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Ab. initio calculation of the thermodynamic properties and atomic temperature factors
of Sio2 n-quartz and stishovite
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The constant-volume specific heat, the entropy, the phonon contributions to internal energy
and Helmholtz free energy, and the atomic temperature factors of o.-quartz and. stishovite, two
allotropic forms of Si02, are calculated as a function of temperature from ab initio phonon band
structures. Available experimental data agree with our calculated values over a wide range of
temperature. n-quartz has more accessible phonon states at low temperatures, while stishovite has
larger contributions to the thermodynamic functions from the zero-point motion.

The thermodynamic functions of a solid are deter-
mined mostly by the vibrational degrees of freedom of the
lattice, since, generally speaking, the electronic degrees
of freedom play a noticeable role only for metals at very
low temperatures. However, complete knowledge of the
vibrational spectrum, with sufIicient accuracy, is required
for the calculation of these thermodynamic functions.
There have been a few early theoretical investigations
of the thermodynamic properties of Si02 o.-quartz and
stishovite based on models of interatomic forces ' within
the harmonic approximation. Predicted phonon density
of states and thermodynamic functions from the phonon
band structure were of limited accuracy.

We obtained accurate ab initio interatomic force con-
stants and phonon band structures of o.-quartz and
stishovite in our earlier work, ' based on variational
density- functional perturbation theory. Therefore, we
are now able to calculate ab initio thermodynamic func-
tions of o.-quartz and stishovite from the phonon band
structures, within the harmonic approximation. We will
focus on the Helmholtz free energy, the internal energy,
the constant-volume specific heat, and the entropy as a
function of temperature. Also, knowledge of interatomic
force constants allows us to calculate the atomic tempera-
ture factors of the atoms, which describe the attenuation
of x-ray-diÃraction intensities due to the thermal motion
of the atoms. A wealth of information on these atomic
temperature factors, gathered by crystallographers, is
available. Thus, in this Brief Report, we present our
calculated thermodynamic quantities and atomic tem-
perature factors, and compare them with the available
experimental data.

The above-mentioned thermodynamic functions re-
quire summations over phonon eigenstates labeled by the
phonon wave vector q and the phonon mode /. However,
the expressions f to be evaluated at each q and l often de-
pend on q and l only through the frequency cu = u(q, l).
We can then turn g & f (io(q, l)) into a one-dimensional

integral 3nN J' f(w)g(w)dw, where n is the number of
atoms per unit cell, N is the number of unit cells, wl,
is the largest phonon frequency, and g(w)dio is defined
to be the fractional number of phonon frequencies in the

range between w and ~ + dw. We normalize the phonon
density of states g(ur) so that f g(io)dw = 1, namely,

g(w) = (1/3nN) P &
8(w —w(q, l)). Specifically, the

phonon contribution to the Helmholtz free energy LI',
the phonon contribution to the internal energy LE, as
well as the constant-volume specific heat C, and the en-

tropy S, at temperature T have the following expressions
within the harmonic approximation:

LF = 3nNk~T

LE = 3nN—
2

C = 3nNk~

ln 2 sinh g (io) did
2k~T

f Ru
~ coth

~ ~
g(~)d~o,

2k~T)
' ( tun ) 2( Ru

I g( )d

(2)

X g(M)deed

coth —ln 2 sinh
2kgT 2kgT 2 g

(4)

with the mean-square displacement matrix B,~(K) given
by

where k~ is the Boltzmann constant.
The intensity of difI'raction from a crystal also depends

on temperature, because of the thermal vibrations of the
constituent atoms. If the atoms occupied definite po-
sitions in the crystal, the intensity of diffraction would
be proportional to the square of the structure factor I"
defined as P„f„e ' '", where f„ is the scattering am-
plitude of the atom v, G is the scattering wave vector,
and r„ is the position of the atom K. The di6'raction
condition requires C to be a reciprocal lattice vector. At
finite temperature, the atoms oscillate around their equi-
librium positions and the structure factor is modified as
I'T = P f„e l"le * '" where the atomic tempera-
ture factor e ~ "~ at temperature T is defined as
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FIG. 1. The phonon densities of states g(u) of o-quartz
(upper panel) and stishovite (lower panel). f g(~)dw = 1 and
the frequencies are in cm

B, (r) = —. ) coth '
e;(K~q, l)e*(r~q, /),

1 . 5 M(q l)
S 2~ q l 2kpT

q, E

where M„ is the mass of the atom r, G; is the ith com-
ponent of the scattering wave vector G, and e, (K~q, l)
is the ith component of the displacement eigenvec-
tor associated with the atom K and the mode l at
q in the Cartesian coordinates, normalized such that
P& M„e,(r~q, l)e*(r'~q, l) = b,~8„„.When there is only
one kind of atom with sufficient local symmetry, all the
e (") are identical and ~I'T~ = ~P~ e ("). In this
case, the intensity of di8'raction is reduced by a factor of
e ~ "~, which is usually called the Debye-Wailer factor.
For two or more kinds of atoms, there is no simple rela-
tion between ~F~ and ~ET~ . From Eq. (6), one can see
that e (") and B,~(K) cannot be calculated from g(aI)
due to the explicit dependence on eigenvectors. However,
it is efficient to express B,~ (r) in terms of "generalized"
density of states g,~(ic~w) as follows:

g,z(K~cu) = —) M„e;(r~q, l)e*(Ic~q, l)S(cu —w(q, l)) .

q, l

1' Ru
coth

~
~ g,, (r. cu)der, (7)

2Cd i, 2kiiT )
where g,~(r~w) is defined as
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FIG. 3. The phonon contribution to the internal energies
AE of n-quartz (solid line) and stishovite (dashed line).

The generalized density of states g,~(K~w) has to be cal-
culated only once for each atom r and is normalized in
such a way that Jo g,~(r~w)dw = b, z for each atom K.

We use the root sampling (or histogram) method on
the phonon wave vectors q for the calculations of the
phonon densities of states g(cu) and generalized densities
of states g,~. (r ~w). We then calculate the thermodynamic
functions and the mean-square displacement matrix us-
ing Eqs. (1)—(4) and (7), with the rectangular formula for
integration from the functional values at the midpoint of
each frequency channel. At the low-frequency limit, the
factors multiplying the densities of states show logarith-
mic divergence in Eqs. (1) and (4) and quadratic diver-
gence in Eq. (7). However, since the density of states and
generalized density of states both behave as the square
of frequency at the low-frequency limit, the actual inte-
grands behave regularly, approaching zero in Eqs. (1) and
(4) and a constant in Eq. (7). Therefore, it is possible to
check the convergence of the contribution from each rect-
angular channel in our integration scheme by decreasing
the width of the frequency channel. We first fix the width
of the frequency channel and increase the resolution of
the homogeneous sampling of the phonon wave vectors
in the Brillouin zone until each channel of the density of
states converges within a preassigned accuracy. Then we
repeat the same procedure with a smaller width of the
frequency channel until the convergence of the thermo-
dynamical quantities and the mean-square displacement
matrix is obtained. In order to get the mean of the rel-
ative error in each channel of the phonon densities of
states smaller than 2%, and the thermodynamical quan-
tities and the mean-square displacement matrix elements
converged to better than 0.1% and 1%, respectively, at all
temperatures studied, we find it sufficient to sample the
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FIG. 2. The phonon contribution to the Helmholtz free
energies AI"' of cr-quartz (solid line) and stishovite (dashed
line).
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FIG. 4. The constant-volume specific heats of o.-quartz

(calculated values in the solid line; solid circles, experimen-
tal data from Ref. 3) and stishovite (calculated values in the
dashed line; open circles, experimental data from Ref. 13).
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FIG. 5. The entropy of o.-quartz (solid line) and stishovite
(dashed line).
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phonon wave vectors q from (60,60,40) Monkhorst-Pack
grids with channel width 5 cm for the thermody-
namic functions of cr-quartz, from (45,45,30) grids with
channel width 9 cm for the mean-square displacement
matrix elements of n-quartz, from (40,40,80) grids with
channel width 9 cm for the thermodynamic functions
of stishovite, and from (50,50,100) grids with channel
width 9 cm for the mean-square displacement matrix
elements of stishovite, respectively.

In Fig. 1, the phonon densities of states of o.-quartz and
stishovite are shown. We observe that the two densities
of states are quite difI'erent: o.-quartz has more complex
structure with a very high peak at around 1060 cm
a wide gap between 846 and 1038 cm, and the largest
frequency 1218 cm, whereas stishovite has a continu-
ous distribution and the largest frequency 1050 cm
quartz has a significant density at low frequencies, while
stishovite has a low density until the first peak (around
350 cm i) is reached. The stishovite lattice could be
characterized as more rigid than the o.-quartz lattice, if
it were not for the presence of the large frequency modes,
beyond 1050 cm . The latter modes can be associ-
ated with the breathing and distortion of the tetrahedral
building blocks Si04 of o.-quartz. Due to the fact that
at low temperature more phonon states are available in
o.-quartz than in stishovite, a difference is expected in
the thermodynamic functions.

The temperature-dependent phonon contributions AE
and AE to the Helmholtz free energy F (see Fig. 2) and
the internal energy E (see Fig. 3) are calculated from the
phonon densities of states. The zero-temperature values
LEp and AEp do not vanish, due to the zero-point mo-
tion, and can be calculated from the asymptotic expres-
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FIG. 6. The atomic temperature factors of Si and 0 atoms
in n-quartz (solid line) and stishovite (dashed line) for the
difFraction with scattering vector C = (2vr/c) z.

sions of Eqs. (1) and (2):

AI'"p ——AEp ——3nN
2

g(M)dM

We find KPo ——AEo ——30.0 kJ/mol for n-quartz and
31.5 kJ/mol for stishovite. The temperature-dependent
AE is higher for stishovite between 0 and 200 K and
higher for o.-quartz above 200 K, whereas AI" is higher
for stishovite at all temperature due to the lower entropy
of the more rigid structure of stishovite. Note that the
harmonic approximation will break down for u-quartz
as soon as the temperature approaches 846 K, where a
second-order phase transition to P-quartz takes place.

Next, the constant-volume specific heats C„are cal-
culated and compared to the experimental data from
Refs. 3, 13. The agreement between our calculated spe-
cific heats and the experimental data is excellent as
shown in Fig. 4. The discrepancies between the calcu-
lated and experimental specific heats become larger at
high temperature as the lattice undergoes thermal expan-
sion due to the anharmonic interactions. Stishovite has
lower specific heat than o.-quartz at temperature below
480 K and the specific heats of o.-quartz and stishovite
are very close above 480 K. Also, the two specific heats
approach at high temperatures the classical asymptotic

TABLE I. The thermal parameter P,~ of Si and 0 atoms in cr-quartz at room temperature.

This work
Ref. 14
Ref. 15
Ref. 16
Ref. 17
Ref. 18
This work
Ref. 14
Ref. 15
Ref. 16
Ref. 17
Ref. 18

Atom
Si
Si
Si
Si
Si
Si
0
0
0
0
0
0

pii (A')
0.0070
0.0045
0.0048
0.0065
0.0066
0.0085
0.0155
0.0131
0.0128
0.0163
0.0156
0.0174

p» (A')
0.0055
0.0025
0.0027
0.0054
0.0051
0.0072
0.0109
0.0074
0.0105
0.0127
0.0115
0.0132

p» (A')
0.0054
0.0072
0.0063
0.0059
0.0060
0.0073
0.0103
0.0133
0.0128
0.0128
0.0119
0.0123

p» (A')
—,'p»
1p
—,'p»
1p
—,
'

p2z

0.0090
0.0078
0.0069
0.0097
0.0092
0.0097

p, . (A')

—,'p»
—,
'

p2
lp
—,
'

p2s
lp

—0.0033
—0.0037
—0.0035
—0.0027
—0.0029
—0.0029

p» (A.')
—0.0004
—0.0002

0.0004
—0.0002
—0.0003
—0.0002
—0.0042
—0.0049
—0.0044
—0.0043
—0.0046
—0.0041
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This work
Ref. 19
Ref. 20
This work
Ref. 19
Ref. 20

TABLE II. The thermal parameter P,s (r) of Si

Atom Pii (A ) P22 (A. )
Si 0.00228 Pyy
Si 0.00253 Pyy

Si 0.00236 l3y y

0 0.00301 Pj. g

0 0.00327 Pyy

0 0.00308 Pyy

0.00177
0.00196
0.00178
0.00238
0.00248
0.00231

p» (A')
0.00007
0.00014
0.00016

—0.00082
—0.00095
—0.00084

0
0
0
0
0
0

0
0
0
0
0
0

and 0 atoms in stishovite at room temperature.

limit of 74.8 3jmolK.
The entropies are also calculated (see Fig. 5).

Stishovite is found to have lower entropy than o.-quartz
over the entire temperature range, due to its smaller den-
sity of states for low-frequency modes.

Finally, the mean-square displacement matrix elements
BU.(r) for Si and 0 atoms in n-quartz and stishovite
are calculated as a function of temperature. Crystallog-
raphers, however, often provide the thermal parameters
P,s(K) which are the mean-square displacements of the
atom K along the crystal axes i and j. Therefore, we
convert the mean-square displacement matrix B;s (r) into
the thermal parameters P;s(r) for comparison. Due to
the symmetry of the crystal structure, P22(Si) = 2Piz(Si)
and P2s(Si) = 2Pis(Si) in o.-quartz, and Pii(K) = P22(r)
and Pis(r) = P2s(r) = 0 for r= Si or 0 in stishovite.
Experimental values, obtained from analysis of raw data
through model calculations, show large discrepancies be-
tween each other. Our calculated values show reasonable
agreement with these results (see Tables I and II). The
sole large systematic discrepancy, over 10%, is found for
the Pss element in n-quartz. This discrepancy could be
due to the anharmonicity of the interatomic potential.
Experimental uncertainties likely preclude the observa-
tion of this eifect for the other components of the P tensor
in o,-quartz, while stishovite is a less anharrnonic material
than o.-quartz. The typical mean-square displacements
of Si and 0 atoms in stishovite are rather similar (be-
tween 0.00177 and 0.00301 A. ), while the mean-square
displacement of the Si atoms in n-quartz is roughly 3
times larger than this value (0.0054 and 0.0070 A ), and
the Pii component of the 0 atoms reaches up to 0.0155

A. . The smaller displacements in stishovite are a con-
sequence of the rigidity of its lattice. The atomic tem-
perature factors e (") are also calculated as a function
of temperature for the diffraction with scattering vector
G = (2'/c) z (see Fig. 6). e i"i is not 1 even at 0 K
due to the zero-point motion. The 0 atoms in Q.-quartz,
having large values of the mean-square displacements,
show a larger change in the atomic temperature factor as
a function of temperature than the Si atoms in o.-quartz
and the Si or 0 atoms in stishovite.

In conclusion, we have calculated the thermodynamic
functions of Si02 o,-quartz and stishovite as a function
of temperature from ab initio phonon band structures.
We And excellent agreement between our calculated spe-
cific heat and the experimental data. The zero-point
motion contribution to the thermodynamic functions of
stishovite is more important than the one of Q.-quartz.
Due to the difference in the structures of the phonon den-
sities of states for n-quartz and stishovite, i.e., more low-
frequency distributions for o,-quartz than stishovite, the
thermal vibrations become more important for o.-quartz
as the temperature increases from 0 K. Therefore, the
phonon contribution to the internal energies is larger in
stishovite than in quartz at low temperature, but smaller
at high temperature. The atomic temperature factor of
the 0 atoms in Q.-quartz shows a larger change than the
Si atoms in Q.-quartz and the Si or 0 atoms in stishovite.
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