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Domain-wall relaxation near the disorder transition of Bloch walls in Sr hexaferrite
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By measuring the linear ac susceptibility of single crystals of SrFeygOyg between 10 Hz and
20 MHz, the domain-wall dynamics have been investigated. near the continuous phase transition
from Bloch to linear walls at T' 0.99T~. There the kinetic coefBcient of the wall relaxation L
has a deep minimum, the essential features of which indicate the presence of strong, two-dimensional
Ising-like Huctuations of the order parameter of the Bloch walls. Magnetic fields, applied transverse
to the easy c axis, increase L in almost quantitative agreement with predictions of the Landau-
Lifshitz-Bloch approach for the mean-field region away from T'. EfFects of Huctuatio as in the critical
region of the disordered phase remain unexplained.

I. INTRODUCTION

As a unique feature of uniaxial ferromagnets and ferri-
magnets, Bulaevskii and Ginzburg ' predicted the con-
tinuous disappearance of Bloch domain walls (DW's) at a
temperature T* below the Curie point T~. The existence
of this phase transition, characterized by the so-called
Bloch-wall (BW) order parameter [mii oc M&(x = 0)j,
which is given by the in-plane magnetization compo-
nent perpendicular to the easy (z) axis in the wall center
(x = 0), arises from the fact that the transverse suscep-
tibility y~ of uniaxial magnets remains constant at and
below T~. This implies that at an elevated temperature
T* & T~, the density of the anisotropy energy, 2M, /y&
(M, = spontaneous magnetization), associated with the
BW order parameter exceeds the energy density of the
longitudinal component, M, /2y„which rapidly dimin-
ishes near T~ due to the fluctuations of the bulk order pa-
rameter M, . Within the mean-field approach (MFA), '

the order parameter of the BW, ms = M„(x = 0)/M„
continuously disappears,

m& (r & 1) = (1 —r), ms(r ) 1) = 0,

at TMF, where the ratio between these two energy densi-
ties,

(T~ —T) ', the critical exponent z = 0.75(5) and the
magnitude of which could almost quantitatively be ex-
plained assuming the linear structure of the DW's. The
key property of the LW's causing the rapid increase of the
relaxation rate towards T~ is the growing number of wall
spins determined by the width of the LW's, SL, = 2(„i
i.e., by the correlation length of the bulk magnetiza-
tion diverging at T~. Due to the low Curie tempera-
tures T~ = 2.21 K and 2.87 K of GdCls (Ref. 3) and
LiTbF4, respectively, and because of their moderate
anisotropies, their wall reconstruction temperatures are
so small (TMF « Tc) that an indication for a change of
the DW structure was not seen.

More recent investigations of the domain-wall relax-
ation rates I in the ferrimagnets BaFei20is (Ref. 5)
and SrFeq20q9, however, revealed rather significant fin-
gerprints of such a structural transition of the DW. Due
to the large exchange energies in these materials (Tc =
740—750 K), one expects from Eq. (1.2) wall transition
temperatures as high as TM& ——0.996 T~. Indeed, at tem-
peratures T* & TMF deep minima of I' were detected
in both ferrimagnets. Below T*, this variation of I'
could rather accurately be described using the so-called
Landau-Lifshitz-Bloch (LLB) approach ' and assuming
a non-MFA behavior of the BW order parameter,

4y, (T)/y~ ——7(T), - (1.2)

reaches r(TMF) = 1. This MF result suggests considering
w as the temperature variable of this transition. Above

TMF, the transverse component of the wall magnetiza-
tion disappears, M„(x) = 0, and the linear-wall (LW)
structure becomes stable.

Evidence for LW's has been obtained experimentally
by investigations of the temperature, magnetic field, and
sample-size variations of the relaxation rate of the do-
main walls, I, in the uniaxial ferromagnets GdClq (Ref.
3) and LiTbF4. As the most pronounced feature we
mention here the critical speeding up, I' (T i T~) oc

This analysis revealed an efFective critical exponent P =
0.08(l) far below the MFA value P = 1/2 and being even
smaller than P = 1/8 of the two-dimensional (2D) Ising
model. Moreover, the drastic shift of the transition tem-
perature ~* = 0.3 from the MF value 7MF

——1 predicted
by Eq. (1.1) indicated the presence of strong fluctuations
in the walls. For temperatures away from this transi-
tion region, the wall relaxation obeyed the MFA law,
Eq. (1.1): For r )) 1 pure LW behavior was observed
while for w —+ 0 the transition to the well-known limit,
I' (pM, )2/I~, predicted by Landau and Lifshitz for
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circular BW's (m~ = 1) occurred. In the latter case I'
is determined by the small (spin-spin) correlation rate of
the transverse magnetization components I~, whereas
at finite temperatures thermal fluctuations of the ferro-
magnetic order parameter give rise to a finite y„which
reduces m~ and hence produces an elliptical shape of the
DW. The motion of these elliptical walls (EW's) implies
a change of the modulus of M(x) involving the longitu-
dinal ("spin-lattice" ) relaxation determined by the pa-
rameter L and leading to a reduction of the wall motion
and damping frequency when T* is approached from low
temperatures.

Despite the success of the MFA in the limiting cases
of LW's (7 )) 1) and of nearly BW's (v (( 1) and of
the highly critical law, Eq. (1.3), just below T*(r + 1),
a number of questions about the nature of this transi-
tion remain open. One of the main problems is con-
cerned with the universality class of this transition. The-
oretical work by Lawrie and Lowe argued that due to
the one degree of freedom of the BW order parameter,
m~ Mz(0), the two-dimensional Ising model should
be the appropriate universality class in a vicinity of T*
where the correlation length of the BW order parameter
(~ exeeds the width of the wall, h, so that the correla-
tions can be considered as two dimensional. As noted
above, the fitted exponent P = 0.08(1) is even smaller
than the 2D Ising value, P = 1/8, and also the critical
temperature variable w* 0.3 is reduced by more than
50'%%uo from the MF temperature. Hence, the applicability
of the 2D Ising model near the DW transition appears
to be questionable, also since it discards other possible
sources for fluctuations like the XY type and roughen-
ing of the walls. Another open problem is the behavior of
I' just above T* where the data are significantly larger
than those calculated within the MFA. This feature also
suggests considering fluctuation efFects not only on m~
itself but also for the width of the DW's on both sides of
the transition.

Here we present further investigations of this DW tran-
sition aiming at a better understanding of the thermal
nucleation and growth of the BW's. As before, our ex-
perimental access will be the wall dynamics, and here we
study the influence of magnetic fields H~ applied trans-
verse to the easy axis of single SrFe]20ig crystals. Be-
cause H~ couples to the BW order parameter, it may
induce finite values for m~ already above T*. Thus a
significant increase of I' is expected there, while at
the same time critical fluctuations of m~ should be sup-
pressed. Prom this field dependence, a deeper insight into
the critical properties of the wall transition is expected.

These efFects of a transverse field will be contrasted to
those of longitudinal fields, H, applied parallel to the
easy axis. They do not couple to m~ because they are
screened from the interior of the sample so that the wall
mobility, p—:v /AH, should not change. On the other
hand, the gain in potential energy of the sample in H be-
ing balanced by the magnetostatic surface and the wall
energies leads to an increase of the domain period and
hence to a reduction of I'; see, e.g. , Ref. 3. These in-
vestigations as well as those of the efFect of the sample
thickness on I' performed here should help to substan-

tiate the micromagnetic assumptions as far as they are
needed to interpret the I' data obtained in zero and fi-
nite transverse fields near the structural transition of the
DW's.

The experimental results comprising static and dy-
namic properties are presented in Sec. II. The general
tools required for the discussion, i.e. , the link between I
and the wall moblity, the results of the LLB approach for
p, and the MFA results for the DW profile, are summa-
nzed in Sec. III. The first part of the discussion presented
in Sec. IV is devoted to the wall dynamics in zero trans-
verse fields, where we examine separately the influence of
the sample thickness, of longitudinal fields, and of ther-
mal fluctuations on I' . We then discuss the efFects of
finite transverse fields based on the MFA for the wall pro-
Gle to demonstrate where and how fluctuation efFects on
the wall dynamics become important. Section V provides
a brief summary and our conclusions and is in particular
intended to motivate further theoretical work on the in-
terplay between thermal fluctuations of m~, the width of
the DW, and the dynamics near the reconstruction tem-
perature. This will be necessary to fully understand the
wall damping investigated here.

II. EXPERIMENTAL RESULTS

Near the Curie temperature of the hexagonal ferrite
SrFei20ig, T~ ——740.5 K, the complex linear ac suscep-
tibility y(iv) = y'(u) —iy" (w) has been measured be-
tween 10 Hz and 20 MHz parallel to the easy c axis of
high quality single crystals. Drifts of the background
of the balanced mutual inductance connected to conven-
tional lock-in detection were determined separately for
each temperature scan. In the range of temperatures
and fields investigated here, the sample response proved
to be linear for excitation amplitudes near H, =' 0.7 Oe.
Figure 1 shows a scheme of the measuring system. In or-
der to minimize changes in the sensitivity of the mutual
inductance, Pt coils have been fixed on A1203-ceramic
tubes by a ceramic cement having a similar thermal ex-
pansion coefIicient. The Pt-100 temperature sensor is
mounted next to the sample outside the primary coil, al-
lowing a temperature resolution of approximately 5 mK
at 740 K. The homemade oven is directly heated with
a resistor element and has a temperature gradient of
less than 0.05 K/cm across the sample. Using a high-
reflectivity radiation shield, the outer diameter of the
oven could be kept small enough to fit to either a solenoid
or to a Helmholtz magnet with iron core providing the
fields parallel or perpendicular to the c axis, respectively.

As an example, Fig. 2 shows the pronounced temper-
ature variation of the dynamic susceptibility recorded at
fixed frequency f = 5 kHz in Fields up to 1.1 kOe applied
parallel and perpendicular to the easy axis. For paral-
lel fields, we have marked the temperatures T~, where
the spontaneous magnetization M, (T) reaches the value
H, /%, and, therefore, the macroscopic internal field,
H; = H —N, M, is expected to vanish due to the
formation of domains below Tri(H) Thus above Tri th. e
response results from the domain-&ee sample, while be-
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FIG. 1. Experimental setup to measure mutual induc-
tances at temperatures up to 850 K.

low TD the signal arises from the domain-wall dynamics
of main concern here. On the other hand, small trans-
verse fields applied here, II~ ( M, /y~ do not destroy
the domains which is consistent with the fact that the
sharp peak of y' at T~ remains unchanged. The main
effect of H~ is to shift the minimum of y' below T~ to
higher temperatures.

The dynamic behavior of the walls follows from the
frequency dependence of y' and y" displayed for temper-
atures below T~ in Fig. 3. Over a wide range of tem-
peratures, the data can be described by one relaxation
process, which for cu ~ 0 leads to the demagnetization
plateau y~ = N and may therefore be related to the
relaxation of domain walls having a large internal suscep-
tibility, y, )& N . Near T~, the dispersion exhibits
an additional plateau indicating a second relaxation pro-
cess, and dispersion and absorption can rather accurately
be fitted to a sum of modified Debye functions,

where the relaxation rate I' turns out to be much
smaller than I'g. The slight deviation from the conven-
tional Debye process is described by the small exponents
o. and o, , which characterize distribution widths for I"

and I g. The inset of Fig. 4 shows that o. assumes a max-
imum near T* 0.99T~. The resulting mean wall re-
laxation rates are depicted in Fig. 4 which demonstrates
the completely different effects of the longitudinal and
transverse fields on I between T~ and T*: While H,
suppresses I' in agreement with previous results on the
low-temperature ferromagnet GdC13, we here report an
observation of the enhancement of I' by a transverse
applied field.

In order to discuss these central results for I' (T, H)
in terms of the LLB approach, we have also determined
the dc magnetization and susceptibilities. The longitu-
dinal magnetizations measured by the MPMS2 super-
conducting quantum interference device (SQUID) mag-
netometer (Quantum Design) are presented as modified
Arrott plots in Fig. 5(a). For the fields and tempera-
tures of interest here, they reveal the Curie temperature,
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FIG. 2. Complex susceptibhty of a SrFeigOig cylinder,
with demagnetization coeKecient N = 0.20 measured at con-
stant frequency f = 5 kHz in difFerent fields applied parallel
and perpendicular to the easy c axis, respectively. Below T~
the internal 6eld vanishes due to domain formation.

10 10 1Q )(H )
10

FIG. 3. Frequency dependence of dispersion and absorp-
tion in the field H~ ——530 Oe applied perpendicular to the c
axis. Solid curves represent fits to the modi6ed Debye func-
tion Eq. (2.1).
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recent results for SrFei20yg. The longitudinal suscepti-
bilities agree also with the zero-frequency limit of yg(w)
[see Eq. (2.1)] using y, = y& (tu = 0) —N„shown
in Fig. 5(b). Hence we can conclude that the second,
fast process in Eq. (2.1) arises from the spin relaxation
in the homogeneous phase in the domains, supporting
the earlier conclusion that the slow one arises from the
relaxational wall dynamics. The transverse static sus-
ceptibilities also shown in Fig. 5(b) were determined by
orientating the sample with the easy axis perpendicular
to the symmetry axis of the pickup coils. We obtained
y~ = 0.20(2) independent of temperature and field.

III. WALL DYNAMICS:
GENERAL CONSIDERATIONS

T~ = 740.5(2) K, and the power laws for the zero-field
susceptibility, y, ~ = C~

~

1 —T/T,
~

(2) with ampli-
tudes C+ ——1.4(1) x 10 and C = 0.7(1) x 10
above and below T~, respectively, and for the sponta-
neous magnetization, M, = 3.6 kOe (1 —T/T~)
These findings are in good accordance with independent

x)O'

18K p=0. 39
y=1.19

725.5 K

FIG. 4. Temperature variation of the wall relaxation rates
I' determined from Eq. (2.1) for di6'erent fields applied par-
allel and perpendicular to the easy c axis. The inset shows
the temperature dependence of the deviation parameter o..

A. Kinetic coefBcient

The basic features of the domain-wall relaxation in zero
as well as in finite magnetic fields will be discussed in
terms of the kinetic Onsager coefIicient L which ac-
cording to previous work describes the magnetization
change due to the wall motion in response to the instan-
taneous internal field, M (t) = L H, (t), and hence re-
flects the intrinsic wall dynamics. To determine L from
the measured relaxation rates I', the contribution of the
magnetization within the domains to the total magneti-
zation process has to be considered. According to Ref. 3,
the instantaneous internal field driving the domain walls
is reduced by the action of the demagnetizing field aris-
ing from the fast intradomain magnetization response,
Mg(t) = ydH, (t), and one measures the relaxation rate

0
0

~0".—
Cl

&04

731.25 K

(H (M)1~& 10

i1-T/T i

(3.1)
x & x)

At low temperatures, where yd (( y, the correction fac-
tor due to the intradomain efFect can be ignored. Equa-
tion (3.1) also shows that considering I instead of I
eliminates the thermodynamic efFect of the bulk suscep-
tibility on the wall dynamics, and the mesoscopic and
microscopic efFects on the wall dynamics are retained in
L

For small driving fields H, (t), the kinetic coefficient is
directly related ' to the well-known wall mobility, p
which depends only on the properties of the DW's:

2M. (T)Ql —(y~H„M, )
~

d(T, H, D)
(3.2)

Here d represents the domain period which results from a
minimization of the total magnetic energy of the sample
ellipsoid of thickness D along the (principal) c direction
subjected to a magnetic field H applied parallel to c.

B. Wall mobility
FIG. 5. Critical behavior (a) of the longitudinal magne-

tization and (b) of the longitudinal and transverse internal
susceptibilities near T~.

In the consideration of the DW dynamics in uniaxial
ferromagnets at finite temperatures and where the phase
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V =Si +@2, (3.3)

where pz and p2 are the contributions of the longitu-
dinal and transverse relaxation mechanisms to the DW
damping given by the integrals over the static magneti-
zation profile xn(x):

pi ——2pn, m, (oo)

2- —1
f dm' i

4m2 (dx)dx (3.4)

OO 1
p2 ——2pn~m, (oo) dx

1 + (m/ng) 2

(dm) '
& d*)

1 /dm')
4m2 (dx)

transition from Bloch to linear walls occurs one has to
take into account both transverse and longitudinal relax-
ation of the magnetization. An appropriate deterministic
equation of motion for the magnetization at elevated tem-
peratures is the so-called Landau-Lifshitz-Bloch (LLB)
equation of motion ' microscopically derived based on
the molecular field approximation. At both low and high
temperatures the well-known Landau-Lifschitz and Bloch
equations are recovered. In the case of ordered mag-
netic materials, the LLB equation coincides with the phe-
nomenological equation by Baryakhtar. For the calcu-
lation of the DW mobility in the linear regime (v oc AH, )
with the help of the LLB equation one has to know the
static magnetization distribution in a wall. The general
expression for p in a uniaxial ferromagnet including
the case of the transverse field in the DW plane (see also
Ref. 15) can be represented in the form

the exchanges or experimentally s by q&2
—y, /(2. The

minimization leads to the difFerential equation

1 dm 1 —m2 my hy—XIl + "ey.
gg dX 2+z gJ

(3.8)

Analytical solutions of Eq. (3.8) do not exist, and from
the solvable special cases we mention the case of zero
transverse field,

m„(x)=, m, (x) = —tanh(x/h), (3.9)cosh x b

where the shape and the width are given by p =
mii F(7 )

[see Eq. (1.1)j and

b(r &1,h„=O) = g~ /q„—= b~,

8(r & 1, h„=o) = 2gq, /q„= bl, .
(3.1o)

As anticipated in the Introduction, the temperature TMF
defined by the condition

(z, e
)

+~( MF)
XI.

(3.11)

represents the critical point for the structural transition
of the DW from linear to elliptic shape, m„/p + m,, = l.
The latter passes to the circular Bloch shape when w « 1,
and according to Eq. (1.1) this limit implies m~(r) = 1,
but necessarily not T (( T~.

In the presence of an applied field H, where in the
MFA only Hy afFects the wall mobility, we search for the
DW profile using the trial function

mv(+oo) = h„, m, (Zoo) = + 1 —h2.

Here the wall magnetization has been normalized to M„
rn(x) = M(x)/M„and the in-plane transverse field H„
to the anisotropy Field h& ——H&/H~ = (H~/M, )y&. For
h, y & 1, the magnetization in the adjacent domains is
given by

cosh (x/b) + p/h„
my(x) = my(oo)

sinh (x/h)
cosh (xjb') + h„'

(3.12)

The so-called Gilbert-damping parameters have been de-
noted by n, = L, /pM, and n~ = L~/pM, . Note that
due to m =0 in a conventional BW, the H component
of the applied Geld does not couple to the wall magne-
tization. Since the H, component is excluded from the
bulk of the sample by the demagnetizing fields extending
from the surface, only H„can have an efFect on the wall
mobility.

The DW magnetization profile xn(x) is determined by
minimizing the free energy of a planar wall in a uniaxial
ferromagnet which reads in the MFA

aI —p(2a —p) J
A + r(a —p) 2I ' (3.13)

with a=1 —6„, p=1 —p, and

This ansatz satisfies the boundary conditions (3.6) and
reproduces the solutions (3.10) in the limit h„-+ 0. For
this general case, the trial function is inserted into the
free energy I" to yield after integration over x the DW
energy per unit area a (h, p, 7., h&). Minimizing a at
Gxed p with respect to the DW width b we find

(«) A = (p /a) [(4a —p )I —(2a —p)(2a+ 5p) J], (3.14)

(1 —m')'
+ )

4X
(3.7) and the field-dependent functions

where qp is the dipolar wave number determined by the
ratio between dipolar energy and the second moment of

I(h) = 1 — arctan !, (3.15)
1 —h2 ( ] h
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1 (2 1 2

3
'3"'

arctan
1 —hz

(3.16)

2M2 bye g[aI —p(2a —P) J][A + ~(a —P)zI].
x~ i/~

(3.17)

Using this result the specific wall energy can be repre-
sented in the form

where the factor

G(h, ) =
~

0.95) —sin (1+6,)il. 2

increases with the normalized field h, = H, /N, M, . At
zero field, the period can be determined from the mini-
mum of the wall and surface energies. The results for
stripe and. for branched surface domains can be repre-
sented in the form

(4.2)

) Q„(7., h„)(1 —p)" = 0,
n=o

the coeKcients of which are defined as

(3.is)

Further minimization of o. with respect to the shape
parameter p yields an implicit equation for p,

with g = 1/2 and 2/3 for the striped and branched cases,
respectively, where b is the width of the DW.

The domain profile rn(x) is known within the MFA for
zero transverse field, Eqs. (3.9), (3.10). Using this profile
and calculating the wall mobilities from the LLB results
Eqs. (3.3)—(3.5), one obtains, for the kinetic coeificient
from Eq. (3.2),

Qs =
Q4 =
Qs =
Q2 =
Qi =
Qo

(6/a) J(5J —I),
—10J(9J —I),
4I(9I —J) + 48a J2 + 4vI J,
—12aJ(4I —2aJ + 7.I),
8aI(I —aJ) + 2&aI + 107 a IJ,
—2~a2I(I + aJ).

(3.19)

I (TS D)=(( )'")'"I,
(D~~)"

G(h, )
f, (m~) + (I.,/I. ~)f, (m~)

'

where

(4.3)

Detailed analyses show that to good accuracy these
results also reproduce the perturbative solutions of Eq.
(3.8) available in the limits w )) 1, ~ && 1, and for 6 && 1
in the LW region.

2 1 2fi(mg) = —+ —mii3 3
mg gl —m~arctan

gi —mz~ mg
(4.4)

IV. DISCUSSION OF WALL RELAXATION

In this section, we will discuss the experimental results
on the influence of temperature, sample thickness, and
longitudinal and transverse applied fields on the kinetic
coefBcient of the walls. This discussion will be based.
on the kinetic LLB theory presented in the preceding
section. For this purpose, we will consider separately
the effects on I arising &om changes (i) of the domain
structure induced by longitudinal fields and. varying sam-
ple thickness D, (ii) of the temperature which causes the
structural transition of the DW s, and (iii) of the trans-
verse field. s polarizing the order parameter of the BW's.

mg 1 mQ2

f2(m~) = arctangi-m' mg

Q(l —m2~)(m~2 + 0.2~)

x arctan
1 —m 2

R

mph' + 0!~2 2 (4.5)

Let us first consider the efFect of D. Figure 6(a) demon-
strates that the kinetic coefBcient I measured in zero
applied field scales indeed with the thicknesses of the el-
lipsoids between 0.1 mm and 2 mm along the e direction
investigated here,

A. EfFects of size and longitudinal Qelds
(D't"

(T 0, D) = I (T 0, Do)
~

&Do i
(4.6)

d(T, H„D) = d(T, 0, D)G(h, ), (4.1)

The domain structure of the hexaferrite BaFei20~g
was investigated by Kooy and Enz, who using the
Faraday efFect observed the stripe structure for applied
fields below H = N, M, and calculated the magneto-
static energy of this domain structure. From their result
Rajchenbach derived the field dependence of the do-
main period

The exponent of this size scaling, g = 0.61(4), is closer
to g = 2/3 predicted by Eq. (4.3) for the case of domain
branching near the surface than to @=1/2 for the Kittel
domains. Perhaps our intermediate value is thus associ-
ated with the wavy surface domain structure discovered
recently on BaFei20ig by magnetic force microscopy.
The same argument was used by Kaczer and Gemperle
to explain g = 0.63 obtained from investigations of d(D)
on Pb hexaferrite. A very similar exponent g was found
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FIG. 6. Temperature variation of the kinetic coe%cient of
wall relaxation (a) in zero applied field, scaled to the sample
length D along the easy axis, and (b) in fields applied parallel
to the easy axis. TD (H, ) are the transition temperatures from
the domain to the homogeneous state; the solid curve through
H = 0 represents a smooth spline function; dashed curves are
fits to Eq. (4.7).

increasingly inhomogeneous magnetic structure, because
near TD the domain period d reaches the order of the
sample thickness D. Then the demagnetizing Belds ex-
tending from the surface poles penetrate deeply into the
sample and into the walls, which increases the magnetic
inhomogenity and gives rise to a softer domain structure.
Empirically, this may be characterized by a larger effec-
tive wall parameter, 8(T, H, ), which according to Eq.
(3.1) leads to a larger kinetic coefficient. It is perhaps
interesting to note that even for 6, & 1, there are some
remnants of wall dynamics which we attribute to DW
Buctuations in the homogeneous phase.

We note that near Tli(H, ) the differences between
the L data and the micromagnetic calculation become
greater with increasing field, i.e. , with decreasing transi-
tion temperatures T~(H ). This contrasts to the case of
the uniaxial ferromagnets with low T~'s, ' where this
difference decreased. We attribute this observation to
the fact that, in the hexaferrite, TD(H, ) approaches the
stability limit of the linear-wall structure at T* whereas,
due to the larger spin susceptiblity y, (T) in the low Tc-
ferromagnets, T* was not reached by TD(H, ). Here we
conclude that for Tli(H ) ~ T* the wall ffuctuations
near T* are further enhanced due to the instability of
the domain structure itself.

~ I I I
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B. Temperature variation

In Fig. 7(a), the data measured on one sample (D =
2.1 mm) in zero applied field are shown and compared

for the kinetic coeKcient of the linear walls in the uni-
axial ferromagnet LiTbF4, with T~ ——2.87 K, and so we
conclude that the size effect is of purely magnetostatic
origin and does not interfere with thermal fluctuations.

The effect of magnetic Belds H applied parallel to the
measuring direction, i.e. , to the easy c direction of one
sample ellipsoid, is shown in Fig. 6b. It turns out that
the kinetic coeKcient generally decreases with H, as pre-
dicted by Eq. (4.3), which we rewrite for this comparision
in the form

1O'.--
LVV

O~
Oyy~10 - -(1-T/T )'" - ~

10

critical-

H=O

D=2. 1mm .

L (T, H„D) = L (T, O, D)G(h, ). (4.7)

In Fig. 6(b), L (T, O, D) is represented by a spline func-
tion through the zero-Beld data as a solid curve. Inserting
this function and the field factor G(h, ) of Eq. (4.1) into
Eq. (4.7) one obtains field-dependent kinetic coefficients
as indicated by the dotted lines. Obviously, for small val-
ues of the normalized field, h, = H, /1V, M, (T) (( 1, the
data follow rather nicely the predicted curves; however,
approaching the stability limit of the domains h, (TLi) =
1 the measured values do not display a downward curva-
ture. Such deviations have also been realized on the low-
temperature uniaxial ferromagnets GdClq (Ref. 3) and
LiTbF4 (Ref. 23) and were qualitatively attributed to an

1O4
s i I I

10 1-T/T

FIG. 7. (a) Kinetic coefficient of wall relaxation in zero
field showing the crossover from linear walls (LW's) near To
to elliptic walls (EW's) below T* to Bloch walls (BW's) at low
temperatures. The dashed curve is a fit to Eq. (3.2), using the
mean-field prediction for the DW order parameter m&, Eq.
(1.1), and for the width, Eq. (3.10). The inset demonstrates
the noncritical behavior of the kinetic coeKcient L of the
homogeneous phase. EKects of 2D Ising Huctuations on m~
and the wall thickness 8 are shown in (b).
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to a calculation using Eqs. (4.3)—(4.5) in which the MFA
results for the order parameter, m~ ——m&F, and tran-
sition temperature, TMF, following from Eqs. (1.1) and
(1.2) have been inserted. We emphasize that the sig-
nificant suppression of the minimum in L occurring at
T* ( TMF is responsible for the strong difFerences be-
tween the MFA prediction and the data in this transition
region. On the other hand, there is convincing agreement
outside this region, i.e. , for 7 ) r* = 7 (T') = 0.27,
where the LW's are stable, and for w ( ~*, where the
EW's exist. In each regime, we have adjusted one of the
two relaxation parameters L and I~ contained in Eq.
(4.3).

For linear walls with b = bl. , m~ = 0, and f2(0) = 0,
one finds from Eq. (4.3)

(4.8)

which has to be compared to the critical speeding up
measurednear Tc, L (T) = L (0)(1—T/T )c'. Taking,
from Eq. (3.10), b&(T) = 4y, (T)/q&2 and the measured
susceptibility, y, = C (1 —T/T~) [see Fig. 5(b)], one
finds for the critical exponent z = (1—g/2)p = 0.82(4).24

According to Fig. 6(a) this value is consistent with the
data away from TMF, so that we can conclude that the
kinetic coefBcient of the spin-lattice relaxation L, does
not depend on temperature. Such uncritical behavior of
L, is typical of uniaxial systems which display pure re-
laxational dynamics, and the associated thermodynamic
slowing down I'g = L, /y, (type A in the classifica-
tion of Ref. 25) has frequently been realized in uniax-
ial ferromagnets. ' ' These studies also revealed that
I is determined by the relaxation rate of the homoge-
neous phase. For SrFei20ig, one finds from I'q = L, /yd
measured above and below Tc, L, = 55(10) x 10 s
depicted by the inset to Fig. 7(a). Using this num-
ber, we find that the measured coeKcient of the speed-
ing up, I (0) = 530 s i, is reproduced by Eq. (4.8)
if we take q~ ——0.01 nm as the dipolar wave num-
ber. This value for qp proves to be quite reasonable
when we estimate the range of the ordering interaction,
rg --(A, /Tc) ~ /qd. Using the bare susceptibility at Tc
for SrFei20ig, A, /Tc = 10, we find rg = 1 nm which,
considering the large ferrimagnetic unit cell, can be ac-
cepted. Hence we conclude that, similar as for the uniax-
ial ferromagnet GdClq, the critical speeding up of I
for LW's in SrFey20ig has almost quantitatively been ex-
plained.

In the other limit of elliptical walls, present at lower
temperatures where 7 ~ 0 and m~ —+ 1, one obtains
in the denominator of Eq. (4.3), fi(m~) + n, n~ for
the present case of small Gilbert parameters, o.„o.~ &&

1. Fitting the low-temperature data to this expres-
sion, we find L L~ —— 7.8 x 10 s which implies
L~ ——1.3 x 10 s, in good accordance with L~
y~/T2 ——0.9 x 10 s determined from the ferrimag-
netic resonance linewidth for the closely related mate-
rial, BaFei20ig. Inserting L~ into Eq. (4.3) the data
are well described except for temperatures near the wall
transition.

In the absence of theoretical work considering the in-

Huence of order parameter Huctuations on both the wall
profile m(z) and the dynamics of rn, previous work~ pro-
posed to allow the BW order parameter to vary in terms
of the general power law, m~(r) = (1—~/r*)~ [Eq. (1.3)].
In fact, rather convincing agreement with the data was
achieved using the significantly lower transition temper-
ature r' = r(T*) = 0.27 and P = 0.08(1) for the criti-
cal exponent. Since P was not only much smaller than
the MFA value, P = 1/2, but even smaller than that of
the two-dimensional Ising model, P = 1/8, proposed by
Lawrie and Lowe, it was conjectured that not all as-
pects of the Huctuations have been taken into account.
In particular, out-of-DW-plane Huctuations and dynami-
cal critical efFects not accounted for in the LLB equations
have been suggested, which, however, are far too com-
plicated as to be considered here. Instead, we perform
here a smaller step in order to improve the approach of
Ref. 6: We do not fix any longer the DW width below T*
to b(r ( 1) = b~, Eq. (3.10), but we use the variational
result for b, Eq. (3.13), with p(h„=0) = m~,

(1 —m~)' + (3/2)7-m~ ' (4.9)

C. EfFects of transverse Aelds

The speeding up of the DW relaxation rate I' in the
presence of fields H~ applied perpendicular to the easy t-

axis has been illustrated already in Fig. 4 and contrasted
to the effect of longitudinal fields. Here we will discuss
the results for the wall kinetic coefFicients displayed in
Fig. 8, the most interesting phenomena of which are the
following: (i) The minimum of L becomes flatter and is
shifted towards higher temperatures with increasing H~,
(ii) the effect of H~ on L~ is largest near the minima
and becomes independent of T above the minima, and
(iii) iinmediately below T, H~ exerts only a weak ef-
fect on L . Feature (iii) is expected from the fact that,
below T*, m~ rapidly saturates already for H~ ——0 so
that the transverse field cannot polarize m~ very much.
On the other hand, similarly as for the field. dependence
of the susceptibility of a bulk ferromagnet, very small
fields have the maximum efFect on m~ at T*, while with

which implies a temperature variation of b also below T*.
In fact, inserting this expression into Eq. (4.3) to fit L
to the data below T* we obtain P =0.11(2) as represented
by the solid line in Fig. 7(a). The corresponding temper-
ature variation of 8 is shown in Fig. 7(b) which reveals
that b~ is suppressed by the factor 7* due to reduction
of the transition temperature from 7.MF

——1 to v.* = 0.27
by the Huctuations. The most interesting consequence of
the present approach is that the critical exponent of the
BW order parameter moved towards the two-dimensional
Ising value, P = 0.125. This provides more evidence for
the critical Huctuations occuring very close to w* where
the range of their correlations (~ are much larger than
b~. Using the dipolar wave number of SrFei20yg de-
termined before, we find 8~ = gy~/qq = 40 nm as an
estimate for the crossover to three-dimensional behavior.
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FIG. 8. Temperature variation of the wall kinetic coefB-
cient in fields perpendicular to the easy c axis. Solid curves
are fits to Eq. (3.2) based on the mean-field solutions for the
wall magnetization profile, Eqs. (3.12)—(3.18).

increasing H~ the susceptibility dm~/dH~ attains the
maximum at temperatures above T*. Taking this into ac-
count and recalling that the wall mobility p and hence
I, increase with m~(T, Il„), features (i) and (ii) can be
understood on a qualitative basis.

In order to gain a deeper insight into this polarization
process, we determined the wall profile in the MFA &om
the variational ansatz, Eq. (3.12), using the result Eq.
(3.13) for p. Since the applied field suppresses fluctu-
ations, we can expect that the MFA approach will im-
prove with increasing H~. Indeed, the comparison be-
tween measured and calculated wall kinetic coefBcients
in Fig. 8 shows that the overall difference is smallest for
the highest field of 1.1 kOe and also for low temperatures,
T ( T*, but the MFA clearly fails in the critical regime
of the disordered BW phase, i.e., between TMF and T*.
Note that the MFA calculations do not employ any ad-
ditional parameter, except for the fact that we have to
assume H& ——2H~ for a/l applied fields H~ to obtain
agreement in the MF regime. Such a reduction of the
efl'ective polarizing Geld is not implausible because in a
real sample the orientation of the BW's and of their or-
der parameter is randomly distributed while the present
treatment applies to planar walls, aligned parallel to H~.
We do not examine this feature in more detail, mainly be-
cause we have no detailed information on the real domain
structure in the bulk.

Let us Gnally point out that we also made no attempt
here to improve the agreement between MFA and the
data, mainly for two reasons: (i) Below the transition
temperature the differences are small, and (ii) above T*
the fluctuations of the order parameter and of the wall
thickness are very large, and a realistic approach taking
into account their effect on both the statics and the dy-
namics of the walls is not yet available, not even for a
zero transverse field.

ing the temperature T*=0.99T~ from below can rather
convincingly be ascribed to the decrease of the order
parameter of the Bloch walls, m~ = M„(2: = 0)/M„
i.e., the in-plane magnetization in the center of the wall.
Our analysis based on the kinetic Landau-Lifschitz-Bloch
equations and on an extended mean-field approximation
for the wall profile below T' reveals that m~ rapidly
vanishes near T* in close correspondence to the order pa-
rameter of the two dimensional Ising model. Taking for
granted the concept of a one-component order parame-
ter proposed by Bulaevski and Ginzburg for the BW,
this behavior is plausible for the present wall structural
phase transition, if the wall can be considered as planar
and two dimensional close to T*, where the correlation
length of m~ exceeds the thickness of the wall. Above
T*, the wall relaxation speeds up towards the Curie tem-
perature in terms of a power law, which, in accordance
with previous results in other materials, ' is attributed
to relaxational dynamics of linear walls. Their width is
determined by the correlation length of the bulk magne-
tization M, diverging at T~.

By adopting the conventional magnetostatic results for
the domain structure, we were able to describe also quan-
titatively the variation of the relaxation rates with sam-
ple size and longitudinal applied fields, and even their ab-
solute magnitude could be explained using intrinsic spin-
lattice and spin-spin relaxation constants known from in-
dependent measurements. Further support for the valid-
ity of the MFA to the domain-wall structure and the LLB
kinetics used here was gained &om the successful expla-
nation of the speeding up of the relaxation rates induced
by magnetic fields applied transverse to the c axis.

In the critical regime on the disordered side, i.e. , for
T T, however, significant deviations remained be-
tween the predictions of the kinetic LLB theory and the
measured temperature and field variations of the wall re-
laxation rate. Here severe fluctuations of the BW order
parameter can be expected, which presumably control
both the width and the dynamics of the wall in a way that
cannot be discussed based on the approaches introduced
here. This will require much more extensive theoretical
treatments of the critical statics and dynamics of the wall
magnetization M(x) near T'. On the experimental side,
investigations of DW dynamics in ferro- and ferrimagnets
with stronger anisotropy would be of interest, because in
this case [see Eq. (1.2)j T'/Tc decreases to lower values
and the critical phenomena near the wall reconstruction
at T* do not interfere with those associated with the bulk
transition.
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