a
PbBi/Ag/PbBi sandwich can become intrinsically super-
conducting due to the proximity of the superconductor.
The silver T, associated with this value of N~g V&g is
7.33 X 10 K. Finally, the introduction of a finite
boundary resistance R~ =390X 10 pQ cm gives a

multilayer T, of 3.0S K, provided that the other parame-
ters remain unchanged. It results in a vanadium T, of
6.66 K when the fit procedure is again applied. All these
modifications do not lead to qualitative changes in the
behavior T; v, Dv, and D~g as a function of layer thick-
ness, nor in the behavior of H ~ ll

and H z, i as functions
of temperature. It can be concluded that the tendencies
are all in the right direction, but they do not suffice to
eliminate the problem of the high T, v.

In order to get a feeling for the measure of the
inAuence of a boundary resistance, it is convenient to ex-
press this quantity in terms of a characteristic length
scale. That enables one to compare the magnitude of R~
to the coherence lengths and layer thicknesses. The di-
rnension of boundary resistance is pQ cm . Therefore an
appropriate way to attribute a length scale to the bound-
ary resistance is by dividing it by the resistivity of either
vanadium or silver. For the V(160 A)/Ag(320 A) system
with R~=390X10 pQcm, we find R /p ii1v2. 1 A
and Rz/p& =11.4 A. The interpretation of the latter
value is that an interface with a certain area 2 has the
same resistance as a 11.4 A silver layer with the same
cross section A.

In connection with the suggestion of a finite R~, it is
also important to consider its inAuence on the anisotropy

ratio H, z ~~/H, ~ i. In thin-layer systems and for Rz =0,
this ratio is a function of

y = ,' (N~—zD~s/NvDv+NvDv /N~sD~s )

only. ' The minimum value of y is 1, corresponding to
no anisot«py, that is, H, Q

~~

H, p J A finite boundary
resistance tends to increase the anisotropy, meaning that
there is also anisotropy for y=1. Consequently, Rz im-

poses a lower bound on the anisotropy one can achieve
theoretically by varying the diffusion coefficients. When
this minimum value exceeds the experimentally observed
anisotropy, the data cannot be fitted any more. For the
V( 30 A/Ag(15 A) system this happens for
Rz ) 1440X 10 pQ cm . Therefore the boundary resis-
tance cannot be increased without restriction and is limit-
ed as a means of reducing the vanadium critical tempera-
ture.

Another fundamental point to be dwelled upon in con-
nection with the employed fit procedure is the fact that
the solutions are not unique. This can been seen most
clearly by considering the thin-layer limit. Here, the only
way in which the diffusion coefficients appear in the ex-
pressions for H, z

~I

and H, z ~ is by means of the products
NvDv and N&gD&g.

' Moreover, all expressions are
symmetric with respect to the exchange of these prod-
ucts. As a consequence, in the thin layer, the above-
described fit procedure makes it possible to determine the
best fitting value for quantities like y, but leaves it impos-
sible to decide whether NvDv is larger than N~ D~ or
vice versa. Therefore two possible solutions are left to
choose from for each system. Farther away from the
thin-layer limit the situation is the same in the sense that
two solutions still exist, although these need not corre-
spond to equal values of y. In the present work we have
always chosen the solution with the highest value for the
ratio NvDv/N~zD~z. For this choice the initial cir-
cumstance that Nv )N~g is slightly counterbalanced by
the fact that a Dv &D~ is found. This leads to moderate
values for the diffusion coefficients, which are not too far
off from the prediction of Eq. (12). The fact that this im-

plies for most systems that pv(pz is understandable
from the notion that bulk silver derives its small resis-
tance from its large mean free path. In multilayers this
does not apply anymore, because the mean free path has
become layer-thickness limited. The second solution cor-
responds to NvDv/N~sD~z well below 1, meaning that
the contribution of the densities of states to this ratio has
to be more than completely balanced by the diffusion
coefficients. This results in both an extremely low Dv
and an extraordinary high D~, when compared to the
prediction of Eq. (12). To illustrate this, consider the
V(30 A)/Ag(15 A) system. The ratio NvDv/N~ D~
4.16 and 0.230 for the first and second solution, respec-
tively. These values correspond to approximately the
same y value, as the layers are comparatively thin. But
the corresponding values for Dz /Dv are 1.07 and 19.3,
respectively, differing by an order of magnitude. Similar-
ly, for the V(200 A)/Ag(400 A) system we have for
NvD v /N&gD &g the values of 0.844 and 0.0299 for the
first and the second solution, this system being the only



9034 R. T. W. KOPERDRAAD AND A. LODDER 51

example in Table III for which the first yields a number
less than unity. Here, the corresponding values for
D~ /Dv are, respectively, 5.94 and 163, the latter being
extremely large. In calculating H, 2 ~~( T), the high
DAs/D„value of the second solution leads to the seem-
ingly unphysical, but theoretically possible effect that the
pair function can also nucleate in the middle of the silver
layer, and will indeed do so above the specific crossover
temperature of 1.89 K. Below this temperature nu-
cleation occurs in the middle of the vanadium layer,
whereas at this temperature H, z

~~

has a discontinuity in
its temperature derivative. Since the experiments of
Kanoda et al. show no sign of the existence of such a
discontinuity, the choice for the first solution seems to be
the most reasonable one. In a previous publication the
present authors have presented results that correspond to
the second possible solution. These results suffered from
the same high critical temperatures of vanadium that are
encountered above. It was found that for thick-layer sys-
tems the calculated H, z ~~(

T) curve underestimated the ex-
periment everywhere between T, and the fitting tempera-
ture. %'e presently believe that this choice for the second
solution is not the best option available.

Taking things together, there are two main problems in
fitting the experimental data. First, unphysically high
values for the critical temperature of vanadium are found
and, secondly, the dimensional crossover in H, 2

~~

is found
at higher temperatures than observed experimentally.
The first problem can be cured by decreasing N~ /Nv or
increasing VAz, but such a choice for the material param-
eters lacks an external justification. The problem cannot
be overcome by introducing a boundary resistance, be-
cause the values then needed for the thick-layer systems
make it impossible to fit the thin-layer systems. The
second problem, concerning the crossover temperature,
or, stated differently, concerning the fitting of H, z

~I

at all
temperatures, seems to be inherent to the theory used.

V. RESULTS FQR THE Nb/Cu SYSTEM

For Nb/Cu the same procedure is adopted as used for
V/Ag. We use a Debye temperature of 295 K, which is
the average of the Debye temperatures of pure Nb and
Cu, 275 and 315 K, respectively. The other fixed input
parameters, taken from Banerjee et al. , are, respectively
Nc„=1.98X10 /Jm, V „=0, NNb(b„ik) =12.0X10 /
Jm, and T, Nb(b„)k) =8.91 K. From the latter two values

VNb is determined, which is again assumed to be layer-
thickness independent. Now NNb, DNb, and D«are the
free parameters, used to fit the multilayer T, and the crit-
ical fields H, 2 i(T) and H, 2 ~~(T) for some temperature T
to be chosen.

The above fit procedure has been applied to the data of
Chun et al. In their experiments surface superconduc-
tivity was suppressed by sandwiching the necessarily
finite multilayers between thick copper layers. Since all
samples were thick with respect to the coherence length,
this made the behavior of their samples also representa-
tive for what an infinite multilayer would do. Therefore
the data can be compared to our calculations for infinite
multilayers. The resulting values for the free parameters

TABLE IV. Fitting parameters for the Nb/Cu multilayer
systems.

dNb /dcu
(A/A)

T.
(K)

T
(K)

TAuvil
c, NbTc,Nb

(K) (K)
DNb

(cm /s)
Dc.

(cm /s)

23/23
47/22
44/44
47/87

168/147
168/147
168/147
168/147
168/147
168/147
171/376
171/376
171/376
171/376
171/376
171/376
171/376
171/376
171/376

170/90
168/168
168/168
168/168
172/255
172/333
172/333
176/585
176/585

3.34 1.17 6.79 6.56
6.05 1.17 8.24 8.08
5.07 1.17 9.23 8.77
3.05 1.17 9.04 7.96
7.00 1.37 10.14 9.88
7.00 3.33 10.39 9.88
7.00 4.86 10.42 9.88
7.00 5.28 10.39 9.88
7.00 6.04 10.30 9.88
7.00 6.62 10.28 9.88
5.85 1.17 10.15 10.75
5.85 3.04 11.20 10.75
5.85 3.63 11.76 10.75
5.85 4.08 11.92 10.75
5.85 4.47 11.87 10.75
5.85 4.86 11.72 10.75
5.85 5.28 11.47 10.75
5.85 5.41 11.47 10.75
5.85 5.62 11.33 10.75
7.70 1.17 9.80 9.77
6.75 1.17 10.03 9.87
6.75 1.96 10.21 9.87
6.75 5.28 10.33 9.87
6.50 1.56 10.73 10.46
6.05 1.10 10.14 10.62
6.05 1.17 10.04 10.62
4.84 3.33 9.91 10.62
4.84 3.77 11.51 10.62

2.29
2.32
3.65
7.94
3.49
3.50
3.82
3.90
4.31
4.95
4.69
5.12
4.87
5.39
7.04
8.91

11.34
10.36
12.12
3.21
4.07
4.07
5.31
4.10
3.56
3.77
5.87
5.31

2.22
2.50
3.84

10.10
7.26

11.75
11.62
10.81
8.79
8.05
7.76

14.44
20.94
22.22
19.77
17.13
14.34
14.55
13.22
3.29
6.52
8.36
9.03

10.07
7.68
7.04

11.62
25.23

are listed in Table IV. The first three columns show the
layer thicknesses, the multilayer T„and the temperature
at which H, q q and H, 2

~~

are fitted. The fourth and the
last two columns show the results of the above fit pro-
cedure. The fifth column shows the niobium T, as result-
ing from the fit procedure proposed by Auvil and Ketter-
son. ' Here only the multilayer T, is fitted using T, Nb as
the free parameter and keeping VNb equal to its bulk
value. The diffusion coefficients used for this fit are deter-
mined from Eq. (12) of Ref. 2. Assuming an experimental
error of 1% for the measured temperatures and fields, we
find for fits with T/T, (0.67 an error of 1% in T, Nb and
errors ranging from 2% to 3% in DNb and from 2% to
5% in D&„For .fits with T closer to T, the relative error
in the diffusion coefficients is approximately equal to the
relative error in T, —T, due to the fact that the diffusion
coefficients are roughly inversely proportional to
dH, 2/dT at T, . Since this error is T, /( T, —T) times the
error in T„ it will always become large for T lying close
to T, . Two of the measurements listed by Chun et al.
are not included in Table IV, namely, Nb(176 A)/Cu (585
A) at T= 1.10 K and Nb(175 A)/Cu(1240 A) at T = l. 17
K. For these measurements no parameters could be
found that reproduced the data, meaning that they have
to be regarded as inconsistent with the present theory
combined with the choice of the fixed parameters.

Figure 5 shows the values of T, Nb as a function of d Nb.
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FIG. 5. Layer-thickness dependence of the fitting niobium
critical temperatures as listed in Table IV.

As for vanadium in V/Ag, it is observed that lower
values for T, Ni, are needed when dN& decreases. Howev-
er, for most samples this value is found to exceed the bulk
critical temperature. This contrasts with the behavior of
single niobium films, ' for which T, is always below the
bulk T, . The temperatures arising from the fit procedure
of Auvil and Ketterson show the same anomaly, though
in general their scheme leads to a slightly lower T, z&
than the full fit with varying diffusion coefficients. The
exceptions to this rule are precisely those systems for
which the fitted Dc„ in Table IV is below the value of Eq.
(12). Since a smaller D cdimi inhses the extension of the
pair function into the copper layer, due to a shorter
coherence length, ' it tends to decrease the proxirnity-
effect coupling, thereby enhancing the multilayer T, .
Consequently, for these systems the full fit procedure
leads to a smaller T, N& to compensate this effect of a
smaller Dc„. The fact that the use of Auvil and
Ketterson s fit procedure also leads to high niobium criti-
cal temperatures contrasts with the findings of Auvil and
Ketterson' themselves. Using the same procedure, but
applying it to another set of data, they found niobium
critical temperatures that were in agreement with the
single-film behavior reported by Park and Geballe.

The layer-thickness dependence of the niobium

diffusion coefficient is shown in Fig. 6. Clearly, the thin-
layer values for DNt, cannot well be extrapolated to large
layer thicknesses. It is difficult to observe any tendencies,
because the points are not evenly distributed along the
horizontal axis. For most of the fits with dN& = 170 A the
values found for DN& lie close together in the interval be-
tween 3.2 and 5.9 cm /s. The points that fall above this
cluster of points originate from the Nb(171 A)/Cu(376 A)
system only. For the thin-layer systems one expects re-
duced values for the diffusion coefficient, due to the con-
straint of the mean free path by the thickness of the layer.
This effect is indeed observed for three of the four thin-
layer systems, but Nb(47 A)/Cu(87 A) has resulted in a
value that is too high to support this idea. The dashed
line shows the diffusion coefficient according to Eq. (12).
It is found that application of the fit procedure leads in
general to higher values than application of Eq. (12).

In Fig. 7 the copper diffusion coefficient is seen to show
the tendency to increase with increasing layer thickness.
However, also in this case the picture is somewhat ob-
scured by the large scattering in the data points. No sat-
uration effect can be observed at larger layer thicknesses,
as is consistent with the expected large mean free path of
the bulk copper system. As for niobium, most of the
values found are higher than the prediction of Eq. (12),
again represented by the dashed line.

The Fermi velocities that Biagi, Kogan, and Clem"
used in the analysis of their H, 2 j fits were
Uz N&=2. 73 X 10 cm/s and Uz&„=1.57X10 cm/s.
When calculating the electron mean free paths with these
numbers we find values ranging from 25 to 133 A for
niobium and from 4 to 48 A for copper. These values are
always far below both the layer thicknesses and the bulk
mean free paths, the latter, according to Banerjee et al. ,
being 160 and 2000 A, respectively. However, these low
numbers originate from the Fermi velocities employed.
When using the values that were derived from the system
parameters of Banerjee et al. , quite another result is
found. Then all the data points in Figs. 6 and 7 that lie
above the rising part of the dotted straight line (or its ex-
trapolation to larger thicknesses) correspond to mean free
paths that are larger than the layer thickness.

14

12

10
8-
6-
4
2 - 4

Q
0 50 100

dNh (A.)

t

150 200

30

2Q

2

10

0
0

I

200
dc (A)

I

400 600

FICi. 6. Diffusion coefficient of niobium as a function of layer
thickness. The solid circles are the result of our fit procedure,
as listed in Table IV. The dashed line shows the value accord-
ing to Eq. (12).

FIG. 7. Diffusion coefficient of copper as a function of layer
thickness. The solid circles are the result of our fit procedure,
as listed in Table IV. The dashed line shows the value accord-
ing to Eq. (12).
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peratures than experimentally observed. Decreasing
Xc„/N» or increasing Vc„can relieve the first anomaly,
but the problem cannot be solved by using a finite bound-
ary resistance. The lack of coincidence of the measured
and calculated phase diagrams for a parallel magnetic
field seems to be deeply rooted in the combination of pa-
rameters and theory employed. The only known escape
would be to use, while performing the calculations, a
"theoretical" layer thickness smaller than the actual one.
This has been done effectively by Takahashi and Ta-
chiki, ' as we have seen above in Sec. III, Table II, but at
present a justification is lacking for such a route.

FIG. 8. Upper critical field curve of Nb(172 A)/Cu(333 A).
The solid circles show the data points of Chun et al. (Ref. 5) at
which the curves have been fitted.

Figure 8 shows the calculated phase diagram of a
representative system with a dimensional crossover in
H, 2 ~~(T). The crossover is seen to occur immediately
below T„at 5.8 K. At the high-temperature side of this
point the nucleation center has no preference for a
specific layer. At the low-temperature side nucleation
takes place in the Nb layer. In the latter region the curve
shows the square-root-like behavior characteristic for the
two-dimensional regime. Here, there is no coupling be-
tween two neighboring niobium layers and there is only
the proximity effect of the nucleation layer with the adja-
cent copper layers. Experimentally (see Fig. 3 of Ref. 5)
the dimensional crossover of this system is observed at
3.3 K, that is, at a much lower temperature. This causes
the calculation to yield an overestimation of the rnea-
sured critical field in the region between the fitting tem-
perature of 1.17 K and the critical temperature of 6.05 K.
As can be seen, the diagram looks very much the same as
the V/Ag result depicted in Fig. 4. Also the deviations
from the measured curve have the same character for
both systems.

For Nb/Cu the high critical temperature of niobium
can be restricted in the same fashion as described for
V/Ag. Reducing Xc~/N», |,„», to 0.1, the niobium T„
we find for the Nb(172 A)/Cu(333 A) system (with fitting
temperature 1.17 K) is 8.83 K, whereas the original ratio
gave 10.04 K. By setting Vc„=Vz~ we achieve a reduc-
tion from 10.04 to 9.56 K. This change would imply a
bulk copper critical temperature of 5.76 X 10 K. Intro-
ducing a boundary resistance R& =390X10 pQcm
brings us from 10.04 to 9.74 K. The characteristic
lengths for this resistance are R~ /pz„= 44. 1 A and

0

Rz/pc„=17. 1 A. The boundary resistance at which it
becomes impossible to fit, for example, the Nb(23
A)/Cu(23 A) system is 612 X 10 pQ cm2.

The same conclusions can be drawn as for the V/Ag
multilayer. We find anomalously high critical tempera-
tures for niobium and higher dimensional crossover tem-

VI. CONCLUSIONS

We have presented results of calculations in which the
Takahashi-Tachiki theory is applied without approxima-
tions. We have compared these results with experimental
data for V/Ag and Nb/Cu. To our knowledge, this is the
first time that the exact solution of the Takahashi-
Tachiki equations at finite fields has been compared with
experimental data. We used the critical temperature of
the superconducting metal and the diffusion coeScients
of both meals as free parameters to 6t the experimental
data. For 3D systems the phase diagrams could be well
reproduced. However, for 2D systems difficulties were
encountered. For these, the parameters that fitted the
data at best showed an anomalous behavior. For most
fitted samples the critical temperatures of both V and Nb
were found to be larger than the bulk T, and thus did not
obey the expected single-film behavior. The diffusion
coeScients of V, Ag, Nb, and Cu were much lower than
one would expect from resistivity measurements, but this
conclusion strongly depends on the Fermi velocities as-
surned for these materials. The diffusion coefficients of
Nb and Cu were not in contradiction with the model that
Banerjee et al. introduced, but the scattering in the data
points was too large to regard the calculations as a
confirmation. The theoretical dimensional crossover in
the parallel upper critical field could not mell be made to
coincide with the experimental one. The results throw a
new light on the findings of Auvil and Ketterson. Their
agreement of the Nb critical temperature with single-film
behavior was obtained with a set of parameters that can-
not well describe the upper critical fields. The complete
analysis of the absolute values of upper critical fields has
also revealed the fortuity of a suggestive figure in which
Takahashi and Tachiki fitted a model calculation with

D» =Dc„and Vz|, = Vc„ to Nb/Cu data.
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