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Anisotropic exchange-interaction model: From the Potts model to the exchange-interaction modei
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A spin model called the anisotropic exchange-interaction model is proposed. The Potts model, the

exchange-interaction model, and the spin- —anisotropic Heisenberg model are special cases of the pro-

posed model. Thermodynamic properties of the model on the bcc and the fcc lattices are determined by
the constant-coupling approximation.

I. INTRODUCTION

Consider a spin-S system on a lattice described by the
Hamiltonian

scribed. Thermodynamic properties of the ferromagnetic
AEI model on the body-centered-cubic (bcc) and the
face-center-cubic (fcc) lattice are presented and discussed
in Sec. III.

H= —J g [(I—a)5(S;„S,)+aP; ], .

(ij&

where J is the coupling constant, u is a parameter, and
the summation is over nearest-neighbor pairs of sites. S;,
is the z component of the spin S; and 5(S,„SJ,) is the
Kronecker 5 function. The operator P; . is the
Schrodinger exchange operator' which has the property
that it permutes the spin variables S; and S .. For general
spins, Eq. (1) reduces to the (2S+1)-state Potts model
and the spin-S exchange-interaction (EI) model, when
+=0 and 1, respectively. For S=—,

' and for general
values of a, Eq. (1) is the same as the spin- —,

' anisotropic
Heisenberg model, of which the Ising model and the
Heisenberg model are special cases. The Potts model and
the EI model are generalizations of the Ising and the
Heisenberg models, respectively, to higher spin systems
which contain spin multipole interactions. It is appropri-
ate to call the new model the anisotropic exchange-
interaction (AEI) model, as the model described by Eq.
(1) is a generation of the spin- —, anisotropic Heisenberg
model to general spins.

The Potts model has been a subject of continuous
research interest in the past two decades. ' The aniso-
tropic Heisenberg model has also been extensively stud-
ied. Critical behaviors of these models are generally
understood. For the EI model, however, little is known
about its properties. ' ' Recently, it has been shown
that the Potts model and the EI model have exactly the
same thermodynamic properties in the mean-field ap-
proximation (MFA). The EI model is a quantum spin
model, while the Potts model is a classical one. Their
properties should be quite different. The purpose of this
work is to study the properties of the ferromagnetic
(J)0) AEI model for 0~ a~ 1. From this study we can
see how thermodynamic properties change as the system
varies from the Potts model to the isotropic EI model.

We will investigate the AEI model by using the
constant-coupling approximation (CCA), which has been
recently applied to the isotropic EI model. ' In Sec. II,
the ground states of the AEI model and the CCA are de-

II. GROUND STATES
AND THE CONSTANT-COUPLING APPROXIMATION

Q(l)(S )Q(t)(S )
m%0

(2)

where A(S, l) are constants and Q'" are normalized in

the way that Tr A (S,l)Q'"Q". ' =5t t 5 . The summa-
tion g &0 sums over m = kl, k(l —1), . . . , +1. When J
and a are positive, the system is ordered ferromagnetical-
ly at low temperatures. For a=1, it is known" that for
any pure single-spin state ~P), 4&= ~P(S)) ) ~P(S2) )

~P(Sz)) is a ground state with ground-state energy
Eo = zNJ/2, wher—e N is the number of sites and z is the
coordination number of the lattice. For 0 ~ n & 1, 4 is a
ground state with Eo= zNJ/2 only —when ~P) is an
eigenstate of S„ to be denoted as ~m. ) hereafter. (Since
(~~Q'"~m ) =0 for m%0. ) The system is Potts-like with
2S+1 degenerate ground states. The symmetries of the
ground states are quite different for a = 1 and for u & 1.

In the MFA, a pair interaction Q'"(S, )Q'"(Si) is re-
placed by a single-spin term (Q'")Q'". For the Potts-
like ordering, the 2S+1 eigenstates of the single-spin
Hamiltonian are

~
m ), and the thermal average ( Q'" ) =0

for m&0. The last term in Eq. (2) does not contribute to
the mean-field Hamiltonian. Therefore, thermodynamic
properties of the AEI model are independent of a for
0&~ & l.

In the CCA, both the single-spin and the two-spin
Hamiltonians are considered. The single-spin Hamiltoni-
an H,'," of the AEI model is also independent of a when
0+ a ~ 1. Following the previous study' for the isotro-
pic EI model we have

H,',"(S)= —Jzh p (S)+Jze/2,

The Hamiltonian of the AEI model, Eq. (1), can be ex-
pressed in terms of spin multipole momentss "Q'". That
1st

2S
H= —J g g A(S, l) Q(')" (S;)QI)"(S )

&ij ) 1 =o
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where h is the effective Geld, t is a constant operator, and
p„ is the single-spin density matrix for the spin 8 to be in
the pure state ~n). Let K=J/kT, the free energy in
units of J, F,',"/J, associated with the single-spin Hamil-
tonian is

F~,"/J= K— ' ln Tr [exp[ —H,',"/kT]]
= —K ' in[exp(Kzh)+2S]+ze/2 .

The two-spin Hamiltonian in the CCA is given by

(4)

H„2'= —J(1—a)5&z —JaP&2+(z —1)/(2z)[H,',"(S&)+H,", (S2)]

= —J(1—a)5,2
—JaP, 2

—J(z —1)h [p (S, )+p (S2)]/2+ J(z —l)e:—Hz(J, a, h )+J(z —1)e,

where 5,2 is the shorthand notation for 5(S„,S2, ).

The free energy per pair of spins associated with the
two-spin Hamiltonian is

F,', '/J = —K ' ln Tr [exp( H2 /k T—) ] + (z —1 )e

= —K ' lnZ(K, a, h )+(z —1)e .

Let X=exp[(z —1)hK], it can be shown that

Z =Tr[exp( H2/kT)—]

=2S cosh(Ka )[2X +2S —1]

+exp(K)[X +2S] .

The free energy per site of the system' is then given by

F2 =(z/2)F' ' —(z —1)F,'," .

For a given temperature T, the stable value of h is the

one which has the lowest free energy F2. In general,
there are three characteristic temperatures: T, T„and
TQ (with T )T, )T0). At high temperatures T) T
the minimum of F2 occurs at h =0. When T & T& Tp,
F2 has two minima and one maximum. The lowest free
energy occurs at h =0 for T & T, and at h & 0 for T & T, .
The two minima which occur at h =0 and h„respective-
ly, have the same value at the temperature T„which is a
first-order phase-transition temperature. At low temper-
atures T & Tp F2 has a maximum at h =0 and a
minimum at h & 0. We have determined the stable values
of h numerically for various e and T for the bcc and fcc
lattices. The order parameter q [=(QD'" ) /(vr~ga'" ~m) ]
is then obtained' by

q = [exp(Kzh )
—1 ] /[exp(Kzh )+2S],

and the per site internal energy in units of J for the fer-
romagnetic AEI ~odel is given by

U/NJ = (
—z/2)Tr [ [(1—a)5&2+ aP &z ]exp( PHz ) ] /Z—

= —(z/2)exp[ —(z —1)eK](exp(K) [exp[2(z —1)hK]+2S]

+2Sa sinh(aK ) [2 exp[(z —1)hK]+2S —1] )/Z .

III. RESULTS AND DISCUSSIONS

It can be shown analytically that in the CCA the in-
verse phase-transition temperature K, (=J/kT, ) of the
AEI model satisGes the equation

[(2S)' ' '—1]exp(K, )=(2S —1)cosh(aK, ) . (10)

Transition temperatures of the bcc lattice (z = g) and the
fcc lattice (z =12) obtained by the CCA are shown in
Figs. 1 and 2, respectively, for several spins. The transi-
tion temperature T, is a decreasing function of a as the
model is more symmetric when a= l. It can be shown
that dT, /do. =0 for a=0. It means that T, does not
change when the system changes from a classical spin
model (a=O) to a quantum spin one (a=0 ). The transi-

tion temperature decreases more rapidly when a = 1. The
parameter e changes the universality class of the Harnil-
tonian. If we let R =(1—a)/a, the scaling hypothesis'
implies that T, (R)—T, (0)-(R)'~+, where y is the cross-
over exponent. In the CCA, each T, versus a plot has a
finite slope at +=1. That is, p=1 for all spins and for all
lattices. Although the CCA provides good estimates of
T„ it predicts the same critical exponents (y= 1) as the
mean-field theory.

The Hamiltonian of the EI model (a= 1) is spherically
symmetric. It is known' that such a system cannot have
a phase transition for lattice dimensionality d 2. In the
CCA the lattice parameter involved is the coordination
number z, instead of the dimensionality d. The CCA
(Ref. 14) predicts that the EI model has a phase transi-
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model on the bcc and the fcc lattices. The discontinuities
of U at T„ i.e., the latent heats are shown in Fig. 4 for
the bcc lattice. From the spin dependence of the latent
heat, we also see a drastic change between u(1 and
a = 1. The curve for a = 1 terminates at S,„[(S,„ is the
solution of z=21n(2S)/1n[4S(2S+1)]). For S&S,„,
there is no phase transition. For a%1 a phase transition
exists for any spin. We emphasize that the CCA results
are reasonably good for the bcc and the fcc lattices for
small spins, say S(3. The CCA results become poor for
small z and for large S, especially when n = 1.

In this work we only study the AEI model for
0 ~ cz ( 1. When a & 1 the ground states of the system are

difterent from those for a=1 and +&1. In the limit
a»1, the AFI model reduces to the XY model when
S=—,'; and for other spins, the limiting cases of the AEI
model have not been considered before. It is of theoreti-
cal interest to study thermal properties of the AEI model
for e&1.
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