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Results of numerical studies of conductance of a two-dimensional tight-binding system with random
potentials and coupled to a three-dimensional Ising spin glass are presented. The dynamics of the sys-
tems are determined by the Monte Carlo process of the Ising spins. The paper is focused on the e6'ects
of the magnetic field which couples to the lattice spins and changes their configuration. The conduc-
tance noise in the presence of the field is given by a power law, like in the absence of the field. The mag-
netoconductance fluctuations, obtained from studying time-averaged trains of conductance for a given
field, increase in amplitude on lowering temperature. This is unlike what happens with the thermal noise
and with what happens with magnetoconductance fluctuations in spin ferromagnets. The dependence of
conductance on the magnetic field depends on the size of the field increments and on the starting spin
configuration. It depends also, to a lesser degree, on the time interval used in averaging. The field-
cycling magnetoconductance curves are not reproducible. Experimental results, on the other hand, are,
to a large extent, reproducible. Possible reasons for this discrepancy are discussed.

I. INTRODUCTION

Manifestations of quantum interference effects in
mesoscopic electronic systems can be used to study struc-
tures and processes in solids at the microscopic level. '
One natural possibility is to probe spin dynamics, as sug-
gested by Altshuler and Spivak. It is especially interest-
ing to try this approach in the case of spin glasses. Feng
et a/. have proposed that the chaotic nature of spin reor-
ganizations on varying temperature T, would result in
measurable changes of conductance noise. Experimental
studies of such noise have not yet come up with an evi-
dence for the changes, possibly due to nonlinearity of the
strong current conditions required to measure the noise.
Neither the numerical simulations gave any indication of
a promise to measure chaos this way, possibly due to too
small system sizes available to numerical studies. Never-
theless all these studies are merely first steps toward in-
terpreting experimental information being gathered on
Inesoscopic systems with spins.

This paper is meant to be a sequel to our former
theoretical studies of the conductance noise and is now
focused on magnetoconductance and irreversibilities re-
lated to the effect of magnetic field on the lattice spins.
Measuring rnagnetoconductance appears easier than
determining noise and there are several groups which
work on this. " Most of the experimental studies refer
to systems in which both the lattice spins and the conduc-
tion electrons are located in three-dimensional (3D)
space. However, the dilute semiconducting systems stud-
ied in Poland ' ' are likely to be easier for a theorist:
the conduction process there takes place within a 200-A-

wide layer adjacent to a grain boundary and is thus essen-
tially of a 2D nature whereas the lattice spins form a 3D
system. This mixed-dimensionality electron-spin system
is our object of studies here and the details of the model
are presented in Sec. II. The model consists basically of a
3D spin glass made of Ising spins a layer of which is cou-
pled to a 2D tight-binding electron with spin, moving in a
random potential.

It should be noted that experiments are usually per-
formed in a four-probe geometry, such as analyzed
theoretically by Hershfield. ' Our simulations, however,
use a two-probe arrangement: there are two perfect leads
attached to a random segment. This is done for two
reasons. First, our calculation of conductance is based on
iterations of Green functions which is numerically exact
but restricted to small system sizes: carving out space for
two more leads, in the simulated systems, is difficult.
Second, one should attempt to understand the simplest
geometry first.

When it comes to studying effects of the magnetic field
8, a theoretical analysis allows one to split the coupling
of the field to the system into three mechanisms: align-
ment of the lattice spins (lattice Zeeman effect), alignment
of the electronic spins (electronic Zeeman), and
modification of phases of the electronic wave functions
(orbital effects). As recently shown by de Vegvar and Ful-
ton, ' it is possible to separate the spin and orbital effects
experimentally. In this paper, we focus on the lattice
Zeeman coupling. In particular, we examine how field-
induced changes in the spin configurations affect the con-
ductance.

Presentation of our results starts in Sec. III where we
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study in what ways the conductance noise is aff'ected by
the presence of a magnetic field and we advance interpre-
tation of the noise in terms of spin flips. In Sec. IV we
discuss issues related to defining magnetoconductance.
The lattice spin subsystem undergoes the Monte Carlo
dynamics which produce eff'ective time-dependent tight-
binding potentials. In order to define conductance for a
given B one has to time average over the instantaneous
values. The resulting conductance depends on the
coarse-graining time interval, i.e., on the measuring ap-
paratus. Our studies indicate, at least for short time
scales, that this dependence is weak. The dependencies
on the value of B, on the way B is incremented, and final-

ly on the initial spin configurations are much stronger.
In Sec. V, we study the T dependence of the rms fluc-

tuations as a function of B and contrast it to that predict-
ed for ferromagnets and to the behavior of the rms fluc-
tuations generated as a function of time. The predicted
increase in the amplitude of magnetoconductance fluctua-
tions on cooling of spin glasses appears to agree qualita-
tively with the findings of de Vegvar et a1. ' (who plot a
linear combination of four-probe resistivities obtained for
fields 8 and —8). In Sec. VI, we demonstrate that field
cycling is irreversible: the field-up magnetoconductance
curve is uncorrelated with the field-down curve. Similar-
ly, increasing and decreasing B away from some origin
again produces uncorrelated curves. Experimentally,
however, a good deal of reversibility is actually ob-
served. ' "" We offer several possibilities to explain
this.

II. DESCRIPTION OF THE SYSTEM

As in our previous paper, we define the system by the
Hamiltonian

&=H, +H, , +H, ,

where H, describes electrons hopping on a two-
dimensional square lattice, H, describes the three-
dimensional spin-glass system, and H, , corresponds to
the interaction between the two subsystems.

We take the lattice spins to occupy sites of the
L, XL, XL, cubic lattice, with L, =9. A central plane in
this lattice coincides with the plane on which the tight-
binding system is defined but the spin lattice forms a su-
perlattice on the lattice of the disordered potentials.

The spin Hamiltonian is given by

vary H between —1 and + 1.
The effect of the magnetic field on the electrons is

neglected and thus the electron Hamiltonian H, can be
expressed as

H, X 0'i U(l, a)%'i+, +g 0'(+ V(l )0't,
l, a

where

%'t+ =(ct+,ci= ),

(4)

Cl+
I Cl

represent creation and annihilation operators for elec-
trons at site 1 and spin states + or —.The summation is
over all sites of the square lattice.

The matrix Uis given by

u 0
U(l, a) =

where u is the hopping matrix element. The hopping is
confined to the nearest-neighbor sites and vector
a =(a, a ) connects two such sites. For the square lat-
tice a„,a =+1 in units of the lattice constant. The ma-
trix V is defined by

e(l ) 0
0 e(1)

where e(l ) is the potential at site l.
We assume the following geometry for the electronic

subsystem. Atomic sites lie on the square lattice. The
central L XL section is disordered. In this section, po-
tentials e(l ) are random. We chose them to be uniformly
distributed between —w /2 and w /2, with w =2u.
Infinite perfect leads are attached in the x direction, to
the left- and right-hand sides of the section. In the leads,
e(1)=0. Periodic boundary conditions are applied in the
y direction. We typically study systems with
Lz Ly L 20 According to Stone, ' the universal
conductance fluctuations actually show an L dependence
which saturates for L close to and exceeding 20, hence
the choice of our system size. The magnetic sites typical-
ly occupy only a fraction of the atomic sites and with
L, =9 we have an arrangement in which every other site
along each principal direction contains a lattice spin.

The coupling between the two subsystems is given by

H, = —g J; S;S +g,ptiB QS;, (2) H, , = —
—,'J, , g 4+o"S

where S,. are Ising spins which take values +1 and J; is a
random number distributed with the Gaussian probabili-
ty with 0 mean and dispersion equal to Jo. The spin-glass
freezing temperature of this system is known to be close
to Jo/k~. ' ' In the Zeeman term, g, is the lattice spin g
factor. We introduce the shorthand notation

H =g,p~B /Jo

to measure the lattice spin Zeeman energy in terms of the
characteristic exchange energy. In practice, we shall

where m runs through those sites of the disordered seg-
ment which contain a lattice spin. We took J, , =w/5 so
that the coupling acts as a small perturbation.
cr=(o, cr~, o') an. d cr are the Pauli matrices. In the
present work we consider only Ising spins so only the o'
term enters Eq. (7).

For a given configuration of the lattice spins the calcu-
lation of conductivity, o., proceeds in exactly the same
way as in Ref. 6 and it is based on the iterative evalua-
tion of Green functions that enter the corresponding
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III. CONDUCTANCE NOISE
AND ITS RELATION TO SPIN EVENTS

We calculated the power spectra of the noise and aver-
aged them over 20 realizations of 4096-long trains of data
for the same sample, corresponding to different initial
conditions. Figure l is for T=0.8Jo/k~ T. The lighter
symbols correspond to noise in the absence of the mag-
netic field, taken from Ref. 3, and the darker ones to

2.0
T = 0 BJ /kR

I

C4
C4

g l.O
CO
C4

C)

H=O. 5

t

H=O

—3,0
I I

—2.0 —1.0
LOG, 0(FREQUENCY)

FIG. 1. Power spectrum on the log-log scale for
T=O. 8Jp /kg. The lighter symbols are for H =0, and the dark-
er ones for H =0.5, as indicated in the figure. This is a power-
law noise, f,with a=0.5.

Kubo formula. ' We focus on just one representative
location of the Fermi energy: at E =0, which is close to a
minimum in the o. vs E plot generated for a fixed spin
configuration. Throughout the paper we consider only
one sample, i.e., one particular choice of random poten-
tials and of exchange couplings.

The time evolution of the system is determined by the
Monte Carlo dynamics of the spin system. In each
Monte Carlo step per spin, we pick L, XL, XL, sites, one
at a time, and attempt to flip the spin there. This is
governed by the Boltzmann factor corresponding to tem-
perature T. The procedure probes short time scales since
each Monte Carlo step corresponds, roughly, to 1 ps. In
our simulations, we cool the system through the freezing
temperature of l Jo/k~ by starting high up in the
paramagnetic regime, at T=3Jo/A;~, and ending eventu-
ally at 0.4Jo/k~. At each T, the Monte Carlo process
takes the system through 4500 steps per spin. The con-
ductivity is being calculated for several selected tempera-
tures. The first 2000 Monte Carlo steps are excluded
from the calculations to improve thermal equilibration.
After that the conductivities are determined at com-
pletion of each Monte Carlo step per spin. When study-
ing the noise spectrum, we consider trains of 2' conduc-
tivities. When studying the magnetoconductance, we
cool the system at zero field and then increment the field
in steps, allowing for a specified number of Monte Carlo
steps for each field, as explained in Sec. IV.

CQ

0.25

R

& 020

CO

7 = 3 Jo/kB

~ 0.15

V

10
I I

15 20
SPIN FLIPS

I

25

FIG. 2. The dotted line shows probability of a given the
number of spin Aips, Nf, that occurred in the central plane in a
Monte Carlo step per spin at T=3JO/ks. (Nf ) =17.94. The
data points show average change in conductivity for a given Nf.
The connecting solid line has a slope of 0.0047. Average Nf is
linearly related to average

~
ho ~.

IV. TIME-AVERAGING OF MAGNETOCONDUCTANCE

Any realistic measurement of conductance, o., involves
time coarse graining related to the resolution time scales
of the apparatus. More importantly, a measurement of
resistance corresponding to a single specific spin

noise generated when H=0. 5. The field is applied only
to the lattice spins here. In both cases we get a power-
law noise with an exponent close to —0.5. Clearly, the
presence of H does not seem to change the nature of the
noise. Only the noise amplitude is affected. Thus the mi-
croscopic processes with and without II (at the length
scales studied) are essentially the same.

In our previous paper we have pointed out that jumps
in conductivity are not uniquely correlated with the size
of events in the spin system. Flipping many spins may re-
sult in a small change in conductivity and flipping few
spins may have a major impact. Here, we want to point
out, however, that a statistical correlation does exist:
large spin events lead, on average, to larger changes in
conductivity than small size spin events. This is shown in
Fig. 2 where H was set equal to 0 for simplicity.

Note that the number of spin flips in the central plane
varies from step to step. Its average grows with T rough-
ly quadratically. The dotted line in Fig. 2 shows proba-
bility of having a given number of spins flipped at the
largest T studied, i.e., at 3JO/k~. The average size of the
central plane events corresponds to flipping 17.94 spins at
this T (the statistics are based on about 50000 entries}.
The data points joined by the solid line show the average
change in conductivity, ( I

ho
I ), for a given number of

spin flips. These flips were generated during the runs and
entries close to 17.94 have the largest statistical weight.
Flips involving, say, 10 or 25 sites are in the tails of the
probability distribution but even these data points agree
with the linear law: ( I

b,o
I ) =0.0047K+const.
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FIG. 6. Same as in Fig. 6 but for T=1.1JO/k~, i.e., just
above the freezing temperature.

Figures 6 and 7 are the companions to Fig. 5. They show
cr(H) for four starting spin configurations at tempera-
tures 1.1 and 3JO/k~, respectively. The amplitude of the
magnetoconductance Auctuations clearly goes down on
heating. At T=3J o/ kz o (H) is flat and almost feature-
less. Results on the rms fluctuations in o(H) at various

temperatures are gathered in Fig. 8 and contrasted to the
behavior of the Auctuations due to the thermal noise.
The magnetoconductance fluctuations depend on the
time-averaging interval. The longer the At, the smaller
the Auctuations. It is conceivable that for an infinite At
the results would merge to a horizontal line with zero
Auctuations. The point, however, is that in spin glasses
one never reaches "infinite" times and a kink should be
observed. Longer At's should bring the kink closer to the

FIG. 8. Temperature dependence of the magnetoconduc-
tance fluctuations. The rms amplitude of fluctuations was ob-
tained from 10 different runs at each T (a11 obtained from cool-
ing down from T=3JO/k~). The field was incremented in 40
steps. The solid line is for At=1000 and the dotted one for
At =500. The dashed line at the top shows the rms fluctuations
due to thermal noise (in a time interval). This was obtained in
the same runs which were used to determine the two lower
curves. There is essentially no ht dependence in the thermal
noise.

freezing temperature. The predicted increase in the am-
plitude of rnagnetoconductance fluctuations on cooling of
spin glasses seems to be consistent with the experimental
observations of de Vegvar which we indicated in the In-
troduction.

It is interesting to point out that the upward trend in
magnetoconductance fluctuations on cooling is specific to
spin glasses. Figures 9 and 10 show what happens in the
case of uniform-J ferrornagnet in which the critical tern-
perature, T„ is close to 4.5J/k&. We use ht =1000 and
show exainples of the o(H) curves in Fig. 10. The fluc-

TIME = 1 000 T = 3 Jo/ks

TIME = 1000 FM

A
R
C3

1.8—

0.0

2.0 I

0.0 0.2
I

0.4 0.6
H

0.8 1.0

FIG. 7. Same as in Fig. 6 but for T=3Jo/k~, i.e., high in the
paramagnetic region.

FIG. 9. Magnetoconductance in uniform ferromagnets for
three temperatures indicated (in units J/kz). All results are for
two different starting spin configurations. These are seen at
T= 3Jo/kg as two lines: one solid and one dotted.
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try relations, ' might be caused by other effects, e.g., by
a nonlinearity in the current-voltage characteristics.

(3) The lattice Zeeman efFects are indeed irreversible
but the magnetoresistance is dominated by the orbital
effects which may depend on the lattice spins very weakly
and be reversible. The Zeeman part would just act as an
extra noise that shortens the phase-breaking length.

(4) The observed field-induced fiuctuations of the con-
ductance are caused by the spin effects. However, the
dominant mechanism is not the change in the lattice spin
configuration but the spin-splitting-induced redistribution
of the electrons between the spin subbands and the corre-
sponding shift of the Fermi energy with respect to the en-
ergy levels of the system.

(5) The field is, in practice, so strong that the exchange
couplings, and thus glassy effects, act as minor perturba-
tions.

(6) There could be more reproducibility in the case of
continuous symmetry spins, as opposed to the Ising ones
in which all changes are abrupt.

On more general grounds, however, the lack of exact
reproducibility in spin glasses should be expected as a
rule and its presence as a surprise.
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