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Supersolid phases in underdamped Josephson arrays: Quantum Monte Carlo simulations
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We carry out a quantum Monte Carlo study of Josephson arrays at temperature T=0 in the presence of an

offset voltage between array and substrate. With diagonal and nearest-neighbor charge coupling, we find two

types of insulating lobes with different types of charge order, and two types of superconducting regions. One
is a supersolid with coexisting long-range phase coherence and checkerboard charge order. The supersolid

phase is robust at half-filling. With next-nearest-neighbor coupling, there are two types of supersolid phase, one
with checkerboard and one with striped charge order. Our phase diagram agrees with mean-field theory and

with quantum Monte Carlo results of van Otterlo et al. in comparable regions of parameter space, but differs
in detail from that of a Bose-Hubbard model with nearest-neighbor charging energies.

The "supersolid phase" (Refs. 1—6) is a possible state of
Bose system in which two types of long-range order, denoted
"diagonal" and "off-diagonal, " coexist. Typically, the diag-
onal order is a charge-density wave or other type of long-
range charge order, while the off-diagonal order corresponds
to a superconducting or superft. uid phase. Such a phase can
be realized, in principle, by an underdamped Josephson array
in the presence of an offset voltage. In this case, the "diag-
onal" phase is a charge ordered state with a checkerboard
pattern of Cooper pairs, while the "off-diagonal" state is a
phase-coherent superconducting state. This system corre-
sponds to a collection of interacting "soft-core" bosons, in

the sense that multiple Cooper pairs are allowed to occupy a
given grain. Another system thought to be describable in
terms of a soft-core Bose Hamiltonian is He adsorbed on
the walls of a porous medium. In this case, the phase-
coherent superfluid phase corresponds to off-diagonal order,
while diagonal order is related to the local density of bosons,
i.e., of He atoms.

Recently, several groups have debated the existence of a
supersolid phase in specific model Hamiltonians. For ex-
ample, we have previously analyzed a soft-core Bose Hamil-
tonian, using a mean-field approximation, and at tempera-
ture T=O found a supersolid phase over a broad range of
parameters. The predicted range includes the so-called half-
filled case (half-integer number of bosons per grain). van
Otterlo and Wagenblast have studied the same model using
a quantum Monte Carlo (QMC) method. They found a nar-
rower supersolid region, which still includes the half-integer
case. Batrouni et al. have studied a slightly different model
at various Bose filling factors, and found a supersolid phase
only at non-half-integer filling.

In this paper we show that these discrepancies are more
apparent than real. We first show that the two models are
actually inequivalent, having different commutation rela-
tions. Then, using QMC techniques, we show that the super-
solid phase at half-filling is not just barely stable, but is, in
fact, quite robust. We also show that our model permits mul-
tiple occupancy of bosons on a given site, which may help
explain the different phase diagrams of the different models.
Finally, we study other types of charge order, such as a

"striped" structure, which appears in our simulations when
next-nearest-neighbor interactions are included.

We consider the model Hamiltonian"'

1
H= —g U;, (n; —n)(n —n)+ g t(1 —cos(@,—P, )], (1)

LJ ()
where the first summation runs over all grains i and j. The
first term represents the Coulomb interaction between
charges on grains i and j, while the second denotes the Jo-
sephson coupling energy between nearest-neighboring
grains. The constant n is proportional to the offset voltage of
the array with respect to a common ground potential and
serves as a chemical potential for Cooper pair injection. The
pair number n; on grain i and the phase of the superconduct-
ing order parameter @; are canonically conjugate with com-
mutation relations [n;, rb ]=—i8, .

The Bose-Hubbard Hamiltonian is similar to Eq. (1):

1 1
H= —g U;jn;n, —pg n; ——g (btb, +b,bt), (2)

ij i (ij)

where b~ creates a soft-core boson at site i. In this model,
the number operator n; = b~b;, where b; and b~ satisfy the
usual Bose commutation relations: [b;,bt]=8;, . Another
similar Hamiltonian is the spin-1/2 XXZ Heisenberg model,

1 1H= —g U,,s', s,' —hg s', ——g (s, s, +s', s,'), (3)
EJ L '()

where S satisfies the usual commutation relations for spin
operators and h is an externally applied magnetic field. De-
spite a superficial similarity, however, both these models ac-
tually are quite distinct from Eq. (1). Specifically, the X and
Y components of ith "spin" in our model are represented by
cosrb; and sin@; and thus commute, whereas in both the
Bose-Hubbard and spin-1/2 XXZ models these spin compo-
nents do not commute. Furthermore, in the spin-1/2 XXZ
system, the z component of the spin may take only two val-
ues, which limits the number of charges on each grain to
either 0 or 1. (Hence this model is said to describe "hard-
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core bosons. ") The Bose-Hubbard Hamiltonian also restricts
the number of particles on each grain, allowing only positive
values. By contrast, in Eq. (1) the charge number can have
any (positive or negative) integer value.

These distinctions may be particularly relevant at half-
integer filling. At this filling, neither the Bose-Hubbard nor
the spin-1/2 XXZ model can have a supersolid phase: once a
checkerboard charge structure has formed, superAuid cannot
flow without creating charges of 2 or —1 on some of the
sites. By contrast, the model of Eq. (1) permits multiple oc-
cupancy, so that a supercurrent is allowed even in the pres-
ence of charge structure.

We have studied (1) at T= 0 using the QMC technique of
Ref. 8 to extend the calculations of Ref. 5 to a broader pa-
rameter regime. The partition function corresponding to (1)
is written Z= Tre P, where P=1/kttT. The exponential is
then broken up into a product of N terms,

1.2

0.0~

PH —PH/N~ —PH/N~ —PH/N (4)

and an identity matrix is inserted between each exponential
factor. To avoid a complex action, arising from the term lin-
ear in n;, the identity matrix is written in a basis diagonal in
the n s The o. ff-diagonal terms (i.e., those originating from
the Josephson coupling) are treated in the Villain
approximation in which terms of the form exp( —etcosAP)
are replaced by X „e' ~exp( —m /2et). The partition
function then becomes Z= Tr exp( —S), where

0.4

0.0

(c)

0.5 (U

1
S= —g U;, (n;,—n)(n, ,—n) + g 1J;,1

.5

and e= P/N, . The variables (J', „JY„n;,) can be treated as
an integer-valued current field, because of the constraint im-
posed by the continuity equation A~.J+5, n=0, where
A~ and 5, denote discrete gradients in the two spatial and
one temporal directions. This procedure transforms an origi-
nally d-dimensional quantum problem into a (d + 1)—
dimensional classical action (here d =2).

Typically, we study an N XN XN, lattice with
N=N, = 6, 8, or 10, and periodic boundary conditions in all
three directions. Our initial configuration has an average of
n charges per site. We use =10 passes through the entire
lattice for equilibration and evaluate averages using an
additional 3X10 passes. The sample is equilibrated by
slowly annealing from a temperature of kpT=1.7UO to
kpT= 0.05Uo where the equilibrium averages are taken.

If only the diagonal and nearest-neighbor charging ener-
gies (denoted 2UO and U, ) are nonvanishing, mean-field
theory (MFT) for model (1) (Ref. 4) gives rise to four dif-
ferent types of order: a superconducting phase with no
charge order at large values of the Josephson coupling; two
Mott-insulating phases at small values of t, one with charge
order (centered around half-integer n) and one with no
charge order; and finally, a supersolid phase in which the
superconducting phase order coexists with charge order, also
centered around half-integer n. As Ui /Uo increases, the two
lobes centered at n=1/2 grow. The main features of the
phase diagram have been verified using Monte Carlo
simulations. However, the stability region for the supersolid
phase is reduced in the simulation, relative to the mean-field
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calculation. In order to confirm that this phase is indeed ro-
bust over a broad range of parameters, we have used the
QMC method at several additional values of these param-
eters.

In Fig. 1(a), we plot the sup erfluid density

(1X;,J, ,1
/(N N )) and the structure factor S

—= (X; (n; —n)(nj —n)( —1)' j/(N N,)) at n = 1/2 as a
function of the Josephson coupling t for Uo = 1 and

U& = 0.4. These plots indicate that there is a supersolid phase
at half-filling, as predicted by MFT, but that, in agree-
ment with Ref. 5, its width is smaller than MFT. To
show the influence of multiple occupancy, we have also in-
cluded as an inset to this plot an order parameter a which
"measures" the possibility of occupancy other than 0 or 1:

FIG. 1. Structure factor S and superfluid density p as a func-
tion of t/Uo for (a) Ut/UO=0. 4, n= 1/2; (b) Ui/Up = 0.45,
n=1/2; and (c) U, /UO=0. 4, n=0.4; nearest-neighbor coupling
only. Also shown in the insets are the multiple occupancy order
parameter a = (X;n, —n;).
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FIG. 2. Scaling plots of Np and N ~'5 versus t/Up at

Ur /Up=0. 4, n =0.5, and N=6, 8, and 10, assuming P=0.21, and
v=0.54. Estimated critical points for onset of superconductivity
and charge order are indicated by vertical arrows.

n=(X;(n, —n;)). a is strictly zero if n; is 0 or 1, but is

greater than zero otherwise. We find that this order parameter
remains zero in the nonsuperconducting region. In the super-
conducting region a becomes finite. By contrast, n =—0 for
the spin-1/2 XXZ model and n=0 in the charge-ordered
state at n = 1/2 of the Bose-Hubbard model.

Figure 1(b) shows the results for Ui /Up = 0.45 but still
at half-integer filling. The "supersolid" region, where both
the checkerboard charge order and superconducting phase
coherence coexist, is much wider than in Fig. 1(a). Indeed,
we have found that this region becomes even wider as
U, /Up approaches the limiting value of 0.5. Above 0.5, the
Hamiltonian (1) is unbounded below (for a square lattice).
By contrast, in both the XXZ and the Bose-Hubbard model,
there appears to be no supersolid region at half-filling for any
value of the parameters. We attribute the difference simply to
the fact that these models have different commutation rela-
tions from our model.

In Fig. 1(c), we show a similar plot but at Ui/Up=0. 4,
and n =0.4, i.e., away from half-filling. In this case, the su-
persolid region is shifted to smaller t/Up, and may also be
narrower than at half-filling. This possible narrowing differs
from the results of van Otterlo and Wagenblast's results, but
is consistent with our mean-field results.

To pinpoint the phase transitions in Fig. 1(a), we have
done finite-size scaling for N XN XN, lattices with N =6, 8,
and 10, and N, =N' and the critical exponent z=1, as ex-
pected at half-filling. To accomplish the scaling, we use the
relations p=N 'p(BN"",N, /N), where p is a universal
scaling function, v is the critical exponent for the coherence
length, and 8—= (t t,)/t, is the distance to—the transition;
and S =N /t"S(BN"",N, /N), where P is the order-
parameter exponent. Superconductivity sets in at the com-
rnon crossing point of all the plots of Np for different lattice
sizes. Similarly, the critical point for the onset of charge
order is the point where the plots of N ~ '5 all cross.
Such plots are shown in Fig. 2 for N=N =6, 8, and 10,
using the expected values p=0.21 and v=0.54. There is a
clear critical point for superconductivity near t/Up ——0.13,
and a nearly equally clear one for charge order near 0.28.

FIG. 3. Plot of n = (2;n, —n;) as a function of U, /Up for
t/Up=0. 35 and n=0.5.
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FIG. 4. Structure factors S„andSp, and superfluid density

p as a function of U2/Up for UI/Up = 0.45 t/Up = 0.19, and
n =0.5,

Thus a broad supersolid region of coexisting charge and su-

perAuid order exists at n =0.5 for this range of parameters.
It is of interest to follow the behavior of n as the param-

eters n and Ui/Up are varied. For fixed n, as Ui/Up in-
creases from 0.4 to 0.45, n doubles in value. This behavior
can be clearly seen in Fig. 3. Evidently the larger the super-
solid region, the larger n becomes. In addition, for fixed
Ui /Up a increases as n varies from 0.5 (half-filling) to 0.4.
This behavior arises because the energy cost for having
—1 Cooper pairs on any given grain is smaller for n=0.4
than for n =0.5. Likewise, as Ui /Up increase, the energy
cost of having a number of Cooper pairs other than 0 or 1
decreases, allowing n to increase.

Finally, we have also considered the case of nonzero next-
nearest neighbor cou-pling Uz (cf. Fig. 4). In this case, there
are two different types of possible charge order, denoted
"checkerboard" and "striped" order. Checkerboard order
is signaled by a nonzero Fourier component 5 while
striped order corresponds to nonzero So or S o. Such order
has also been considered by Batrouni et al. for the Bose-
Hubbard model. In Fig. 4 we have plotted both Fourier com-
ponents versus Uz /U„at n = 0.5, Ui /Up = 0.45, and
t/Up=0. 19. Clearly either type of order can coexist with
superconductivity in a supersolid phase at n=1/2, but not
simultaneously. There is a change from checkerboard to
striped order near Uz/Up= 0.15. Over the entire region, the
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superfluid density remains nearly independent of U2/Up.
The two types of supersolid are separated by a narrow region
which is strictly superfluid, and not either type of supersolid.

To summarize, using QMC simulations, we have con-
firmed our earlier mean-field results that a simple model of
soft-core bosons has a supersolid phase in a narrow region of
the phase diagram, at half-integer boson filling, and in a
comparable region at other than half-filling. Our results, ob-
tained using a slightly different Monte Carlo algorithm,
agree with those of Ref. 5 in corresponding regions of the
phase diagram. We have also shown that the supersolid phase
at half-filling is very robust: as the variable Ut /Uo increases,
the supersolid region covers an ever broader part of the phase
diagram. Finally, we have studied the effects of next-nearest-
neighbor charge interactions. As this coupling constant in-
creases, a striped charge order sets in. We find that a super-
solid phase can be produced with striped order, analogous to
the checkerboard ordered supersolid arising from nearest-

neighbor coupling. Our results differ somewhat from a recent
study of a Bose-Hubbard model, because of differences in
commutation relations and the possibility of multiple charge
occupancy.

Although our model is intended to describe underdamped
Josephson arrays, our results might be relevant to many sys-
tems having two competing types of order in noncommuting
variables. Thus they may conceivably be relevant to systems
in which superconductivity competes with antiferromag-
netism, or more exotic types of order.
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