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An incoherent-neutron-scattering study of the incommensurate phase transition in biphenyl is report-
ed. Experimental results show a departure from the Debye law in the low-energy part of the pseudoden-
sity of states both on approaching the displacive transition and in the incommensurate phase. The
analysis of the associated spectral autocorrelation function leads us to reexamine the interpretation of
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nuclear-magnetic-resonance results, nuclei having spin I =% and above -, in order to estimate the real

values for the gap in the phason branch.

I. INTRODUCTION

The analysis of local properties around structural
phase transitions gives a complementary view of the col-
lective excitations involved. Resonance methods [nuclear
magnetic resonance (NMR), nuclear quadrupole reso-
nance (NQR), electron paramagnetic resonance (EPR),
etc.] are the most sensitive techniques for the study of
such local critical dynamics, measuring the low- and
very-low-energy part of the associated spectral autocorre-
lation function.’> However, the analysis of the resulting
complex spectral shape is sometimes ambiguous, as one
only follows the temperature dependence of a very limit-
ed frequency range of this function. Theory>* and exper-
iment>~7 have shown that incoherent neutron scattering
(INS) can, in principle, give an alternative method for
such a study. In addition, incoherent neutron scattering
is the only technique that allows the observation of the
spectral autocorrelation function as a whole. Here we ex-
tend this approach to the case of a displacive incommens-
urate system. For such a transition, the order parameter
has, in the simplest case, a dimension n =2 and the twice
degenerate soft phonon branch yields in the incommensu-
rate phase to the phason and the amplitudon branches.
A still open question is to understand how these collec-
tive excitations modify local properties such as the pho-
non density of states, Debye-Waller factor, and spectral
autocorrelation function, and global properties such as
the heat capacity. Within this general framework, for
this study by INS, we retained the molecular crystal of
biphenyl as it is certainly the most suitable compound: (i)
the structural incommensurate transition is associated
with large motional amplitudes of hydrogen atoms; (ii)
the collective dynamics has been extensively studied.
INS results in the high-temperature phase and in the in-
commensurate phase are presented. The effect of the col-
lective characteristic excitations on the spectral auto-
correlation function is discussed and compared with
NMR data. Particular attention is devoted to the still
controversial problem of the existence or not of the gap-
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less phason.

Biphenyl (C,H ) is an aromatic molecule composed of
two phenyl rings connected by single C-C bonds. In the
high-temperature phase (phase I), the space group is
monoclinic P2;/a with two molecules per unit cell. A
structural instability at 77y=40 K is driven by a soft
mode principally related to an internal torsional motion
of phenyl rings. The resulting incommensurate phase II
has a four-dimensional order parameter (n =4).% It is
characterized by four satellites localized at general points
inside the Brillouin zone:

I_Sb

tq,==x |(§,a* —8.c*)+ b*

’

8y

+q,=* | —(5,a* —8.c*)+ b*

’

where 8,, 8,, and 8§, evolve with temperature.

Coherent neutron scattering experiments at low tem-
peratures under pressure have allowed the analysis of the
collective excitations: a phason branch, an amplitudon
branch, and a noncondensed doubly degenerate soft
branch.” This result proves that this incommensurate
phase has a single-g structure: the modulation propagates
only along one of the directions, either q;; or q,,. This
structure has been also confirmed by Raman scattering,'°
EPR,!! and deuteron NMR (Ref. 12) experiments. A
proton NMR study concluded for the existence of a gap-
less phason in this phase.!> A further transition between
phases II and III at T;;=17 K corresponds to a partial
lock-in transition, the component along the b* axis
remaining incommensurate or close to a higher-order
commensurate value with the modulation wave vector
£b*.®1* Note that two different INS studies have been
realized in biphenyl previously.!>!® Due to the low ener-
gy resolution used, both failed in the observation of any
INS signature for the first transition.

This paper is organized as follows. In Sec. IT A, we re-
call the formalism of incoherent neutron scattering ap-
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plied to structural phase transitions. In Sec. IIB, we
present our experimental results, in Sec. II C the calcula-
tion of the contributions of critical collective excitations
to the spectral autocorrelation function, and in Sec. IID
the results of these calculations and their comparison
with experimental data. In Sec. III, we reexamine the in-
terpretation of experimental data obtained by magnetic
resonance techniques, in Sec. III A for spin I > 1 and in
Sec. III B for spin IZ%. In Sec. IV, we summarize the
main conclusions.

II. INCOHERENT-NEUTRON-SCATTERING STUDY

A. The incoherent-neutron-scattering technique

The definition of the incoherent-neutron-scattering
cross section is!”'!8

d*c

—x e ki g 1
d0de | 2 e (Q @) - )

inc j 4m ki

k; and k, are the incident and final neutron wave vector
and, o{, and S{,.(Q,w) are, respectively, the incoherent
cross section and the incoherent-scattering function for
the nucleus j. This scattering function is essentially the
sum of several contributions:

((w;-Q?)

St (Qo)=e [SEQ@)+S{r(Qw)], (2

with the following normalization conditions:

[780(Qudo=1 and [ " “SiFQe)do=1 .

o

—((u;-Q?) ,
Here, e %Q is the Debye-Waller factor for the nu-

cleus j, S%(Q,w) includes all reorientational functions,
when they exist, and, S{™(Q,w) is the inelastic-
incoherent-scattering function which in the one-phonon
approximation is related to the scatterer-weighted pho-
non density of states G(w):

3
2M,

Glw)

Shinel(Q,w) ===~ ((e}-Q)*) —n(w) , (3)
[0

with M; the mass of the nucleus j, eé the polarization
vector of the nucleus j for the mode g, {(e}-Q)*) the
value of (ejq'-Q)2 averaged over all the modes g with fre-
quency o, and, n(w) the Bose occupation factor. From
formula (3) follows the definition of the spectral auto-
correlation function S(w):

S(0)=99) () . @)
[0}

Up to now the incoherent-neutron-scattering studies of
structural phase transitions have concerned order-
disorder transitions.’~7 With the model of a relaxational
motion of the atoms in a double-well potential, the local
critical variable is described by a pseudospin variable tak-
ing two values (£1). Therefore the order parameter cor-
responds to the time average of this critical variable. The
associated phenomena (pretransitional effects and order-
parameter evolution) only affect the reorientational
scattering function S¥ (Q,®), i.e., the elastic incoherent
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structure factor (EISF) and the quasielastic-scattering
function taking into account the collective critical fluc-
tuations. At low energy transfer, the inelastic contribu-
tion Si"(Q,®) results then only from the acoustic pho-
nons which have there a negligible damping. If the pho-
non density of states G(w) follows the Debye law
[G(w)=w?], the inelastic-scattering function has the fol-
lowing expression:

She(Qw)=B((e;QMan(a) , )
_S8Mw) 1 L"’i“’_q) ,
T on(ew) on(o) fan(w) 2 dq, (6)

where S?%(w) is the spectral autocorrelation function of
acoustic phonons and BZ indicates the Brillouin zone.
The coefficient B in meV ~2, which is directly related to
the sound velocity, is a constant independent of scatter-
ing angle and temperature.

The situation is quite opposite in the case of a displa-
cive incommensurate transition. Here SR (Q,w) is Q in-
dependent and always equal to 6(w). Pretransitional phe-
nomena associated with a softening of the phonon branch
around peculiar points in reciprocal space affect only the
phonon density of states and consequently the Debye-
Waller factor. Whereas for an order-disorder phase tran-
sition the Debye-Waller factor related to single-site prop-
erties has a fixed value in the high-temperature phase, in
the displacive case this parameter integrates also the con-
tribution associated with the static susceptibility
S x(q,0,)=3,1/0}." This integral term is then ex-
pected to increase, but remaining finite at the transition.
Inelastic incoherent neutron scattering somehow pro-
vides an energy analysis of this Debye-Waller function.
At low frequencies, the function Si"(Q, ) may be split
into two contributions: one of the acoustic phonons and
another one governed by critical excitations such as soft
phonons and, in incommensurate phases, phasons and
amplitudons:

Sinc(Q @)= () [5(w)+B{(e, Q)*)on(w)
+{(e,Q)*)S ()] , (7

where S%(w) is the spectral autocorrelation function of
critical excitations.

B. Experimental results

The incoherent-neutron-scattering experiments were
performed on a polycrystalline sample using the time-of-
flight spectrometer MIBEMOL of the Laboratoire Léon
Brillouin. It is located on a neutron guide viewing the
cold source.’® Measurements at very low temperatures
were made in the standard cryostat of the spectrometer.
The aluminum sample container was rectangular with a
surface of S=4X1.5 cm? and a thickness of 7=1 mm.
The incident wavelength was A;,=6.26 A. The corre-
sponding elastic energy resolution is full width at half
maximum (FWHM)=120 ueV. After the standard detec-
tor normalization procedure using a vanadium run, the
empty-can contribution has been subtracted from the
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sample spectra. Because of the high transmission of 0.91,
multiple-scattering corrections were neglected. Note that
the density of states has been obtained by a method of ex-
trapolation to Q =0:

Sirel(Q,w)w
m-——
0—0 n(w)Q?

This is justified by the fact that we used a hydrogenated
sample, such that we mainly have measured the in-
coherent scattering arising from the self-correlation func-
tion which involves the motion of protons.

Far above T;,=40 K (T=112 and 79 K), G(w) follows
an apparent o law for small energy transfer (Fig. 1). On
approaching the first transition, one observes a complete-
ly different spectral shape. The extra contribution below
1 meV is attributed to the overdamped soft phonon
branch. Some remarks can be made to explain the inten-
sity of the observed phenomenon.

(i) The order parameter has four components. Indeed,
the soft phonon branch does not soften around a single
point in reciprocal space but around four satellite points.
It has weight 4 against 3 for the acoustic phonon
branches.

(ii) Biphenyl is rather an anisotropic system with not
very correlated directions. Because of the weak frequen-
cy dispersion around critical points, many modes remain
at very low frequencies.

(iii) The vibration amplitude of hydrogenated atoms in
ortho and meta positions is particularly affected by the
torsional mode along the long molecular axis, associated
with the structural instability.

In the incommensurate phase, the deviation from the
w? law persists and is explained by the contributions of
characteristic excitations, phasons, amplitudons, and
noncondensed soft modes (Fig. 2). Amplitudon and non-
condensed soft mode branches are essentially similar to a
low-temperature soft phonon branch and therefore con-
tribute essentially to G(w) near the transition. But the
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FIG. 1. InG(w) versus In(#iw) measured in biphenyl by in-
coherent inelastic neutron scattering, in phase I. The line corre-
sponds to a Debye model (slope 2).
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FIG. 2. InG(w) versus In(#w) measured in biphenyl by in-
coherent inelastic neutron scattering, in phase II.

phason branch is temperature independent and is like a
condensed soft phonon branch at T;. Whatever the tem-
perature studied, its contribution remains constant.

C. Calculation of the spectral autocorrelation function

In the displacive and incommensurate case, the critical
dynamics is illustrated by a softening of a phonon branch.
As for acoustic phonons [Eq. (6)], the spectral autocorre-
lation function S{w) is again obtained by a summation
over the Brillouin zone. However, these collective fluc-
tuations are described by the model of a damped harmon-
ic oscillator:

S(w)= f n(w)w Ty d3q (8)
BZ (0?2 ) +(T o) )

The calculation of S(w) requires the knowledge of the
dispersion and the damping of the critical modes. The
parameters have been determined essentially by
coherent-neutron-scattering experiments.®°

Concerning the damping coefficient I'j, we have as-
sumed that it is essentially constant around the satellite
points (I';~T'). We have only taken into account its
temperature variations.® For these quasiharmonic
modes, we use the phrase “pseudo density of states” in
order to differentiate the situation here from the usual
case of acoustic phonons which are not damped. Around
the satellite point, the dispersion of the soft phonon
branch is described by the parabolic law

a)fl=(:.)(2,4-61,‘(],3-i-ayqy2+azqz2 s 9)

with @3~ A(T—Ty).

Biphenyl is a system with anisotropic dispersion. The
dispersion coefficients a, and a, have the same order of
magnitude (o, =4 THz? A? and a,~1 THZz? A?) and are
clearly smaller than a, (a,~22 THZ’ A?).? In the vicini-

y
ty of the Z(0,1,0) zone boundary point, the symmetrical
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and antisymmetrical torsional modes are degenerate with
respect to the diad axis and merge with opposite but finite
slopes. Such a behavior is labeled 4. The numerical
calculations of the functions G(w) and S(w) have re-
quired knowledge of the dispersion of the collective mode
branches in the Brillouin zone. We have assumed that
the parabolic law [Eq. (8)] is valid throughout the Bril-
louin zone. As we focus our attention on the low-
frequency part of the spectral autocorrelation function,
this approximation is acceptable. The dispersion
branches are calculated along several directions taking
into account the satellite points (§,,(1—86,)/2,8,) and
(8,,(1+6,)/2,8,.). Whatever the temperature studied,
the values are fixed: 8, =0.06, ,=0.05, and §,=0.13.

In the incommensurate phase, the theoretical frequen-
cies of characteristic excitations at the satellite points are,
for

the gapless phason P, O, 10)
the amplitudon 4 , % =<2A(T;—T).

For the noncondensed soft mode D, no simple analytical
temperature dependence is predicted but coherent-
neutron-scattering results have revealed the behavior
0h~0.54(T;—T).° The relative weight of these
different critical branches is 4 for the soft phonon SM, 1
for the amplitudon A4, 1 for the phason P, and 2 for the
noncondensed soft mode D.

Before studying this real case, a simple calculation of
G(w) following the formulas (8) and (4) has been done
considering an isotropic dispersion (a,=a,=a,) and a
displacive transition with undamped and damped modes.
Without the damping [Fig. 3(a)], the spectral autocorrela-
tion function is of course zero below the frequency gap w,
of the branch, whereas an important contribution actual-
ly exists at much lower frequency than @, when consider-
ing the damping [Fig. 3(b)]. This point will appear essen-
tial when looking for a quantitative value of this gap by
resonance techniques as discussed further.

3
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3
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w
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D. Calculations: Results and comparison with
experimental data

In phase I, the displacive transition is second order and
the soft phonon frequency is assumed to be zero at the sa-
tellite points. The intensity of the pseudo density of
states increases if the temperature decreases (Fig. 4). Be-
cause of the damping, the resulting spectral autocorrela-
tion function diverges at zero energy transfer. This result
is similar to the one observed in an order-disorder transi-
tion;*7 the low-energy part of the spectral autocorrela-
tion function is then found to behave as @ ~'/2. In the in-
commensurate phase, phase II, the function S(®) associ-
ated with the temperature-independent gapless phason
branch has the same behavior as the one associated with
the soft phonon branch at T; but its weight is four times
weaker (Fig. 5). One should keep in mind that the diver-
gence of S(w) at w=0 is directly related to the existence
of a mode close to the satellite points q,, where the static
susceptibility diverges, that is, the mean square amplitude
of the collective fluctuation is infinite. The usual small-
fluctuation limit, which simply defines the phason and the
amplitudon, is certainly not valid there. Such problems
do not affect the interpretation of the coherent- or
incoherent-neutron-scattering data because the resolution
of the spectrometer used is rather large (typically some 10
GHz). However, as discussed later, this aspect may be
fundamental in the analysis of S(w) by other local tech-
niques sensitive to much lower values of the frequency,
such as nuclear-magnetic-resonance techniques (frequen-
cy in and below the MHz range).

We determine the temperature dependence of the vi-
brational mean square displacement of the protons {u?)
by using the integral of the elastic peak and summing the
detectors. At the transition and below, even if there are
extra-low-frequency branches, {u?) is not found to devi-
ate significantly from a standard temperature depen-
dence. Much more precise measurements should be done
to observe such an expected effect, which would reflect
the modification of the Debye-Waller factor in the pres-

3
o

2

(meV)

FIG. 3. Numerical calculations of the density of states in an isotropoic system (in arbitrary units) with (a) zero damping and (b)

nonzero damping.
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FIG. 4. Numerical calculations of pseudodensities of states (a) and spectral autocorrelation functions (b) of soft phonons of bi-

phenyl in phase I. The ordinate axes are in arbitrary units.

ence of these branches whose static susceptibility
diverges.

For T'> 150 K, {u?) is approximately represented by a
linear temperature relation,

(u¥T))=4.5X10"%T , (11)

where (u?) is given in A% and T in K. For T<50 K,
{u?) becomes practically constant,
(u?)=0.052 A?. (12)

The incoherent-neutron-scattering function for a poly-
crystalline sample which has been used to fit the data has
the following expression:

S0 (Q,0)= Ae VR (0)® [8(w)+B'Q%0n(w)

+CQ%8"(w)] . (13)
3
(L) a )
6
D .
4 . P
‘»’/

(meV)

For T > Ty, S (0)=SM(w). For T < Ty,

5 w)=S"(w)+S Y0)+5"o) .
The functions S'”(w)(i =SM, P, A, or D) include the rel-
ative weight of the branches. R(w) is the normalized
resolution function of the spectrometer. The coefficient
B’, in meV~! is the acoustic phonon contribution
(B'=B/A). It will be fixed at all temperatures following
the procedure discussed below. The fitting parameters
are

(i) the amplitude factor 4 in meV ! which depends on
the normalization of the spectra, and

(ii) the parameter C which is independent of tempera-
ture and is expressed in meV>.

To determine the contribution B from the acoustic
phonons, we have used the incoherent-neutron-scattering
results concerning p-terphenyl!® and p-quaterphenyl.’!

= h
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FIG. 5. Numerical calculations of pseudo densities of states (a) and spectral autocorrelation functions (b) of gapless phasons, am-
plitudons, and noncondensed soft modes of biphenyl in phase II. The dotted line represents the total spectral autocorrelation func-

tion. The ordinate axes are in arbitrary units.
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For these two compounds, which present an order-
disorder transition, the low-energy purely inelastic con-
tribution only stems from acoustic phonons. We have
calculated the densities of states for acoustic phonons of
biphenyl (B), of p-terphenyl (P), and of p-quaterphenyl
(Q). We have used the values for the elastic constants
measured by Brillouin scattering?? and applied the Every
method?® to define the sound velocity V in the crystal
studied. The calculation of the density of states G () has
been done by slicing the Brillouin zone into elementary
constant spaces dv=sin@d0d¢ q?dq (spherical coordi-
nates) and summing the number of modes with a frequen-
cy between w and o +dw, with = Vq. The following re-
lation between the constants B is found:
Bp=0.7Bp~0.5B,. Taking into account the normaliza-
tion of the spectra, we have established an average value
B'p=1.8X 10~* meV ™! for biphenyl and fixed it for the
refinement. The analytical treatment of the INS data has
required another simplification of the system. We have
considered a system with a semianisotropic dispersion
(ay =a,7a,), in the reduced Brillouin zone. The satel-
lite points (with the coordinates ¢q,,9,,93, in reduced
units) are assumed to obey the relation
q,=q3=%(8,+8,). The dispersion of the critical modes
has been described by means of the coefficients
a,=a,=a=1 THz? and a,=B=28 Thz?.. The 4
behavior of the dispersion branch along the b* direction
has been taken into account with g,+0.05. The spectral

MIBEMOL
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autocorrelation function can not be analytically calculat-
ed if one considers the real coordinates of the satellite
points in the directions a* and c*. For this reason, we
have defined the fictitious satellite point

9. =(q1+¢3)"?=2"2¢,~0.15 .

In the reciprocal space (a *,c*), the dispersion of the crit-
ical modes is schematically given by the relations: for
9<q;, o.=wi+B(g,—q,) and, for gq=gq;,
w§=w§+aq2+ﬁ(qy—q2)2, o?=wi—ag}. We have as-
sumed that the parabolic law was valid throughout the
Brillouin zone. These calculations are detailed in the Ap-
pendix.

The incoherent-neutron-scattering spectra have been
obtained by summing ten detectors (¢, =102.15° and
bmax—135.55°)  with an average scattering angle
¢=119.7°, i.e.,, an elastic momentum transfer @, of 1.74
A~ Far above the first transition (T >79 K in Fig. 6),
the soft phonons are strongly damped, and the associated
spectral autocorrelation function is very large and practi-
cally energy independent. Using the formulas (4) and (8),
the resulting pseudo density of states follows an apparent
®? law. The parameter C in the formula (13) has been
found at 6.9X 10" meV2 Near the transition, the spec-
tral autocorrelation function gives a quasielastic com-
ponent whose intensity increases (Fig. 6). Our model ac-
counts for this increase of the integral [Eq. (8)] essentially

FIG. 6. Incoherent-neutron-scattering spectra obtained with MIBEMOL at Q,=1.74 A7 from a powder sample of biphenyl.

Full lines are the results of a fit using the formula (13).
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as 3,1/w}, so the fitting value C should be constant.
However, it was experimentally found to slightly decrease
down to 5.8 X 10~ # meV? at T;. This may come from the
simplified calculation which introduces extra modes
(g =qr) which are not negligible close to the transition.
In the incommensurate phase, phase II, this value of C
yields a good description of the experimental data (Fig.
6). At 33 K, the resulting function S;,.(Q,w) contains
the sum of the contributions from the phason, amplitu-
don, and noncondensed soft modes. The very-low-energy
part of the experimental data is expected to behave essen-
tially as SP(w)=~w~ '”? in the whole incommensurate
phase as at Ty, but with a weight of  with respect to the
critical contribution S™(w). Far below T}, at low ener-
gy transfer, the main weight in the associated spectral au-
tocorrelation function results from the phason contribu-
tion (Fig. 5). ‘Restricted by the instrumental resolution of
MIBEMOL (30 GHz), we cannot conclude if the phason
branch has a gap wp or not. However, this information
may also be found by other local techniques, e.g., nuclear
magnetic resonance, which measure the same kind of
spectral autocorrelation function but in a much lower fre-
quency range.

III. REEXAMINATION OF
NUCLEAR-MAGNETIC-RESONANCE RESULTS

Independent information on the numerical values of
the phason gaps can be obtained by spin-lattice relaxation
rates measured by nuclear-magnetic-resonance tech-
niques. The spin-lattice relaxation rate corresponds to a
single point of the spectral autocorrelation function at
the Larmor resonance frequency o, (MHz):

T;'=S(w;) . (14)

General calculations of this function were done several
years ago for incommensurate systems.?* 26 The results
are summarized below.

If the soft phonon frequency is far above the Larmor
frequency, the spin-lattice relaxation rate is also indepen-
dent of the measured frequency:

Tol~LL o0, . (15)

@g
In an incommensurate phase, one considers separately
the different critical excitations. For the amplitudon, far

below the transition, one obtains the same kind of result
as for a soft phonon:

7= LL 4, >0, . (16)
4

The same behavior is also found for the phason branch
with an important gap wp compared to the Larmor fre-
quency:

T;lzzz, wp>>wg . 17
wp
If the phason is gapless or has a small gap,

FI/ZT

T”_IN_w’LT’ I'>>w; and w, <<(Twy)'?. (18)
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A. Spin I >} NMR and NQR

In the literature, the analysis of the experimental data
obtained by quadrupolar NMR (nuclei having spin above
1) and nuclear quadrupolar resonance always predicted
very large phason gaps (typically 50-100 GHz).?’ 3!
This result is extracted from the ratio of the spin-lattice
relaxation rates at different parts of the resonance distri-
bution spectrum. In the “local approximation” and as-
suming fluctuations of small amplitudes, the theory used
shows that there are nuclei at peculiar resonance frequen-
cies where the spin-lattice relaxation rate is only
governed by the phason (75 !) and by the amplitudon
(T;'), respectively. Actually, the experimentally ob-
served evolution of the spin-lattice relaxation rate inside
the incommensurate resonance spectrum is generally
found to be quite different. Indeed, the rate T ' attribut-
ed to the amplitudon process is much bigger than it
should be according to what we know about the
equivalent high-temperature soft mode process. Conse-
quently, as the gap of the phason wp, in this theory, is
directly related to the known gap o 4 of the amplitudon
(wp/® 4,=Tp/T,), all the gaps extracted are strongly
overestimated. Let us first simply remark that the so-
called amplitudon spin-lattice relaxation rate T, is ex-
perimentally found to be much lower than its value calcu-
lated when the soft mode spin-lattice relaxation rate Tgy
is known. Already, inserting the calculated value T 4 in-
stead of the experimental one in the ratio Tp /T , would
yield values for the phason gaps which are at least one or-
der of magnitude lower than found. This makes these
values more consistent with the ones found by neutron
scattering, which also gives an upper value as determined
by its best energy resolution (typically of some 10 GHz).
In biphenyl, as discussed above, the problem is actually
even more complex because of the existence of a noncon-
densed soft branch in phase II. Apart from its weight (2),
this branch is similar to the usual amplitudon branch and
so gives the same frequency spectrum,

2I'T
op

Ty, '~ wp>>op . (19)
These qualitative features are essentially found in our real
quantitative calculations of S(w) for biphenyl discussed
above [Fig. 5(b)]. One clearly sees that, at very low fre-
quencies, the contributions of the amplitudon and the
noncondensed soft mode branches are indeed frequency
independent. Already, at first glance, one clearly sees
that the contribution to S(w) of the noncondensed soft
branch is much more dominant than the one related to
the usual amplitudon. A second important result that is
immediately obvious when looking at these calculations is
that the low-frequency part of the spectral autocorrela-
tion function is strongly dominated by the contribution of
the phason branch. Assuming that the phason is gapless,
this central part behaves as oy '/?, i.e., diverges at w; =0.
As seen before, this comes from the phason modes, at the
satellite positions, whose static susceptibility (mean
square amplitude) diverges. One fundamental question is
then if the assumption found in the literature when
describing quadrupolar NMR and NQR data, called the
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small-fluctuation limit, is valid. Such a limit defines
phasons and amplitudons as associated with small fluc-
tuations of the phase and the amplitude of the static in-
commensurate modulation, implying that peculiar nuclei
could be relaxed separately by these excitations, as men-
tioned above. Nonvalidity of this hypothesis should can-
cel this restriction, suggesting that the spectral autocorre-
lation function S¥(w) of the phason (gapless or with a
small gap) may be effective throughout the resonance
spectrum [Fig. 5(b)] such as the spin-lattice relaxation
rate should have the same frequency dependence. Values
for such frequency dependence of spin-lattice relaxation
rates for quadrupolar nuclei which could confirm this re-
sult®? are very rare in the literature. The problem of the
nonvalidity of the small-fluctuation limit has been dis-
cussed outside the framework of a mean-field theory by
Bruce and Cowley. In this large-phase-fluctuation case,
they introduced symmetric and antisymmetric modes in-
stead of amplitudons and phasons, respectively, and
found a divergent static susceptibility for both excita-
tions.>*> A completely different reason for the low-
frequency dependence of the spin-lattice relaxation rate
in the resonance line has been mentioned by Dolinsek,
Apih, and Blinc.>* They made the hypothesis that the
magnetic dipolar coupling between nuclei transfers the
polarization from phason-relaxed to amplitudon-relaxed
nuclei in a cross-polarization process. Such a hypothesis
requests severe resonance conditions which are usually
not fulfilled and so this explanation cannot be valid in all
cases. Other possible effects, such as resolution broaden-
ing resulting from a random distribution of the electric-
field-gradient (EFG) tensor in the sample due to defects,
may also yield an averaging of the measured spin-lattice
relaxation rate over a rather large frequency range. The
limitation of the “local approximation” for the EFG
modulation may also not be fulfilled. Nuclei can be out
of phase in their displacements and the influence region
for a given EFG modulation should not be reduced to
one nucleus.’>3% At the moment, it is not obvious that
one may extract more information on the value of the
phason gap from NMR for spin I > 1 than for spin I=1,
i.e., from the T{! frequency dependence, as discussed
below.

B. Spin /=1 NMR

The phason gaps in incommensurate systems are often
extracted from the frequency dependence [Eq.(18)] of the
spin-lattice relaxation rate T; !, measured by dipolar
NMR (nuclei having spin I=1). In biphenyl'® and bis(4-
chlorophenyl)sulfone,*’ the authors concluded for the ex-
istence of a gapless phason branch. They made a wrong
use of this theoretical law as the real conditions are
I'>>w; and wp <<(Tw; )/ As in the molecular com-
pounds, the damping is usually very large (some 100
GHz),%3® it may very much affect the pseudodensity of
states (Fig. 3). So, the oy !’? law may be observed down
to much lower frequencies than the gap wp. Then no
direct determination of this gap can be done. To get an
estimation of this gap in biphenyl at 35 K, we performed
quantitative calculations of the spectral autocorrelation
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FIG. 7. Analytical calculation of the logarithm to base 10 of
the spin-lattice relaxation T[! of the phason branch, in bi-
phenyl, at T=35 K. The ordinate axes are in arbitrary units.

function associated with the phason contribution consid-
ering the damping (200 GHz) and different values of the
gap (Fig. 7). We examined the oy 1/ law for a gapless
phason branch but also for a 100 MHz phason gap. A
gap of about 0.5 GHz induces an o !/? variation down to
a resonance frequency of about 0.5 MHz. In other
words, there may be three orders of magnitude between
the effective value of the gap and the frequency value for
which the o !”? law is not followed. Comparison of our
calculated T ! frequency dependence with experimental
results!® (from 58 MHz to 10 KHz) agrees with a gap for
the phason of about 100 MHz.

IV. CONCLUSION

We have analyzed the problem of collective charac-
teristic excitations in incommensurate structures by a lo-
cal approach. Incoherent-neutron-scattering experiments
have allowed the measurement of the whole spectral au-
tocorrelation function near the displacive incommensu-
rate transition of biphenyl. In the high-temperature
phase, on approaching T7, the soft phonon branch gives
an extra contribution which is illustrated by a very nar-
row quasielastic line. In the incommensurate phase, for a
gapless phason branch, the low-frequency part of this
function is described by the w; /% law. Such a frequency
behavior has usually been applied for dipolar NMR down
to very low frequencies (kHz), to conclude that the
phason gap is below these values. We show why this con-
clusion is inaccurate. Only a maximum value for the
phason gap can be given based on the value of the damp-
ing of the modes. Taking into account the damping in bi-
phenyl, we found a value of the gap around 100 MHz.
We have studied the origin of the divergence of the spec-
tral autocorrelation function at very low frequencies.
The contribution from the phason branch is very much
predominant and it comes from modes very close to the
satellite points, whose mean square amplitude diverges
(gapless phason) or at least becomes very large (small
phason gap). This brings us to the point that in reso-
nance spectra, at peculiar frequencies, the amplitudon is
never efficient to relax nuclei. So no information on the
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real value of the phason gap should be extract from any
spin-relaxation rate. The nonvalidity of the limit of small
fluctuations was mentioned a long time ago by Bruce and
Cowley,*® who demonstrated that the static susceptibili-
ties for the symmetric and antisymmetric modes diverge.
Both excitations could be efficient in any resonance pro-
cess. Further investigations should be done now in order
to know if such a situation is really present in resonance
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spectroscopy. Finally, the existence of a central peak? in
the collective spectral function may also complicate the
interpretation of NMR results.
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APPENDIX

In this Appendix, we present an analytical expression of the spectral autocorrelation function. To be able to calculate

such a function, we have assumed an isotropic dispersion of the collective modes in the reciprocal plane (q,,q, ).
a g ta,q+a,ql, a=a,

frequency is described by the parabolic law, cog =i+

0<g. <
- qy - qym *
The spectral autocorrelation function becomes

The
=a,, and B=a,, when 0=¢q =g,, and

1

s =2 () [ [ 1

0’ —wi—aq? —qu —iTw

- dgdg, .
0’ —wi—aq —Bq2+1F 449 %4

Changing the variables, we determine the intermediate function K (u,v):

Kiun=2 ffl N

1—v?—u’—ia 1—v?—u?+ia
K(u,v)=

with u =B'%q, /|0’ —wj|'/? and v=a

2

2X

vdvdu ,

7f0u[ln(l—-v2—u2+ia )—In(1—v?—u?—ia?))du ,

12 /|0®*— 3|2, To calculate K (u,v), we use the complex notation

X2+(Y+1)?

a
—2x |87 +arctan
—u2—p?

K(u,v)=2u arctan

where §=0 if arctan( - - - )=0, 6=1if arctan( - * -

=[(1-—v2)2+a4]1/4cosg , ¥

_Xz_ Y2

) <0, and

+yIn

X2+ (y—1)2"’

:[(1—v2)2+a4]1/4sing ,

X= “ sing Y= U cosg-
[(1_v2)2+a4]1/4 2 4 [(1_v2)2+a4]1/4 2 4
cosgz 1 {(1—v2)+[a4+(1—v2)2]1/2} 172 sinf = 1 {—(l—v2)+[a4+(1—v2)2]1/2}1/2
2 i~ [a*+(1—v?)]'* ’ 2 2l [a*+(1—v?)]'* ’
with u,, =B'"g,, /|0’ —w}|'/? and v,, =a'’q,, / |0*—wj| /%
Finally, we obtain
Sa“is(w)=ﬁn(w)lwz—w(%I'/z[K(... 1,0, )—K .. y(u,,0)],
2
Kw>w0(u,v)=2u arctan I [zero for v =0 (¢ =0)]
1/2
[(l_v2)2+a4]1/2+(1_v2) 21/2u{[(1—v2)2+a4]1/2—(1——v2)}1/2
-2 8w+ arctan YN, 3
2 [(1—=v*)*"+a*]""~u
1/2
LA =v P 4af 11— wl+[(1—v2)2+a*) 24212 ([(1—v2P+a*]V2+(1—v?)} 12
2 u2+[(1_v2)2+a4]1/2_21/2u{[(1_U2)2+a4]1/2+(1__v2)}1/2 ’
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2

K, ., (uv)=—2u arctan—2~a—2~ (zero for v =0)
0 u t+v°+1
172
_, [0 +e?)+a 2= (14+0?) S+ arctan 24 L+ +a*] 2+ (1407} 172
2 [(14v?)2+a*]2—u?
[(A+v®)?+a*] 2+ +0?) | u 2+[(1+ 22+a4]1/2+21/2u{[(1+u2)2+a4]1/2—(1+u2)}1/2
2 2_+_[ +a ]1/2_21/2u{[(1+v2)2+a4]1/2_(1+vl)}l/2 *
For o=,
Sanis(a)o)-:—‘a/‘; n(coo)[ (qym,q,,,) Kw=w0(qym,0)] ,
To
K, -, (qy,q)I—Blnqyarctan—% (zero for ¢ =0)
0 aq-+pg,

172
B (a2q4+l"2a)%)1/2—aq2 21/2,31/2 [ q4+1"2a)(2))1/2+aq2]1/2
2 arctan [ 4+F2w%]1/2—-ﬁq2
y
(a2q4+I‘2a)(2))1/2+aq2 1/ Bq2+[ 4+F2 2]1/2+21/231/2q [(a 4+F2a)%)1/2—aq2]1/2
+ 2 In qu2+[ 4+I"2 (2)]1/2__21/231/2 y[ 4+F2w%)1/2—aq2]1/2 :

We improve this analytical description for a system possessing satellite points g, with the coordinates (g,,4,,95). But
the components g, and g, must obey the relation ¢, =g; and give a new integral which cannot be analytically calculat-
ed. It was essential to find another model that can be used to fit the incoherent-neutron-scattering data of biphenyl.
Therefore we schematically describe the dispersion of modes in the plane (g, ,q,).

For ¢ <gq,, wfl—a)o—i—[)’(qy )2,

For ¢ >2q;, o 2=w?+aqg?+p( qy—q2)2 ,

9. =(q1+¢3)'?=217q;, wi=wj—aqf .

The spectral autocorrelation function is written

4 qu 4y — 42 n(w)wlq dq dg, f fqy,,, n(w)olq dq dg,
T
KL a)z—w(z)—/}qy +(Te)? @ Y 79 (0®—w?—aq —qu 24+ (IF'w)?
=2mgL[S (@), —g, 8" (@)g, 1+S @)y o o FSN @)y o ST @)y, 4 g =S @),
oo hlw) 1 1 1
S"@)= B |2 —ad\2 2 (1+a4)1/21("') ’
L)l 72 172
a= (2 w)z i, and u= zB ;]1/2 :
|® — o |&® — )
_1+a+ay2 |7 2ty (14211
Lys 0, = — 5 dm+arctan (I+a" a2
| =1ttty /Ziln ul+(1+a"'"2 422y, [(14+a*)"2+1]'2
2 2wl +(1+a*V2 =22, [(1+a%)' 2 +1]12

&6=1ifarctan( - -- )<0,8=0if arctan( - - - )=>0,

—1+(1+a92 | 2172, [(1+a*)1/241]172
Iyco,= - 5 87 +arctan (U+a"/—u2
+ 1+(1+a4)1/2 172 11 ufr-l+(1+a4)1/2+21/2um[(1+a4)l/2_1]1/2
_— —In .
2 2 u,%,+(1+a4)1/2-—21/2um[(1+a4)1/2—1]1/2
For w=w,
5 _ nlwy) 1 St 212q12¢ (Twy)!’? +l aq? +Toy+2'%al?q,, (Fwy)/?
g(@0)= 2212 (aLan)/2 |°7 Tarctan—— 3 2 M 0a? +To—21724172 172
x 0 0 dm aq,, @o ay qm(rmo)
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