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Microscopic theory of normal liquid He
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We have used the self-consistent scheme proposed by Singwi, Tosi, Land, and Sjolander to study the
properties of normal liquid He. By employing the Aziz potential (i.e., the Hartree-Fock repulsion plus
damped dispersion with an additional parameter) and some other realistic pairwise interactions, we have
calculated the static structure factor, the pair-correlation function, the zero-sound frequencies as a func-
tion of wave vector, and the Landau parameter Fo for diferent densities. Our results show considerable
improvement over the Ng-Singwi model potential of a hard core plus an attractive tail. Agreement be-
tween our results and the experimental data for the static structure factor and the zero-sound frequen-
cies is fairly good.

I. INTRODUCTION

-The theory of normal liquid He begins with the work
of Landau, who introduced the concept of quasiparticle
interactions. ' The Landau parameters entering the ex-
pansion of the free energy specify the strength of the
quasiparticle interactions and are to be determined by ex-
periment. Greywall, Wheatley, and Alvesalo, Haavaso-
ja, and Manninen have measured the Landau parameters
Fp F i and F&. The discrepancies among their results are
due to experimental uncertainties in the efFective-mass ra-
tio, namely, the uncertainties in the measurement of
limC(T)/T as T~O, where C(T) is the specific heat.

One of the aims of any microscopic theory is to calcu-
late these phenomenological parameters from first princi-
ples and compare them with the corresponding experi-
mental values. Furthermore, such a theory should pro-
vide an understanding of the spectrum of elementary ex-
citations and collective (zero-sound) modes. As for the
techniques, these microscopic theories generally rely
upon perturbation expansions, computational methods,
and nonperturbative approximations.

The perturbative techniques are suited for systems
characterized by small parameters. However, real liquid
He, due to its high density and strong interactions be-

tween its particles, does not possess such parameters. As
a result, the perturbative techniques are inappropriate.

On the other hand, numerical techniques such as corre-
lated basis functions and the Green's function Monte
Carlo method rely heavily on extensive computations.
In this paper we use the well-known nonperturbative
Singwi, Tosi, Land, and Sjolander (STLS) scheme which
is in the form of the generalized random-phase approxi-
mation (RPA) with no free parameters. This approxima-
tion was originally devised to treat electron correlations
at metallic densities, and in recent years has been ap-
plied to a model system of interacting Fermi particles by
Ng and Singwi. ' These authors employ a simple model

potential having a repulsive core and an attractive tail in-
tended to simulate liquid He. Also, in another paper,
Niklasson and Singwi" have studied the neutral Fermi
liquid whose particles interact via a Lennard-Jones (LJ)
(6, 12) potential with a cut at a point inside the core re-
gion. The response function used in their STLS scheme
resembles the one suggested by Aldrich and Pines, ' '
who introduced the polarization potential theory.

Singwi and his collaborators in Refs. 10 and 11 have
calculated various physical quantities and obtained quali-
tative agreement with experiment. However, in order to
obtain quantitative agreement with experiment two
modifications must be introduced. First, in place of the
simple model potential of Ref. 10 a more realistic two-
body bare potential must be used. Secondly, the STLS
scheme is a long-wavelength approximation and its re-
sults in the large-k (small-r) limit are not reliable. In fact,
our calculations show that the unphysical results ob-
tained for the radial pair-correlation function inside the
core region' persist in the presence of more realistic po-
tentials, although they are somewhat softened. In this
paper we will address the first part, i.e., the use of a more
realistic potential, and leave the modification of the STLS
scheme for a future publication.

A realistic two-body potential between closed-shell
helium atoms must have a short-range repulsive part due
to the Pauli exclusion principle and a long-range attrac-
tive tail due to multipole interactions. One of the popu-
lar two-body potentials used in the theoretical investiga-
tions of liquid helium has been the LJ (6, 12) potential.
The two parameters entering the LJ (6,12), i.e., the hard-
core radius and the well depth, were determined by de
Boer and Michels' from the second virial coefBcients.
However, this potential has a few serious drawbacks.
First, on theoretical grounds, it is now well understood
that the repulsive part of the He-He interaction is best
described by a simple exponential. ' This is supported by
He-He scattering experiments as well as transport
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coe%cient measurements. Secondly, the attractive part of
LJ (6, 12) includes only the dipole-dipole interaction and
does not account for higher multipole terms.

As a result, a number of authors' ' have tried to ex-
amine other potentials which have proper asymptotic
behavior in the short- and long-range limits and have
determined parameters introduced in the pairwise poten-
tials by fitting to the selected second virial coe%cient
and/or to transport properties such as thermal conduc-
tivities and viscosity data. Realistic potentials which
satisfy the above-mentioned criteria and agree with many
of the experimental data are the Aziz et aI. potentials' '
and the Fourier-transformable Morse potential of Bruch
and Mcoee. '

In this paper, by starting with the self-consistent STLS
scheme and employing these realistic potentials, we have
calculated the static structure factor, the pair-correlation
function, the zero-sound frequencies, and the Landau pa-
rameters. Furthermore, the variations of these quantities
with pressure have been investigated. These calculations
show definite improvements over the results of Ng and
Singwi's model potential.

The outline of this paper is as follows. In Sec. II we
present the STLS scheme and the theoretical framework
of our calculations. Section III is devoted to the form of
the realistic potentials used in this paper for calculating
various physical quantities. We then compare the results
obtained for various potentials with the experimental
data and with the results cited in Ref. 10. Finally, in Sec.
IV we investigate how various pairwise potentials intro-
duced in Refs. 16—19 satisfy the virial theorem, and make
some concluding remarks.

(2)

yo(k, co) is the Lindhard function and u', s.(k) is the static
effective spin-symmetric particle-hole interaction. Equa-
tion (2) is in the form of the generalized random-phase
approximation and can be reduced to the RPA if v', s(k)
is replaced by the Fourier transform of the bare potential
between pairs of particles. For an isotropic system, the
effective quasiparticle interaction within the STLS
scheme is given in terms of the pair-correlation function
g(r) by

u', ir(r) = —f dr g(r)
du (r)

T

Here v(r) is the bare potential between pairs of particles.
The Fourier transform of u', ir(r), by definition, reduces to

u', s(k)= — f dr g(r) [sin(kr) —kr cos(kr)] .
4' ~ du (r)

o dr

(4)

Through the fluctuation dissipa-tion theorem which re-
lates the imaginary part of the inverse of the dielectric
function to the dynamical structure factor S(k, co), and
through the relation between the density-density response
function yz(k, co) and the dielectric function, the follow-
ing exact relation between the static structure factor S(k)
and the imaginary part of y&(k, co) can be shown:

S(k)= f S(k,co)= — f dcoImyq(k, co) .2' f
(5)

II. THEORETICAL FRAMEWORK
AND THE STLS SCHEME

Finally, for an isotropic system, the pair-correlation
function and the static structure factor are related by

Several years ago, Singwi, Tosi, Land, and Sjolander
presented a theory of the dielectric formalism of an elec-
tron liquid in the metallic density range (2~r, ~6).
Analogous to the hierarchy of the Bugoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) equations in classical
nonequilibrium statistical mechanics, an infinite set of
equations of motion for density matrices or alternatively
for the Wigner distribution functions can be derived.
The central problem in both classical and quantum cases
has been that of finding an approximation for breaking
the hierarchy of these equations. In the STLS approxi-
mation, one sets the two-particle density-density correla-
tion equal to the product of the densities times the static
pair-correlation function,

QOg(r)=1+ f dk k sin(kr)[S(k) —1] .
2rk~

(6)

We solve the set of equations (2), (4), (5), and (6) itera-
tively. By starting with the known expression for g(r) in
the Hartree-Fock approximation, we use Eqs. (4), (2), (5),
and (6) successively to obtain the new g(r). Then the
iterative process is continued until convergence is
achieved.

Note that, in contrast to the variational or Monte Car-
lo methods used by different authors, ' this iterative pro-
cess can be carried out on ordinary personal computers.

III. TWO-BODY INTERACTIONS AND RESULTS
In our numerical work, we have used the HFD-B po-

tential of Aziz, McCourt, and Wong' and the MDD-2
Morse potential of Bruch and Mcoee. ' The analytical
form of the HFD-8 potential is

and obtains an equation for the one-particle density ma-
trix (g (r, t)1it (r', t)). g (r, t) and g (r, t) are the
creation and annihilation field operators for an electron
with spin o at space-time coordinates (r, t). They then
find the following expression for the wave-number- and
frequency-dependent density-density response function: where

2—f(x) g c2 +6/x~'+
j=0

u(r)=E A*exp( —a*x+P*x )
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D
exp — ——1f (x)= x

2

ifx&D,

1 ifx~D .

Here, x =rlr, where r~ =2.963 A and elk~ =10.948
K, k~ being the Boltzmann factor. The values of disper-
sion coefficients, e6 = 1.367 452 14, cz =0.421 238 07,
and c &o

=0.174 733 18, are taken from the ab initio
calculations of Thakkar and Koide, Meath, and
Allnatt. The other parameters appearing in this
potential are 3 *= 184 431.01, a*= 10.433 295 37,

P*=—2.27965105, and D=1.4826. This potential has
been fitted to low-temperature second-virial-coefficient
data ' and to accurate room-temperature viscosity data.
Moreover, by pinning its repulsive wa11 value to that cal-
culated by Ceperley and Partridge at one bohr, the au-
thors made this potential less repulsive than that of Ref.
17, and obtained excellent agreement with the experimen-
tal data inferred from high-energy integral-cross-section
measurement.

Next we will discuss the MDD-2 Morse potential of
Bruch and McGee. ' This Fourier-transformable poten-
tial is defined as

u(r)=
—e[2exp[c(1 r!r )]——exp[2c(1 rIr—)]J

(c6r +—csr ) if r~r, .

if r~r, ,

The dispersion coefficients were the best available at the
time (c6=10213.8 KA and cs=27671.4 KA ). The
well depth is @=10.75 K, and the other parameters are
r =3.0238 A, c=6.12777, and r, =3.68280 A. This
potential, also, has the correct asymptotic behavior with
continuous derivative at r, . Its parameters are chosen to
agree with thermodynamic data to within a few percent.

Without cutting off these potentials in the core region
(2. 15 (r, (2.3 A), our iterative procedure would not
converge. However, the results obtained in this way did
not sensitively depend on the position of the cutoff point
r, . The cutoff point used in this paper is r, =2.22 A with
u(r, )=162.75 K for the HFD-B potential and r, =2.20
A with u(r, ) = 188.87 K for the MDD-2 potential.

This lack of convergence has its origin in the STLS
scheme and not in the way our numerical procedure is
carried out. The integrand of the right-hand side of Eq.
(4) contains a product of the pair-correlation function
g(r) and the radial derivative of the bare potential be-
tween two helium atoms, i.e., du(r) Idr. Since this deriva-
tive diverges rapidly for small r values, g(r) must assume
vanishingly small values in the core region for, otherwise,

', u(ks) will not remain finite. On the other hand, the
STLS scheme contains no inherently built-in mechanism
through which the pair-correlation function could as-
sume vanishingly small values for small r. Indeed, the
values of g(0) obtained through the STLS scheme are
generally finite (see Fig. 3 of this paper and Fig. 3 of Ref.
9) and by continuity must remain finite near the origin.
Cutting the potential at r, and replacing the core values
by a constant is equivalent to setting the integrand of Eq.
(4) equal to zero in that region. The neglect of the contri-
bution of the integrand inside the core region could also
be obtained by bringing in the physical assumption of
vanishing g(r) in that region in each iteration. Another
way of overcoming this difficulty is to calculate the pair-
correlation function outside the core region by the STLS
scheme and join it smoothly to its theoretically known
expression, i.e., g(r)= A exp( —b/r5), 6 in the core re-
gion. Gur numerical results show that, although the
pair-correlation function obtained in this way is some-

what closer to experiments ' than the g(r) presented in
this paper, the resulting structure factor for small k
values becomes unphysical. For these reasons, we have
introduced the cutoff discussed above as a way of avoid-
ing the small-r problem in the STLS scheme.

For studying the pressure dependence of the physical
quantities, we have repeated our calculations for different
densities. The density enters the theory through the
known relation 3m n=kf, where kf is the Fermi wave
vector. The different pressures used in this paper are 0, 6,
17, and 35 atm and their corresponding densities in units
of 10 m are, respectively, 1.64, 1.88, 2.12, and 2.36.

In the following subsections we will present our results.

A. The static structure factor

Figure 1 shows the results of our self-consistent calcu-
lations of the static structure factor S(k) using the
HFD-B potential for three different densities of 1.5, 1.64,
and 1.88 in units of 10 m . As expected, in moving

1.4

1.2

1 5 6

k(A-')

FICx. 1. Static structure factor S(k) vs k for three different
densities. The three curves from bottom to top correspond to
the densities 1.5, 1.64, and 1.88 in units of 10 ' m, respec-
tively.
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FIG. 2. Calculated static structure factor S(k) at saturated
vapor pressure (SVP) compared with experiment. The solid line
(curve c) refers to the Aziz et al. potential (HFD-B), the dashed
line (curve d) refers to the potential of Bruch and McGee
(MDD-2), and the short-dashed line (curve e) represents the re-
sults of Ng and Singwi's model potential of Ref. 10 for the pa-
rameter c =1.8. The plus signs and dotted diamonds represent
the experimental data of Refs. 25 and 26, respectively.

towards higher pressures (higher densities), the peak
height in Fig. 1 increases, but the variation of peak posi-
tion with pressure is negligible. In Fig. 2, we compare
our calculated S(k) at the normal density of 1.64X 10
atom m using HFD-B and MDD-2 potentials with the
corresponding experimental data of Hallock and Achter
and Meyer. For comparison purposes, the calculation
of Ng and Singw'i' for the same density is also shown.

The realistic potentials of HFD-B, and MDD-2 yield
results very close to each other and in good agreement
with the experimental data. However, the calculated
peak positions are shifted towards larger k values relative
to their experimental counterparts. This could be an ar-
tifact of the STLS approximation, which is expected to
depart from exact results at the short-wavelength limit.
We believe the inclusion of three-body interactions will
bring about further improvements. All three potentials
show a plateaulike structure at small wave-vector values.
This behavior, which is consistent with the experimental
findings of Refs. 27 and 28 for liquid He, is related to the
behavior of these potentials outside the core region. As
Ng and Singwi mention in their paper, ' such plateaulike
behavior appears when an attractive tail is added to a
hard-core potential.

Comparison of our calculated structure factor with the
variational results of Viviani et al. shows that we have
obtained closer agreement with experiment ' for the
small k values. For instance, the experimental plateau-
like behavior does not appear in these authors' theoreti-
cal calculations. As is expected, their peak position and
large-k behavior of S(k) are somewhat closer to experi-
ment than ours.

B. Pair-correlation function

The self-consistent calculations of the pair-correlation
function g(r) for three dift'erent densities are shown in

FIG. 3. Pair-correlation function g (r) vs r for three di6'erent
densities as specified in Fig. 1.

Fig. 3. Using the Aziz et al. potential as the bare pair-
wise potential, our calculated g (r) outside the core region
is reasonable, and its peak height is in good agreement
with experiment.

Figure 4 shows the comparison of our calculated g(r)
with the experimental data of Achter and Meyer, and
with the results based on Ref. 10 in the region outside the
core. However, inside the core region, g(r) oscillates and
assumes negative values. This unphysical behavior is
even more pronounced when we use the MDD-2 or the
Ng-Singwi model potential. This is again an artifact of
the STLS approximation in the large-k limit.

Comparison of our pair-correlation function outside
the core region with the variational results of Viviani
et al. shows that our calculated g ( r) is not as close to
the expenmental findings of Achter and Meyer as the
g (r) calculated by Viviani et al. However, our calculated
pair-correlation function shows better agreement with ex-
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FIG. 4. Calculated pair-correlation function g {r) using the
Aziz et al. potential at SVP (solid line) compared with the result
of the Ng-Singwi model potential of Ref. 10 for the parameter
c =1.8 (dashed line) and with the experimental data of Ref. 26
(dotted diamonds).
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periment as compared with the theoretical results of
Buchan and Clark. In particular, the peak height of
g ( r ) obtained in this paper is closer to the experimental
results. We think that modification of the STLS scheme,
namely, modification of the field correction factor, will
improve our results and will make them comparable with
other theoretical investigations.

C. The zero-sound dispersion

Zero-sound modes in liquid He, as predicted by Lan-
dau, ' are the high-frequency modes of vibration of the
Fermi surface. To obtain the zero-sound dispersion fre-
quencies, one sets the denominator of the density-density
response function yd(k, co), equal to zero, i.e.,

1 —u', s(k )yo(k, co) =0 .

The roots of this equation give the zero-sound frequencies
as a function of the wave vector k. The results of our cal-
culations at zero pressure (SVP) using the MDD-2 and
Aziz et al. potentials are shown in Fig. 5. Here, for the
purpose of comparison, we have also reproduced results
of the model potential of Ref. 10 and the experimental
data of Ref. 31 for liquid He. Again, the results of the
MDD-2 and the Aziz et al. potentials, as shown in Fig.
5, are nearly the same, and closer to the experimental
data than those of Ref. 10.

Other theoretical works, such as the polarization po-
tential theory of Aldrich and Pines' for obtaining the
dispersion curve, have resulted in excellent agreement be-
tween theory and experiment. However, we should re-
mind the reader that our theoretical scheme is
parameter-free, depending only on the bare potential be-
tween two helium atoms, whereas the parameters of the
phenomenological theory of Aldrich and Pines are ob-
tained by fitting to the comparatively high-momentum-

60
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FIG. 6. nv, z(k) in kelvin vs k for five different densities. The
five curves from bottom to top correspond to the densities 1.5,
1.64, 1.88, 2.12, and 2.36 in units of 10

transfer neutron scattering data and by satisfying the mo-
ment sum rules.

D. The erat'ective potential and the Landau parameter I' 0

The calculated effective potential nu', ir(k) for five
different densities is shown in Fig. 6. The bare pairwise
potential used in here is that of Aziz et a/. Results for
zero pressure (SVP) are similar, and in agreement with
those obtained in the polarization potential theory of Al-
drich and Pines. ' ' The other potentials yield similar
results.

The Landau parameter Fo is obtained by using the re-
lation

Fo= — lim [nu', s(k)] .
2 m k —+0

(10)

4

m* is the effective mass of He quasiparticles. For ratios
of m*/m, we have used the experimental data of Ref. 4.
Calculated values of the Landau parameter Fo for
different pressures are given in Table I. For comparison
purposes, the experimental values of Fo as given in Ref. 4
are also shown.

0. 3 0. 5 0. 9

I

1.5 /g(g —1)

TABLE I. Comparison between the calculated Landau pa-
rameter Fo and the experimental values for different densities.

FIG. 5. Calculated dispersion curve for the Aziz et al. po-
tential (HFD-8) at SVP (solid line) compared with the experi-
mental data of Ref. 27 (dotted diamonds) and with the result of
the Ng-Singwi model potential of Ref. 10 for the parameter
c =1.8 (dashed line). The short-dashed line which almost coin-
cides with the dispersion curve for the Aziz et al. potential is
the result of the MDD-2 potential. Energy is given in units of
fi k /2m.

Density ( 10 m )

1.5
1.64
1.88
2.12
2.36

Fo
(calculated)

11.9
20.2
31.5
43.9

F0
(expt. )

9.2
22.2
45.8
87.09
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TABLE II. Ground-state energy of liquid He for different two-body interactions.

Potential

Morse potential of Bruch and McGee
Frost-Musulin potential of Bruch and Mcoee

Modified Frost-Musulin
Lennard-Jones

Aziz et al. (1979)
Aziz, McCourt, and Wong (1987)

Symbol

MDD-2
FDD-1
MFM

LJ (6,12)
HFDHE2
HFD-B

EG, (K)

—19.01
—13~ 89
—14.81
—1.05
—12.95
—12.90

IV. DISCUSSION AND CONCLUDING REMARKS

Here we have used the STLS approximation and have
calculated the static structure factor, the pair-correlation
function, the zero-sound frequencies, and the Landau pa-
rameter Fo as a function of pressure. The realistic pair-
wise potentials employed in this paper are those of Aziz
et al. and Bruch and McGee. These potentials have the
correct asymptotic behavior and are fitted to various
thermodynamic data.

Following Sposito, we have tried to see how well
these potentials satisfy the virial theorem and conse-
quently the relation for the ground-state energy EGs for
liquid He, i.e.,

Eos= ,'n fg(r)[r—Vu(r)+2u(r)]dr . (1 1)

Here n is the density, g(r) is the pair-correlation func-
tion, and u(r) is the interaction potential between pairs of
particles.

The experimental value of the ground-state energy per
He atom according to Ref. 33 is about —6 to —7 K. We

have calculated the right-hand side (RHS) of Eq. (11) us-
ing the HFD-B, MDD-2, LJ (6,12), and some of the
Fourier-transformable potentials presented in Ref. 16.
Table II shows the calculated values of the RHS of Eq.
(11).

In this calculation, we used the Achter and Meyer ex-
perimental data for the pair-correlation function and
benefited from the Weddle rule and spline integration
techniques. [g(r) was assumed to be 1 beyond r = 10 A.]

The comparison of the numbers appearing in Table II
with their experimental counterparts, i.e., —6 to —7 K,
shows that the Aziz et al. potential is the best among the
ones considered here. This is in agreement with the sup-

port given by other experimental data mentioned earlier.
In passing, we would like to point out that the we11
depths of the HFD-B and MDD-2 potentials used in our
calculations lie in the expected range of 10.7+0.4 K pre-
dicted by Ref. 34.

As mentioned earlier, our main purpose in this paper
was to examine improvements brought about by the use
of realistic potentials. Overall, there is good agreement
between the theory based on the original form of the
STLS scheme and the experimental data in the long-
wavelength (large-r) limit. The agreement between the
calculated static structure factor and experiments is good
over a wider range of k values. However, as expected,
the pair-correlation function becomes unphysical in the
core region. Also, the zero-sound frequencies in the
large-k region deviate appreciably from experimental
data.

These discrepancies are partially due to the neglect of
the three-body interactions which play an important role
in treating liquid He. We believe that generalization of
the STLS approximation to a frequency-dependent field
correction factor as well as the inclusion of three-body in-
teractions will improve our results and bring about better
agreement between this formalism and experiment.
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