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We have addressed the problem of dynamical localization in a one-dimensional system with a
periodic potential incommensurate with the crystal lattice under the action of a dc electric field.
For the chosen potential there exists a mobility edge, that is, a critical value of the ratio between
the strength of potential to the half bandwidth, n = €0/2V, which classifies the nature of the wave
functions. We show that the effect of the field is to shift the mobility edge towards the delocalized
region. We show that the field influence on localization is much stronger than that due to the
disorder. It is also shown that when a resonance condition is reached the wave packet oscillates
with a characteristic frequency in the terahertz range for superlattices; such an effect can be used
to generate electromagnetic radiation of this frequency range.

I. INTRODUCTION

In a previous work! we have addressed the problem
of the dynamical localization of carriers in a superlattice
(SL) with an impurity under the action of a dc electric
field. We have discussed the interplay between the im-
purity potential and the electric field intensity. For this
particular case of disorder we have shown that under cer-
tain circumstances a resonance condition that results in
strong oscillations of the wave packet can be reached.
In fact when the field intensity £ and impurity € sat-
isfy the relation eEd = € the oscillation takes place be-
tween the impurity site and one of its nearest neighbors
with a period 7 = %/2V where 2V is the half-bandwidth.
This would indicate a very interesting application to SL’s,
since by varying the field intensity we can satisfy the res-
onance condition which would in turn give the value of
the impurity potential.

In the present work we have undertaken the problem
of a different case of disorder, namely, a quasiperiodic
potential whose Hamiltonian along the single-band tight-
binding model is

Hy = Z €g cos (2mon) +V Z ctentt, (1)
n n
where o = \/5;1 is the golden mean.

Since o is irrational, the Hamiltonian Hj, is incom-
mensurate with the underlying crystal lattice becoming
quasiperiodic at large Fibonacci numbers.

We have taken the size of the lattice such as to make
the potential as periodic as possible. The nature of the
eigenfunctions of Hy can be characterized by a single pa-
rameter = €o/2V. It is well know? that the Hamilto-
nian of Eq. (1) has a spectrum that develops many gaps
which become wider and wider as € increases, showing
a highly fragmented band structure. At the same time it
presents a mobility edge; that is, for n < 1 all the eigen-
functions are extended (nondecaying), while for n > 1 the
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eigenfunctions are localized. This has to be contrasted to
a random one-dimensional (1D) system for which almost
all states are localized. As the mobility edge . = 1 is
approached from below the eigenfunctions show strong
fluctuations characterized by a length ¢, beyond which
the eigenfunctions look uniform. In the localized regime,
on the other hand, we can define an average decay length
lg. Both lengths blow up at the mobility edge.

II. FIELD-DRIVEN DIFFUSION

As was previously said our interest is the description
of the diffusion of carriers via the time evolution of the
propagators when an electric field is acting upon the sys-
tem. In this case the total Hamiltonian is

H=H,+ Z eEdn cILcn. (2)

The Wannier propagator amplitudes satisfy the following
equation:

. d
Zh%fn:V(fn—l +fn+1)+(6n_eEd n’) fnv (3)
where the on-site energies ¢, are
€, = €g cos (2mon). (4)

For the case of a finite lattice of size IV, the Schrédinger
equation (3) can be put in matricial form:

d
h—f = Mf 5
in e~ mr, %)
where M is the N X N dynamical matrix and the vector
f is formed from the on-site Wannier amplitudes. We
have developed a scheme to solve Eq. (5) based on the
stationary character of the Hamiltonian.! Starting with
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the initial condition f (¢ = 0), we put the solution as

f (t) = Rt exp (—iDt/K) R £ (0), (6)

where D is the diagonal form of the dynamical matrix
M = R'DR. We have checked the normalization of
the wave function after every time step. After obtain-
ing the amplitude f (¢), we can evaluate the mean-square
displacement

(n?) = 3 | faln?, (7)

which allows us to have a clear view of the localization
problem.

We have studied the influence on the solutions of (i) the
initial condition, (ii) the potential strength €, and (iii)
the field intensity E. Energies were measured in units of
the bandwidth 4V. To be specific we have chosen a lat-
tice parameter d = 100 A and the total minibandwidth to
be 50 meV. We have considered the way a carrier diffuses
when injected in an otherwise empty band, and have fol-
lowed along the lines presented in Anderson’s classical
work.® We say that if we start with a well-localized state
we can conclude that diffusion has occurred if at ¢ — oo
the Wannier amplitude on the given site goes to zero. If,
on the contrary, the amplitude at the site remains finite

lg

Propagator Probability
o
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while decreasing rapidly with distance, we say we have a
localized state. Since we are dealing with a finite lattice
the amplitude for large times goes as 1/N (that is, the
limit N — oo goes to zero). The difference between unity
and this finite value is a measure of the spreading of the
wave packet to neighboring sites.

We have considered lattices of different sizes in order to
analyze the influence of the boundary. The effect of the
electric field is to produce oscillations around the start-
ing point so that for even moderate fields (10% V/cm) the
carrier never gets a chance to reach the sample bound-
aries. The stronger the field is the more pronounced
the localization becomes. In conclusion we have consid-
ered lattices of 111 sites for which the solutions of the
Schrédinger equation are size independent.

III. RESULTS AND DISCUSSION
A. Zero field

As a test we have taken the field-free case imposing
periodic boundary conditions | 1) =| N +1). In this case
we have considered the time evolution of the propagators
for two extreme initial conditions, namely, the perfectly
localized state on site M, f, (0) = 6, am, and the com-
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FIG. 1. We show the propagator probability as a function of time and lattice sites for the field-free case and potential
strength €0 = 0.2 | 4V |. The initial condition was f, (0) = 6,,0. We show also the mean-square displacement and the on-site
energy levels of Eq. (4). We notice the diffusion of the particle since we are below the mobility edge.
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FIG. 2. The same as Fig. 1 but for ¢ = 0.6 | 4V |. In this case the particle localizes around the origin. Notice the small

values of the MSD.

pletely delocalized case, | f, (0) |°>= 1/N, where N is the
number of sites considered in our calculation.

It can be clearly seen in Fig. 1 that for values of the
impurity potential less than the critical value 2V, the
particle that starts in a well-localized state propagates
through the lattice, while for ¢g = 0.2, the mean square
displacement shows a ballistic behavior: (n2?) o t2. For
the impurity potential ¢o = 0.6 (above the critical value
0.5) the particle localization is evident around the start-
ing position (see Fig. 2).

A more complex pattern is obtained when the ini-
tial state considered was the completely delocalized one:
|fn(0)]?2 = 1/N. In this case we have taken €, = 0.2.
As time goes we notice probability concentrations on the
Fibonacci sites, i.e., sites for which n = 3,5,8,.... The
reason for that is that these sites are almost degenerate
with the origin due to the form of the on-site energies
[see Eq. (4)]. This produces depletion on the others sites,
since hopping between degenerate sites is preferred.

B. Interacting case

We have considered different intensities of the dc field
and looked at the time evolution of the wave packet. As
is well known, the effect of the field on a carrier in a

periodic potential is to produce oscillations [Block oscil-
lations (BO)],%!* thus inhibiting diffusion in a lattice,
an effect called dynamical localization. These oscillations
are almost impossible to detect in bulk samples but, with
the manufacturing of SL’s, it was possible the detection
of BO’s through the emission of electromagnetic radia-
tion in the terahertz range.!* In the present case of a
quasiperiodic potential, where we can define a mobility
edge, the presence of the field should alter its position to-
wards the delocalized states as we shall show. This situ-
ation was encountered in the case of electrons interacting
with the lattice phonons. In fact, the work by Economou
et al.1® showed the formation of localized polarons in the
vicinity of the mobility edge shifting it into the region
of extended states. In this work, we have assumed suffi-
ciently low temperatures as to neglect interaction of the
carrier with the lattice phonons. The inclusion of this
effect is currently under way.

To study the effect of the field on the assumed
quasiperiodic potential we have taken values of the
strength potential ¢y well below the mobility edge and
verified that small field intensities modify strongly the
way a packet propagates in the lattice. In fact, start-
ing with a well localized state at ¢ = 0, we see that the
wave packet remains partially localized, and at the same
time it “appears” at other lattice sites with decreasing
amplitudes as we go away from the origin.
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1. Weak fields

We shall start the discussion considering first the case
of very moderate fields intensities (10* V/cm) and differ-
ent values of the disorder strength, going from the very
delocalized region towards the mobility edge for Hp.

a. E=25x10% V/cm, ¢, = 0.1 | 4V | (weak field
and disorder). In this case 7 = 0.2 which means that we
are far from the mobility edge. As it can be seen in Fig.
3, the particle starts to diffuse and due to the presence
of the field it is more likely to be found on the left. We
notice small hills as time goes on because at certain po-
sitions two on-site nearest neighbor energies are almost
degenerate with the result that the packet is reinforced
at such positions. The mean square displacement (MSD)
shows a chaotic behavior at the same time that the par-
ticle is confined to a definite region of the lattice in spite
of the fact that we are in the delocalized region of the
spectrum of Hy.

b. E=2.5x10%V/cm, ¢ = 0.4 | 4V |. In this case, we
notice in Fig. 4 the presence of three well-distinct hills,
namely, around sites O (where the packet starts), -3 and
-10. If we consider the on-site energy levels shown in the
figure, we can realize that site -3 is almost degenerate
with the origin so that hopping between these sites is
enhanced. As for site -10 it is almost degenerate with
site =11 so that when the packet reaches these sites it

—
=

FPropagalor Frobalbirlity
=
o

0
v

reinforces itself there. The MSD shows an oscillating
pattern at the same time it presents smaller values than
in the previous case (Sec. IIIB1a).

c. E=25x10%V/em, ¢ = 0.5 |4V |. By increas-
ing the disorder strength up the critical value (n = 1)
we see, in Fig. 5, two well-distinct hills, one at the ori-
gin and other at site -3. We can understand this since
both on-site energies are degenerate as in the previous
case but now the presence of large barriers around site
-3 strongly inhibits hopping. The MSD shows in this
case a quasiperiodic movement of the wave packet but
with much shorter quasiperiod than in the previous case.
What we have is a clear oscillation between the origin
and site -3.

2. Moderate fields

a. E = 10* V/cm, ¢ = 0.115 | 4V |. We notice
in Fig. 6 that by increasing the field intensity but with
a still weak disorder the packet localizes clearly around
the starting position. If we compare the MSD for the
present values with the corresponding to the case in Sec.
IIIB1a (Fig. 3) we notice a drastic reduction which tells
us that the field effect is predominant in determining the
diffusion properties.

b. E = 10* V/cm, ¢ = 0.438 | 4V |. For this par-
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FIG. 3. The same as Fig. 1 but for the electric field intensity E = 2.5 kV /cm and €0 = 0.1 | 4V |. Notice that in this case
we are far from the mobility edge but, in spite of this, the MSD shows the confinement of the particle in a definite region.
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0.5 | 4V |. This corresponds to the critical value n = 1. We see a

FIG. 5. The same as Fig. 4 for E = 2.5 kV/cm and €
clear oscillation between sites 0 and -3, with a period shorter than in Fig. 4 as well as smaller values of the MSD.
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FIG. 6. The same as Fig. 4 for E = 10 kV/cm and € = 0.115 | 4V |. We notice that even for this small potential strength
the localization is severely enhanced with respect to the case shown in Fig. 3. The reason for that is the increasing of the field

intensity.

ticular value, the on-site energies corresponding to the
origin and site -2 are almost degenerate which results
in a strong localization, the particle is almost oscillating
between sites 0 and -2.

3. High fields

Most interesting to discuss for its applications is the
case of strong fields. Taking into account the on-site en-
ergies given by Eq. (4) the resonance condition between
sites 0 and n can be written

[eo/eEd], =n/[1 — cos(2mon)], (8)

which for the particular case of site -1 can be written as
leo/eEd]_, =1/ [cos (2mo) — 1]. (9)

For strong fields we can satisfy the resonance condition
[Eq. (9)]between the nearest neighbors (NN) in the lat-
tice thus given place to strong oscillations with the short-
est period: 7 = 27 (A/2V). This can be seen from Eq.
(3) for the Wannier amplitudes. In fact, by neglecting the
amplitudes other than f, and f; (approximation valid for
strong fields) we obtain a pair of equations that couples
both amplitudes with a perfectly periodic solution of pre-
cisely that period. Such oscillation between NN sites is
clearly seen in Fig. 7(a) where we have plotted the prop-

agators for sites 0 and -1 for ¢¢ = 1.15 | 4V |. In Fig.
7(b) we notice the almost complete degeneracy between
these sites. It is worth noticing that, for strong fields,
the barriers between sites are big; consequently hopping
to sites other than the degenerate ones is severely inhib-
ited. In Fig. 7(c) we present the corresponding MSD
which shows an almost perfect periodic motion of period
t =2m (R/2V).

We can compare this case with the one shown in Fig.
5 where we also have an oscillatory motion but with a
larger period at the same time the MSD never vanishes.
The importance of considering high field values is due to
the fact that the oscillatory motion having the shortest
period makes its detection simpler.

IV. CONCLUSIONS

A very interesting effect occurs when, by varying the
field, we make a particular on-site energy become degen-
erate with the initial site energy. If the corresponding
sites are close to each other (strong field case) we have
a resonance effect which causes oscillations of the wave
packet. The closer the sites corresponding to the degen-
erate level the stronger the oscillation and the shorter its
quasiperiod, a picture that tells us that the response of
the system to the external field is controlled by the short
range configuration. In the case of NN resonance, the
system behaves as a double quantum well as if ignoring
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FIG. 7. (a) We show the propagator probabilities for sites 0 and -1 for E = 10° V/cm and € = 1.15 | 4V | . (b) We show
the on-site energy levels and can see the degeneracy between the NN sites 0 and -1. (c) The mean-square displacement shows
clearly a strong oscillation with the period 2w (5/2V) . Notice that the field and potential values were chosen in order to satisfy

Eq. (9).

the rest of the lattice structure.

When far from resonance the pattern is very com-
plex. As a matter of fact, there is always a pair of sites
(quasi)degenerate but what we mean here by “far from
resonance” is when these sites are far apart from each
other. In this case, we see that the wave propagates in
a very special way; namely, if the field and potential are
not very strong, the particle is partially at the origin and
meanwhile it prefers sites with close energies such that
the wave packet gets reinforced in this neighborhood. For
the particular case of disorder assumed in our work, the
Fibonacci sites are the preferred ones in the field-free
case. Clearly, when the strength of the disorder is large,
the packet localizes itself and what the field does is to
enhance localization. Beyond a definite neighborhood,
a localized electron does not see the other sites in the
crystal.

With regard to the limiting time taken is the calcu-
lation we went well beyond 800%/2V shown in the fig-
ures. For such large times we got the same resulting
patterns which allow us to keep our conclusions for the
limit ¢t — oo.

Our main conclusion is that, for the (1D) tight-binding
model, the field influence on localization is much stronger

than disorder is. While for disorder one needs to sur-
pass a certain critical value to produce a delocalization-
localization transition, any field intensity would produce
the effect we call now dynamical localization which in the
case of a pure crystal results in BO'’s.

Last but not the least, we would like to mention a
possible application of the effect we have discussed in
this work. Since the effect of the dc electric field is to
produce oscillations of the wave packet, its application
should result in the emission of electromagnetic radiation
of a definite frequency [when field intensity and impurity
potential satisfy the resonance condition of Eq. (9) be-
tween NN in the lattice]. By taking into account typical
miniband widths for SL’s, one should be able to generate
radiation in the terahertz range provided the dephasing
of the wave packet occurs for long times. Such results
were already reported in Refs. 16, 17 for double quan-
tum wells.
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