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Monte Carlo mean-field method for spin systems
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We use a Monte Carlo mean-field method proposed by Netz and Berker to analyze the critical
behavior of an Ising square lattice. We show that this method demands longer sampling times as com-

pared with the conventional Monte Carlo simulations. Also, similar mean-field results can be obtained
from self-consistent analytic calculations for small clusters of spins.

In some recent publications, Netz and Berker' pro-
posed a Monte Carlo mean-field theory to account for the
thermodynamic behavior of spin systems. The method
incorporates the hard-spin conditions of local degrees of
freedom and should be especially useful in the case of
frustrated systems, for which the standard mean-field ap-
proximation may lead to completely wrong results. Fur-
thermore, Netz and Berker claim that this method con-
verges faster, and works with much less sampling, than
the conventional Monte Carlo simulations. So far, this
Monte Carlo mean-field method (which we call
MCMFM) has been applied to just a few special spin sys-
tems (as a stacking of frustrated triangular Ising lattices).
We then decided to perform some calculations to gauge
the real capabilities of the method. In this publication,
we report simulations for a ferromagnetic Ising square
lattice in zero field. We point out the limitations of this
scheme, which still produces essentially mean-field re-
sults, and does demand a considerable amount of sam-
pling time (Monte Carlo steps).

Let us describe the method for an Ising Hamiltonian,

where o.; =+1, for all sites of a crystal lattice, and the
first sum is over nearest-neighbor pairs of sites. In zero
external field, we can write the standard mean-field equa-
tions,

According to Banavar, Cieplak, and Maritan, the
method of Netz and Berker could be interpreted as an ap-
proximation based on Callen's identity,

where the averages are taken with respect to the canoni-
cal ensemble. Using a factorized stationary probability
distribution,

(6)

we can write a system of self-consistent equations for the
set [(cr; ) }. Netz and Berker agree with this interpreta-
tion and claim that the simultaneous implementation of
the hard-spin condition and of mean-Geld theory can
indeed be carried out even without using Monte Carlo
samplings. We have reasons, however, to disagree with
this interpretation. The closed-form scheme of Banavar,
Cieplak, and Maritan is identical to a self-consistent
method proposed by Mamada and Takano some time
ago. However, there is no obvious deduction of a station-
ary probability distribution in the Monte Carlo mean-
field method. Choosing a random number in the interval

[ —1, +1], at the Monte Carlo time step r, and setting
o (r+1)=sgn[m (r) —r], at the next time step r+I, is

entirely equivalent to using a single-site transition proba-
bility

(o.; ) =tanh(/3JH;), and H, =g (o.
J ),

j(i) W[o)(r+ I)]=
1+o (r+1)mj(r)

(7)

where P=(k~T) ', and the sum is over the nearest
neighbors of site i. The idea of Netz and Berker consists
in writing the effective field H; in the form

and choosing the signs of cr according to the formula

o . =sgn(m r), — (4)

where r is a random number in the interval [
—1, +1],

and mj = (cr. ). In a sequential version, we update m for
each site of the lattice and store the quantity to be mea-
sured.

but it is not equivalent to using an equilibrium distribu-
tion as in Eq. (6). Although displaying similar analytical
expressions, these quantities are known to have quite
different meanings. In a standard Monte Carlo simula-
tion we choose a transition probability such that the pro-
cess of simulation generates an equilibrium or stationary
distribution (for example, we may write a condition of de-
tailed balance to establish a connection between transi-
tion and equilibrium probabilities). It is interesting to re-
mark that the dynamics of Netz and Berker's algorithm
may be written in terms of a transition probability,
W(m, ~m, '), from an old to a new value of the magneti-
zation per spin. For an Ising chain, for example, we have
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TABLE I. Some typical values to compare the performance
of the MCMFM and a standard Monte Carlo simulation in the
vicinity of the critical temperature (at t =2.72 for the
MCMFM, and t =2.269 for a Metropolis simulation). The
standard simulations require a smaller number of MCS's to
yield similar estimates for u (with errors of about 1%).

MCS MCS
(MCMFM) [Landau (Ref. 5)]
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FIG. 1. Absolute value of the magnetization per spin m
~

versus temperature, t =k~ T/J, for X =4, 10, and 60.

8'(m;~m =0)=—,'(1 —m, +Im, . I),
if o.

,-+ I and cr, I have opposite signs, and

8'[m;~m =+tanh(2PJ)]= —,'(1+m, +I)(1+m, ~),

-03

—0.5

if o.
, +,=o, , =+1. We thus can And the probability of

transition from the set Im, I to the new set I m I. There
is no obvious deduction of the stationary equilibrium dis-
tribution P( I m; I ). It is even less obvious how to deduce
the more relevant quantity P( I

o. ; I ).
We now report an application of the sequential form of

the MCMFM to the analysis of the ferromagnetic Ising
model on a square lattice of XXX sites, with periodic
boundary conditions. In Fig. 1, we show plots of the ab-
solute value of the magnetization per spin,

1m~I=( zgm; ), (10)
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where ( ) is a Monte Carlo average, versus the tem-
perature t =ks T/J, for %=4, 10, and 60. We have used
10 Monte Carlo steps (MCS) for X =4, 6. 5 X 10 MCS
for 1V = 10, and 1.25 X 10 MCS for X =60. The quantity
m is not particularly adequate for numerical purposes,
but it seem to have been used by Netz and Berker. For
estimating the critical temperature, we have calculated
the internal energy per spin,
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FIG. 2. Plots of the internal energy per spin e versus the
number of Monte Carlo steps (MCS): (a) X =60, and t =4.00;
(b) X =60, and t =2.72. The solid lines are a guide for the eyes.

FIG. 3. Plots of the mean internal energy per spin as a func-
tion of temperature, for % =4, 10, and 60.
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FIG. 5. Plots of the estimated critical temperature, from the
maxima of the specific heat versus 1/N.

FIG. 4. Plots of the specific heat per spin versus temperature,
for N=4, 10, and 60. The dashed line corresponds to the
Bethe-Peierls approximation.
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for each Monte Carlo step. In Fig. 2, we show graphs of
e as a function of the number of Monte Carlo steps, for
iV=60, at temperatures t =4.0, and t =2.72. Near the
critical temperature, the convergence is quite slow for the
bigger lattices. In Table I, we compare the performance
of the MCMFM with a conventional application of the
Metropolis algorithm (as used by Landau to study
finite-size effects in the Ising square lattice). The values
of the mean internal energy per spin u in the neighbor-
hood of the critical temperature, were calculated accord-
ing to the algorithm of Netz and Berker (o

„

is the vari-
ance of the values of the energy, and S,. is the statistical
inefficiency). We also give the number of Monte Carlo
steps to obtain convergence, with errors on the order of
1% in u, both in the present calculations and in the work
of Landau. An inspection of this table already indicates
the limitations of Netz and Berker's method. In fact, for
the same values of u, the conventional Monte Carlo
Inethod may demand a shorter sampling time. Also, to
evaluate the critical temperature, T, (N), from the maxi-
ma of the specific heat per spin, c (N), we were forced to
use substantially larger samples. As the method does not
generate Boltzmann states, we cannot make c (N)
=N o.„/t,although this formula has been used by Netz
and Berker. ' In Figs. 3 and 4, we show the internal ener-
gy and the specific heat for N =4, 10, and 60, using the
same number of MCS's as before (the dashed line in Fig.
4 represents the specific heat in the Bethe-Peierls approx-
imation). From the location of the maxima of the specific
heat, we draw the graph of T, (N) versus 1/N shown in

Fig. 5. An extrapolation for N ~ ~ (which does not
seem to be justified by finite-size arguments in this case),
yields the estimate T, (N ~ ca ) =2.72+0.04, which
should be compared with T, =4, for the mean-field ap-
proximation, T, =3.089. . . , according to Mamada and
Takano, in agreement with Banavar, Cieplak, and Mari-
tan, T, =2.885. . . , in the well known Bethe-Peierls ap-
proximation, and T, =2.269. . . , from Onsager's exact re-
sult.

In conclusion, we have used the ferromagnetic Ising
model on a square lattice to test a recently proposed
Monte Carlo mean-field method (MCMFM). We show
that this procedure demands longer sampling times than
conventional Monte Carlo simulations to achieve a com-
parable degree of convergence. Also, we still obtain
essentially mean-field results, which could as well have
been obtained by a variety of self-consistent cluster ap-
proximations. It is not immediate to associate an equilib-
rium distribution with the transition probabilities of the
MCMFM. In fact, we show that a self-consistent closed-
form approximation based on a single-site distribution, as
proposed by Banavar, Cieplak, and Maritan, gives
different results from the Monte Carlo implementation of
the mean-field method. As shown in a recent paper by
Kabakqioglu, Berker, and Yalabik, different implemen-
tations of the hard-spin conditions may indeed lead to
different results for the field-temperature phase diagram
of the antiferromagnetic Ising model on a triangular lat-
tice. In spite of all these limitations, mean-field calcula-
tions taking into account the hard-spin conditions may be
useful to obtain qualitatively correct results for spin sys-
tems with a high degree of frustration.
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