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A quantum-mechanical calculation for the description of neutron scattering at very high momentum
transfer off both homonuclear and heteronuclear diatomic molecules at T =0 K in terms of the nuclear
momentum distribution, n (k), of the nuclei in these molecules is proposed. The results of this calcula-
tion compare well with neutron-scattering measurements on liquid D2 at T =20 K in the momentum

o
transfer range 55 & q (80 A and with previous measurements on solid Hz at T =4 K and liquid H2 at

o
T =20 K at high momentum transfer (q —100 A ), showing that high-energy neutrons can be a sensi-
tive probe to investigate the momentum distribution of the nuclei in these molecules.

I. INTRODUCTION

In recent years the inelastic neutron scattering at ener-
gy transfer up to 150 eV, has grown in importance as a
research tool. Indeed it is now possible to perform
inelastic-scattering experiments at large energy transfer,
and hence high-momentum transfer, using the epithermal
Aux of neutrons available from spallation sources. ' In
this scattering regime, known as deep-inelastic neutron
scattering (DINS), the experimental determination of the
atomic rnornentum distributions in condensed matter is
based on the assumption that the impulse approximation
(IA) is valid. In this respect it is possible to find in DINS
conceptual elements and calculational approaches com-
mon to other techniques, namely, Compton scattering of
x rays and y rays used for the determination of electron
distributions in solids, and quasielastic electron scatter-
ing off nucleons in nuclei, used for the determination of
nucleon momentum distributions.

Recently DINS experiments have been performed on
various atomic and molecular Auids and solids composed
of atoms of relatively low mass, namely, H2 (Refs. 5 and
6) and He (Refs. 7 and 8) in condensed phases. In the
measurements on diatomic rnolecules, performed on
liquid and solid H2, the kinetic energy for the parahydro-
gen molecule in the solid at 10 K and in the liquid at 17
K has been assessed and the kinetic energy in solid
parahydrogen at 4.7 K and various molar volumes has
been also derived. In both measurements the center-of-
mass translational energy per molecule was determined
from the width of the recoil peaks and a variety of peaks
corresponding to internal molecular transitions from
ground (J=O) to excited rotational (J=1,3, 5, 7) and vi-
brational states were observed. Indeed, due to the
moderate range in energy transverse available, Ace (1500
meV, the recoiling particle was the whole H2 molecule.
In this context it is of great interest the scattering off H2

and D2 at higher energy and momentum transfer since, as
it will be shown in the following, in this latter case the
recoil occurs from a single nucleus within the molecule at
an energy transfer of A'cott =A'

q /2M, being M the mass
of the struck nucleus and q the momentum transfer in the
scattering process. Hence in this scattering regime DINS
is probing the momentum distributions of nuclei within
these molecules and can provide useful information on
the wave function for the motion of the nuclei in the
ground state of these systems.

In this paper a theoretical calculation at T=O K for
the description of neutron scattering at high-momentum
transfer in terms of the nuclear momentum distribution,
n(k), of the deuterium in Dz and proton in Hz is pro-
posed and is extended to include the case of heteronu-
clear diatomic molecules. The quantum-mechanical cal-
culation relies on the assumption that the final state for
the struck nucleus is a plane wave and makes no use of
free parameters. The result of this calculation provides
an asymptotic scaling function, F(y ), ' which at high en-
ergy (3000—6500 me V) and momentum transfer
(55 &q &80 A ') compares quite well with the experi-
rnental data on liquid D2 at T=20 K obtained in a DINS
experiment, performed at ISIS on the eVS spectrometer.
Furthermore our calculation is able to reproduce the ex-
perimental scaling function of solid and liquid H2 (at
T=4 and 20 K, respectively) at high-momentum transfer
(q —100 A ') presented in a previous paper, where a
model calculation, including some free parameters, was
used to describe the data.

The results of the present paper show the reliability of
our approach in describing the inelastic neutron scatter-
ing at high-momentum transfer from solids and liquids
composed of diatomic rnolecules and confirm that DINS
is the proper experimental technique to investigate the
single-particle dynamics in condensed phases, although it
is envisaged that the experimental resolution may play a
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crucial role and smooth out relevant features of the scal-
ing function in a substantial way.

II. THEORETICAL CALCULATION

cal structure factor becomes
—ik r 2

1 1

S(q, co)= fdk, g f dr, dr& Pf' (rz)@,(r, R)
f2 (2n. )

i

Let us consider the response function at high energy
and momentum transfer for the neutron scattering off
homonuclear diatomic molecules, e.g. , D2, at very low
temperature (say T ~ 20 K) in the medium:

%2k
X 6 ficu+E;—

2M
g2 2 2Q2g q
2M 2M

=g ~(cfire"")e, )~'5(r~+E, —Ef) .
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In Eq. (1), N; and Nf are the initial- and final-state wave
functions for the orbital motion of the two nuclei, E; and
Ef the initial and final energies of the system, and r, , r2
the coordinates of the nuclei. At high-momentum
transfer the interference terms in Eq. (1) can be neglected.
Since each of the nuclei gives the same response, the
response for a single nucleus is

S(q, co) = S(q, co)

2

If the scaling variable y

M fiq
&2q 2M

and the scahng function

F(q,y)= S(q, ~)Aq— (8)

are introduced, then the terms independent of q in the en-
ergy conservation 5 function become negligible at high q,
and the asymptotic scaling function in the limit q —+ 00 is

2—ik .r
1 1

E(y)= fdk, g fdr, dr& Pf' (rz)@,(r, R)
(2m. )

i
The orbital initial-state wave function of the nuclei can be
written as follows: X 5(y —k, .q), (9)

C); =q);(r)%; (R), (3)

where u„(r) describes the vibrational motion of the nuclei
and y&"(e,q))=q&om'(8, qr)= 1 /&4m is the angular wave
function.

At higher values of the momentum transfer, one can
approximate with a plane wave the wave function of the
nucleus struck by the incident neutron. Therefore the
wave function of the nuclei in the final state can be ex-
pressed as follows:

I

c f(r)= », e ' '1tf (r&) (S)(2~)'" 2

where k& is the final momentum of the struck nucleus and
tPf (r~) is the final state of the other nucleus with energy

2

E,f2

By performing the substitution k, =k', —q, the dynami-

where q);(r ) describes the relative motion of the two nu-
clei and qi; (R) describes the motion of the center of mass
in the medium. The coordinate R=(ri+rz)/2 is the
coordinate of the center of mass of the nuclei, which
essentially coincides with the center of mass of the mole-
cule, and r=r, —r2 is the relative coordinate. At T ~20
K the equilibrium concentration for orthodeuterium
(J=0) is co ~ 96.S%%uo and for paradeuterium (J= 1)
ci ~ 3.S%%uo.

" Therefore in this case it is a reasonable as-
sumption to regard the molecule in the orthostate only.
In this state the relative wave function has angular
momentum J=0 and can be cast in the following form:

q), (r)= u„(r)pJ"(8,q )—,
1

and in the last step of Eq. (10) the independence of n, (k, )

of the direction of ki has been assumed. In Eq. (11),
2—ik.r

n(k)= fdr q), (r)(2~)'" ' (12)

is the square of the Fourier transform. of the relative wave
function in the initial state, i.e., the momentum distribu-
tion for the relative motion of the nuclei in D~~d

2—ip R
n (p)= f dR q(; (R) (13)

is the momentum distribution of the center-of-mass
motion of the D2 molecule in the medium. The momen-
tum distributions n(k) and n (p) are normalized accord-
ing to fn(k)dk=l and f n (p)dp=1, provided that
the wave functions (p;(r) and )I), (R) are properly normal-
ized.

where q=q/~q~. Using the closure relation to eliminate

gf one obtains

F(y )=fdk, n, (k, )5(y —k, q)

=2mfk, .n, (k, )dk, . (10)
lyI

In Eq. (10) the momentum distribution, ni(ki), for the
deuteron nucleus in the liquid D2 has been introduced:

2—rk .r
1 1

n, (k, )=f dr& fdr, C), (r, R)(2~)'"
=8fdkn~(2k, —2k) n(k),
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=2f dy'F (2y')F;(y —y') .

In Eq. (14),

F (y)= f dpn (p)5(y —p q)
lyI

and

(14)

(15)

F;(y)= f dkn(k)5(y —k.q) (16)
lyl

are the distributions of the minimum longitudinal
momentum y for the motion of the D2 molecule in the
medium and for the relative motion of the nuclei in D2,
respectively. In Eq. (14), it appears that the asymptotic
scaling function F(y) is the convolution of two longitudi-
nal momentum distributions to be considered separately,
one for the vibrational motion and one for the transla-
tional motion. If the momentum distributions n(k) and
n (p) are independent of the directions of k and p, Eqs.
(15) and (16) become F (y ) =2'f ~"~dp p n (p) and

F, (y )=2m f
~

~dk k n(k), respectively. This is the case
for liquid orthodeuterium. Indeed in this case the initial
relative wave function has angular momentum J=0 and
then the momentum distribution n(k) is clearly indepen-
dent of the direction of k. An another expression for
F(y ), based only on a model calculation, has been recent-
ly proposed in Ref. 9.

In the case of neutron scattering at high momentum
transfer off diatomic molecules whose nuclei have
different masses M& and M2, two different peaks, cen-

The asymptotic scaling function can be expressed in a
different form by placing the right-hand side of Eq. (11)
in Eq. (10) and changing the order of integration over ki
and k and the integration variable from k, to p' =k&

—k:

F(y ) =8fdk f dktn(k)n (2ki —2k)5(y —ki q)

=8f dy' fdk f dp'n(k)n (2p')5(y' —p' q)

X5(y —y' —k q)

' 1/2

f . —(par /o2R)( r ro)—2 2

0
(17)

where @=M/2 is the reduced mass, ro the equilibrium
distance of the nuclei in D2, and ~0 the oscillator frequen-
cy. The momentum distribution n(k), computed using
for the equilibrium distance and the oscillator frequency
the known values, ' that is ~0=0.74 A and coo=365 meV,
is reported in Fig. 1. The corresponding longitudinal dis-
tribution F;(y ) calculated using Eqs. (16) and (17) is plot-
ted in Fig. 2 by a solid line.

The momentum distribution for the translational
motion has been described as a Gaussian function accord-
ing to

—p /2o. Tn (p)= e
(2~~', )'"

and then the distribution F (y ) becomes

(18)

tered at fico, =fi q /2M, and at fico2=fi q /2M2, should
be observed, corresponding to the scattering off nuclei 1

and 2, respectively. The definition of the scaling variable,
y (~', for the scattering off nucleus jth (j= 1,2) is obtained
from Eq. (7) by replacing the inass M by the mass M .
The scaling function for the scattering off nucleus jth is
defined by F(~'(y(J))=S(q, co)(fi q/M ~) and can be ob-
tained from the right-hand side of Eq. (14) be replacing
both the factor 2 which multiplies the integral and the
factor 2 in the argument of F by the factor
(M, +Mi)/M).

In order to compute n(k) for D2 we can try to approxi-
mate the radial wave function u, (r ) corresponding to the
ground state (u=0) with a harmonic-oscillator wave
function. Within this approximation the momentum dis-
tribution n(k) becomes

.008

.006

.OOP

0
0

k (A')
10

FIG. 1. Theoretical momen-
tum distribution, n (k ) (solid
line), corresponding to the rela-
tive vibrational motion of the
deuteron nuclei in Dz [Eqs. (12)
and (17)] and total momentum
distribution of the deuteron nu-
cleus in the liquid D2, n&(k&)
(dashed line), obtained by convo-
lution with the translational
momentum distribution [Eq.
(11)].



51 DEEP INELASTIC NEUTRON SCATTERING OFF D2 AND H2. . . 8857

. 15—

t

.05 I—

FIG. 2. Theoretical longitudi-
nal momentum distribution,
F;(y) (solid line), corresponding
to the relative motion of the nu-
clei in Dz [Eq. (16)j and asymp-
totic scaling function of the
deuteron nucleus in liquid D2,
I'(y ) (dashed line) obtained by a
convolution of F;(y) with the
translational longitudinal mo-
mentum distribution [Eq. (14)].

0
—20 10

III. THE DINS EXPERIMENT GN LIQUID DgF (y)= I

+2~~ 2r
(19)

DINS experiment on liquid D2 was performed at eVS,
an inverse geometry spectrometer (IGS), installed at the
Spallation Neutron Source (ISIS) at Rutherford Appleton
Laboratory (UK). In this spectrometer the energy of the
scattered neutrons are determined by a resonance foil lo-
cated on the scattering Qight path. Two kinds of mea-
surements were performed on each sample: one with the
resonance foil in the beam, and one with the foil out of
the beam. By performing the difference between the foil-
in and foil-out spectrum one determines the inelastic-
scattering pattern of the sample. An important aspect
from the experimental point of view is the best resolution
one can achieve in this kind of measurement, and the
most critical parameter to this aim is the choice of the
resonance foil. Indeed there are various contributions to
the resolution in the minimum longitudinal momentum
hy, coming from Gaussian uncertainties in time and in
the primary and secondary Aight path lengths, as well as
from the I.orentzian uncertainty from the resonance en-
ergy of the foil. However, the latter is the more severe
one and for low mass samples a gold foil is usually the
recommended choice, since it provides a compromise be-
tween intensity and resolution in y space. "

The experiment was performed on liquid deuterium at
20 K (molar volume V=23. 5 cm /mole). The sample
container was an aluminium plane slab with an internal
thickness of 1 mm. The intensities from the sample in
the container and the empty container were recorded by
He gas detectors placed around the sample, covering 20

scattering angles ranging from 28= 36 to 28 =77' (see
Table I). Placing a gold resonance foil in between the
sample position and detectors, the scattering signal was
derived by the difference technique referred above. The
momentum transfer range explored in this experiment
was 32—80 A '. The principal components of the resolu-
tion function for DINS experiments in inverse geometry
spectrometers on pulsed sources can been calculated

where o z, the variance of these Gaussians, represents the
root-mean-square value of the longitudinal component of
the molecular translational momentum in A units. The
quantity o.z is related to the translational kinetic energy
of each molecule via

or=+2MD (Ek)D /3' (20)

MD being the mass of the Dz molecule and (E„)Dthe
2 2

mean kinetic energy per molecule, i.e., (Ek )D = ,'KT*—
2

(T* being the "effective temperature" of the system' ).
In order to evaluate the kinetic energy at the temperature
of our experiment quantum effects have to be taken into
account. A reasonable picture of the temperature depen-
dence of (Ek )D, inclusive of the quantum effects, can be2'

obtained from an Einstein model, once the zero-point
kinetic energy for liquid D2 is known. The latter was es-
timated from previous measurements on solid and liquid
H2, by scaling (EI, )H, at the same molar volume of D22'

(see below) in the assumption of a harmonic potential act-
ing on each molecule. From Eq. (20) one yields cr &=2 2. .
A and then n (p) [Eq. (18)] and F (y) [Eq. (19)] can
be calculated. The corresponding momentum distribu-
tion n

& (k& ) [Eq. (11)]and the asymptotic scaling function
F(y) [Eqs. (10) and (14)] are reported, as dashed lines, in
Figs. 1 and 2, respectively. From these 6gures it appears
that the convolution with the translational motion
smooths out considerably the oscillations of n(k) and
F, (y ).

We would like to stress that our calculation can be ap-
plied to other diatomic molecules which have angular
momentum J=O, as, for example, H2 at very low temper-
ature, with only obvious changes in the values of the
physical parameters.
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TABLE I. Parameters of the resolution function at the
scattering angles of the present experiment; the variance, o.G, of
the Gaussian component of the Voigt resolution function,
R(q,y), and the width, o.L, of the Lorentzian component are re-
ported for each angle, together with the momentum transfer
corresponding to the maximum of the recoil peak.

(degree)

36.00
38.10
39.85
41.85
43.70
45.87
47.80
49.70
51.65
53.70
57.60
59.80
61.95
64.10
66.10
68.42
70.50
72.65
74.75
76.92

C7G

(A )

0.914
0.885
0.862
0.840
0.822
0.802
0.788
0.772
0.762
0.749
0.733
0.722
0.715
0.708
0.702
0.696
0.691
0.689
0.685
0.682

OL

(A )

2.272
2.151
2.061
1.968
1.889
1.806
1.739
1.679
1.622
1.567
1.475
1.430
1.390
1.353
1.322
1.289
1.262
1.236
1.214
1.193

(A )

31.9
33.9
35.7
37.7
39.6
41.8
43.7
45.8
47.8
50.1

54.7
57.5
59.8
62.4
65.1

67.5
70.2
73.3
75.8
78.7

directly in atomic momentum space' or derived by per-
forming a proper experimental calibration using higher
atomic mass samples, i.e., vanadium, lead, etc. ' Both
approaches allow one to estimate the values for the rela-
tive contributions to the total resolution function coming
from the uncertainties in energy, scattering angle and
time and their general trend as a function of the energy of
the resonance foil and the atomic mass. The total resolu-
tion in momentum space, R (q,y ), is described by a Voigt
function with a Gaussian component of variance o.

G and

a Lorentzian component of width o.L.' For our particu-
lar experimental data set both components are listed in
Table I for the different scattering angles 20.

Experimental data have been corrected using a stan-
dard procedure in which the data originally in time of
fIight are transformed in energy transfer and then con-
tainer scattering is subtracted. ' A further correction, to
take into account the multiple scattering contribution,
has been also performed. This contribution, using a pro-
cedure described in Ref. 15, was found to be only a few
percent of the total.

The position in energy transfer of the recoil peak for
the sample is plotted in Fig. 3 as a function of A' q /2, to-
gether with a least-squares-fit straight line. It is clear
that the relationship fico+ =A' q /2M holds and from the
slope of the straight line, it appears that neutrons recoil
from a particle of mass M'" '=2.007+0.006 (a.m.u. )

which we can identify with a single deuteron nucleus of
mass M=2. 0135 (a.m.u. ). This, as already observed, is a
direct consequence of the high energy and momentum
transfers available in the present experiment. Therefore,
the value M of the mass was used to construct the scaling
variable y [Eq. (7)] and the corresponding experimental
scaling function from the experimental response [Eq. (8)],
here after named I"z~ '(q, y ). This function for each angle
includes the contribution from the resolution function,
R(q, y ), according to

Fg ~'(q, y ) = J F'"~'(q, y') R(q, y —y')dy' . (21)

In Fig. 4, the I'z" '(q, y ) functions are plotted as a func-
tion of y, for a couple of scattering angles in the low q
range and four scattering angles in the highest q range.
One can note the small variation of q in the y range
around the recoil peak at each angle (e.g., for
—10&y & 10 A ) and the substantial variation in q for
the different scattering angles (see top abscissas in
different plots of Fig. 4). In Figs. 4(a) and 4(b) some clear
shift of the experimental peak positions towards y &0
values is visible. This feature is a consequence of the
scaling violating effects present at the finite q values avail-

6000—

4000—

2000—

FIG. 3. Energy transfer of the
recoil peak (crosses) as a func-
tion of A q /2 for the 20 experi-
mental scattering angles of Table
I. The straight line is a least-
squares fit of the data.

I

10
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able in the experiments (e.g., at finite q the q independent
terms in the energy conservation [see Eq. (6}] are not
negligible and can produce such a shift}. It is also evident
that the shift of the peaks decreases by increasing the
scattering angle, and becomes negligible at high momen-

turn transfer. A final comment to Fig. 4 is that, although
the overall shape of the experimental scaling function is
the same, its peak intensity increases by increasing 28.
This means, as already observed, that some q dependence
is still present in the experimental scaling function

30.1 30.7 31.3 32.0
I

32.8 33.8 34.8

.08—

.06

.04

.02

0 ~

—20 —10 10 15 20

38.7 39.6 40.7 42.0 43.3
I

46.4

.08

. 04

.02

0
—20 —15 —10 10 15 20

FICr. 4. Experimental scaling function, Fs"~'(q,y) [Eq. (21)] (dots), compared with the theoretical scaling function, Fz(q, y) [Eq.
(22)] (solid line): (a) 28=36.00'; (b) 28=45.87', (c) 28=57.60'; (d) 28=68.42', (e) 28=70.50', (I) 28=74.75 . Lower abscissa is the
scaling variable, y, and top abscissa the momentum transfer, q.
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Fz~ '(q, y). Some of this q dependence is due to scaling
violating e6'ects which originate from the fact that one is
dealing, strictly speaking, with a function not obtained in
the asymptotic limit' and some to the e6'ects of the reso-
lution contribution, which varies with the scattering an-

gles for this specific sample as shown in Table I.' A more
detailed study about the approach of the experimenta1
scaling function to its asymptotic value, F'"t"(y), and a
suggested procedure for obtain the latter function, will be
addressed in a paper to follow.

49.4 51.0 52.8 54.6 56.9 59.3 61.8

.08

.06

0
—20 —10 10 15 20

59.9 62.4 65.0 67.9
I

70.9 74. 1

.08—

.06—

.04—

0
—20 —15 —10 10 15 20

FIG. 4. (Continued).
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62. 1 67,5 70.5 73.7 80.9

.08

.04

, 02

—15 15

66.5 69.5 76.0 79.7 87.7

.08

.06

, 04

—15 —10 10 15 20

FI& 4 (Contllg gled)

IV. DISCUSSION
0

A companson between theoretical calculations and the
experimental data for liquid D at hi h v
ma e y assuming that the scaling violating effects dis-
cussed in Sec. III re resp ent a little contribution to the

e in o account theFR"~ q,y function. In order to take into
variation o the experimental resolution with w h
calculated thee theoretical F„(q,y) functions, that is the
convolution of ththe asymptotic scaling function derived by

our calculation, F(y ) [see Eqs. (10) and (14)], with the ex-
perimental resolution of each set of d t Th
yie' s

o a a. rs procedure

(22)FR (q y )—J F(y') R (q,y —y')dy' .

In Fig. 4, together with the F'"i"( ) fq,y unctions, the
t eoretical FR q, y) functions are also plotted as 1'das so I

st
, at t e various scattering angles. U fn ortunate y the

s atistlcal accuracy of the present t f dse o ata Intrinsically
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. 15

FIG. 5. Theoretical longitudi-
nal momentum distribution,
F, (y ) (solid line), for H2 [Eq.
(16)] and asymptotic scaling
function of the proton nucleus in
H&, F(y) (dashed line) obtained
by a convolution of F;(y ) with
the translational longitudinal
momentum distribution [Eq.
(14)]. Parameters used are
Ek =70 K, M =1 a.m.u. ,0 or0=0.74 A, and o z. =1.4 A

0
0 10

limits a fully satisfactory comparison between the calcu-
lation and the experiment. From this figure one observes
that the theoretical asymptotic scaling function gives for
high scattering angles (q ) 55 A ') a satisfactory agree-
ment with experimental data, while is unable to describe
the data at the lower momentum transfers, where scaling
violating effects are present. From the comparison of
Figs. 2 and 4, one can also note that the intensity of the
calculated scaling function is greatly reduced by includ-
ing the effect of the experimental resolution, even at the
highest scattering angles. This is a consequence of the
poor resolution available in the present experiment which
smooths out considerably the waving features in F(y).
Indeed in the present data set R(q,y), at the highest

0
scattering angle, has a FTHM=3. 2 A, whereas the
asymptotic scaling function, F(y ), for D2 has a
FWHM-5. 1 A (see Fig. 2). The latter function is it-
self derived from another convolution between the vibra-

tional longitudinal distribution F,(y ), Eq. (14), with the
translational distribution F (2y ), whose FWHM is 2.59
A . Therefore any oscillatory behavior of F~(y ), visible
from Fig. 2 (solid line), is heavily smoothed out from a
first convolution with the translational motion and a
second one with the experimental resolution.

For this reason another check on the reliability of our
calculation has been performed by comparing theoretical
and experimental scaling functions in the case of H2,
where, due to the lower recoil mass, resolution contribu-
tion is less severe. Furthermore, in the case of Hz the
translational kinetic energy, known from previous experi-
ments (see Refs. 6 and 7), gives o T=1.4 A ', smaller
than for D2 due to the lower atomic mass. In Fig. 5, the
F;(y ) [Eq. (16)] and F(y ) [Eq. (14)] functions are shown
and in Fig. 6 our theoretical result, Frt (q,y ), is compared
with FJt" '(q, y ) function from Ref. 9 for solid H2 at T=4
K and liquid H2 at T=20 K in the high-momentum

. 15

0—
—20 —15 —10 10 15

I

20

FIG. 6. Experimental data
(dots) and theoretical scaling
function, Fs (q,y ) [Eq. (22)]
(solid line) for H2. Experimental
data and resolution function
used in Eq. (22) are from Ref. 9,
Fig. 1(c}. Parameters used are
Ek =70 K, M = 1 a.m.u. ,0 ora=0. 74 A, and oT=1.4 A

The resolution function is de-
scribed by a Lorentzian of width
0.67 A
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—1transfer region (q=100 A '; experimental data corre-
spond to Fig. 1(c) of Ref. 9). From Fig. 5 it can be seen
that the convolution of the vibrational motion with the
translation motion, via Eq. (14), still produces a
significant decrease in intensity of the recoil eak and

0
smears out the oscillation centered around 5 A . There-
fore the translational motion, as already observed in the
case of Dz, is important in that determines a quantitative
change of the overall shape of the scaling function. In
previous model calculation results on Hz, the interaction
process is described as the scattering of a neutron off a
proton which has a vibrational kinetic energy equal to
one-half of the total vibrational kinetic energy and a
value for ro equal to one half the actual value for the H2
molecule. As a consequence the whole shape of the scal-
ing function of Ref. 9 for the vibrational motion is
difFerent from the result of our approach (e.g., the oscilla-
tory behavior of the scaling function of Ref. 9 occurs
around 8 A, see Fig. 3 of Ref. 9). The efFect of the con-
volution needed to obtain I'tt (q,y ) with, first the center-
of-mass motion and, second, with the experimental reso-
lution function, largely washes out the di6'erences in the
shape of the vibrational scaling functions. From Fig. 6 is
clear that a good agreement between our calculation and
the experimental data is obtained. The minor shift to-
wards y &0 present in the data is to be ascribed to the
finite q values of the experiment. We stress that our cal-
culation does not make any use of free parameters.

V. CONCLUSIONS

In this paper a proper theoretical framework has been
presented for the calculation of momentum distributions
of nuclei within diatomic molecules and for obtaining the
asymptotic scaling function for neutron scattering at very
high-momentum transfer for both homonuclear and
heteronuclear molecules. From Figs. 4 and 6 one con-
cludes that the results of our approach provide a descrip-

tion of the experimental asymptotic scaling function in
both Dz and H2, without any fitting procedure involved.

From the results presented above one can conclude
that for a stringent test of the dynamics of a single nu-
cleus in diatomic liquids or solids two demands are essen-
tial. A first one is to work with the best and accurately
known experimental resolution function and a second one
is to work at the highest possible q values, which would
provide experimental data more safely described within
the IA, and hence allow a good check of the reliability of
the present calculation. In DINS experiments both the
above requirements can be accomplished; for example, in
the case of D& one could be able to decrease the inhuence
of the instrumental resolution performing the experiment
in a higher momentum transfer region, i.e., in the scatter-
ing range 90 &28& 180'.

As a final comment, it is well known that less severe
resolution contributions are available in experiments per-
formed on direct geometry spectrometer (DGS), where
the energy selection is done on the incident neutron Aux.
In this case, due to the lower co and q values accessible as
compared to eVS spectrometer, the transition region
from the scattering off the molecule and the scattering off
the single nuclei in the molecule can be explored. This
kind of experiment's results can be extremely important
also for a precise determination of the translational kinet-
ic energy, whose knowledge is essential to perform a
quantitative comparison of theoretical and experimental
asymptotic scaling functions.
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