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We show how to incorporate the commonly observed scaling behavior of magnetic hysteresis loops
M(H) in (R)Ba2Cu307 z (R =rare earth) crystals into a systematic and straightforward analytical pro-
cedure that yields the key parameters associated with the vortex dynamics. If the effective barrier height
for vortex motion is written in terms of a scale energy Uo(B, T) and a scale current density Jo(B,T), both
the field and temperature dependences of these quantities can be found directly from the experimental
data, without any deconvolution. The procedure is illustrated with the data on one specific sample of
TmBazCu307 z. Over a substantial region of the B-Tplane, Jo(B,T) is found to be ~ B and essentially
temperature independent; Uo(B, T) is approximately ~ 1/B and decreases steadily as T, is approached.
The competition between the field dependences of Jo(B,T) and Uo(B, T) gives rise to the ubiquitous
"fishtail" in the magnetization loops.

I. INTRODUCTION

The irreversible magnetization loops [M(H) loops] and
the normalized Aux creep rate S of high-temperature su-
perconductors reAect the behavior of vortices in these
materials. In principle, therefore, measurement and
analysis of the M(H) loops together with S, and their
dependence on temperature and field, should allow the
relevant physical quantities, particularly the effective pin-
ning potential U,z, to be obtained as a function of field,
temperature, and current density. In practice, there are
sufficient unknowns that the problem has usually been
phrased the other way around, and various theoretical
models have been tested by attempting to fit the experi-
mental data to them. This procedure is less than satisfac-
tory, because it usually comes down to evaluating the
reasonableness or otherwise of the fitting parameters, and
also because it tends to obscure the physical significance
of the features that are observed in the M(H) loops them-
selves.

A prominent feature of the M(H) loops of
YBa2Cu307 & is the occurrence of an anomalous second
peak or "fishtail. " Its presence has led to the idea of scal-
ing, in which a sequence of loops taken at widely different
temperatures can be collapsed onto a single curve when
M and H are appropriately normalized. ' Recently,
scaling behavior in the creep rate has also been report-
ed. ' Although there have been many attempts to evalu-
ate U,tt(B,J, T ) from such magnetization data (see
Schnack et al. and references therein), they have not
previously incorporated this scaling into the strategy of
the analysis.

The form of the M(H) loop is governed by the
behavior of the vortices in the presence of static and
thermal disorder (assuming quantum effects are small),

which are responsible for the phenomena of vortex pin-
ning and vortex creep. Our motivation comes from the
similarities we have seen, including the scaling of the
M(H) loops, in several well-oxygenated (R)Ba2Cu307
crystals obtained from different sources. Furthermore,
as oxygen is removed from these crystals (which is prob-
ably associated with an increasingly anisotropic nature of
the superconductivity), the magnetic behavior evolves in
a systematic fashion. Consequently, it is essential to have
an unbiased analysis of the data, so that the changes in
the vortex dynamics can be properly quantified.

The starting point is that magnetization measurements
on superconductors, when properly conducted, ' interre-
late the four important physical variables: the tempera-
ture T, the magnetic induction 8 within the sample, the
current density J, and the electric field E. Here we
highlight the scaling of the M(H) loops and go on to de-
scribe it analytically together with the creep rate S, but
without imposing any specific model on the data. %'e
proceed to find the implications of the scaling for the un-
derlying physics and show how they can be compared
with the predictions of theoretical models.

II. EXPERIMENTAL DATA SET

The approach to analyzing the M(H) and S data that
we develop here is a perfectly general one, requiring only
that the M(H) loops be observed to scale over a substan-
tial range of magnetic field and temperature. The sample
chosen to illustrate this approach is one of a set of mi-
crotwinned TmBa2Cu3O7 & crystals of slightly reduced
oxygen content; the systematic investigation of the
dependence of M(H) and S with 5 in these crystals is de-
scribed in Ref. 9. This specific crystal has 6 =O. 2,
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with poH' between 3 and 20 mTs ', generating electric
fields in the range of —10 —10 V m

III. EMPIRICAL SCALING OF M(II) LOOPS

Figure I shows 24 separate J(B ) curves for the
TmBa2Cu307 & crystal at six temperatures and four elec-
tric fields, plotted on double-logarithmic scales. These
curves appear to translate to larger J and larger B as ei-
ther the temperature T is decreased or as the magnetic
field sweep rate H'' that generates E is increased.

T, =88 K, and so is slightly underdoped, and also dis-
tinctly more anisotropic than fully oxygenated material.

Measurements were made on a commercial (Oxford In-
struments) vibrating sample magnetometer of 8 T max-
imum applied field. The data set comprises M(H) loops
taken at temperatures T below about 80 K and at a num-
ber of different sweep rates H' of the applied magnetic
field. Because our analysis essentially involves the small
differences between loops taken at slightly different tem-
peratures or at diff'erent sweep rates (Sec. III), the small
magnetizations at temperatures above about 80 K give
rise to rather noisy data, and they are excluded from the
present discussion. In principle, there would be no
difficulty in acquiring data much closer to T„' it requires
just that the signal-to-noise ratio be enhanced by the
averaging of multiple M(H) loops, and that would be
time consuming.

Provided that the experimental conditions have been
chosen carefully, ' all the variables T, B, J, and E can be
treated as if they are uniform through the sample, and
also B set equal to poH. The E field arises from induc-
tion, generated by the sweep of the applied magnetic field
H (in relaxation measurements E comes from the time de-
cay of the magnetization M). The current density J(B)
was calculated from the hysteresis width b,M(B ) using
the Bean model. ' The normalized creep rate S(B) was
obtained by the "dynamic" method, ' in which hM is
measured as a function of sweep rate H':

0 g 0 4 0.0 0.4 0.8
ln[B (T)]

1.2

FIG. 2. Coordinates of the maximum (the fishtail peak) of
each curve of Fig. 1. The closely spaced points mark variations
in E at fixed T, and the associated schematic behavior of the
M(H ) loops is indicated in the inset. Data points taken at con-
stant T but different E fall on a curve of gradient kE. Similarly,
points at constant E but different T lie on a curve of gradient
k&. Both kE and k& are of the order of unity.

The fishtail peak provides a convenient fiducial point
on the curves, and its coordinates (J,„,B „)are plotted
directly in Fig. 2, so as to quantify the scaling. It is phys-
ically significant that in this sample, to a good approxi-
mation, changes in either T and E cause translations
along the same straight line of gradient about unity.
However, our analysis does not require that to be the
case.

Figure 3 shows how the curves can be brought into
near coincidence by scaling to the fishtail peak. The scal-
ing between J(B ) of diff'erent E but at constant T is very
precise, and the curves are indistinguishable by eye. Scal-
ing between difFerent temperatures is less perfect; both
extrinsic and intrinsic factors may be relevant, for exam-
ple, sample homogeneity and self-field effects at low B.'
However, given that the unscaled curves span up to 2 or-
ders of magnitude in J, the scaling is highly significant.

The central theme of this paper is that this scaling is an
excellent first approximation to the measured magnetiza-
tion and that therefore it should be incorporated at the
outset into the description of the physical behavior.
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FIG. 1. Measured J(8) for different temperatures and elec-
tric fields, obtained from magnetization loops on a
TmBa2Cu, O68 crystal and plotted on logarithmic scales. The
closely spaced curves correspond to different sweep rates poH'
in the range 3—20 mT/s, and so to different E, at fixed T.
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FIG. 3. The 24 curves of Fig. 1 rescaled so that their maxima
coincide.
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IV. ANALYTIC FORMULATION OF SCALING

Having established that the magnetization follows
closely the scaling discussed in Sec. III, we now consider
how to describe it analytically.

A. Ideal scaling

In order to develop the ideas, it is simplest to start with
the idealized case in which the M(H) loops scale perfect-
ly at all magnetic fields and for all temperatures; we term
this "ideal scaling. " In Sec. IV B below, we then go on to
discuss how the results may be applied to the more realis-
tic situation, where scaling describes the M(H) loops well
over some extensive, but finite, range of field and temper-
ature.

1. Scaling ofJ(B ) with respect to E at constant T

which in logarithmic coordinates becomes

lnJ —lnJ, „(E,T)=4[lnB lnB,„(E—, T)] . (2)

The formulation of Eq. (2) is slightly arbitrary because
any characteristic feature (not just the fishtail peak) could
be used to scale the curves, and hence the function 4 is
not uniquely defined (N defines a set of functions which
may be mapped onto each other by linear translations in
logarithmic space). The electric field scaling can be ex-
pressed in a more general way by difFerentiating Eq. (2)
with respect to lnE at constant B:

3 lnJ
lnE

8 lnB

8 lnE

8 lnJ, „
a 1~,„ (3)

%'e have shown that by normalizing the current densi-
ty and field scales by the peak position (J,„,B,„) the
measured magnetization loops trace out a universal func-
tion y,

J BJ,„(E,T ) B,„(E,T )

yE(E, T) quantifies the electric field dependence of these
translations.

Hence Eq. (3) can be written

S(B,E, T) =yE(E, T)[kg(E, T) y)„—(B,E, T)], (6)

so that the scaling is uniquely described by a linear rela-
tionship between the normalized creep rate and the loga-
rithmic susceptibility. Its behavior is quantified by the
two scaling parameters kE(E, T) and yz(E, T) which,
for ideal scaling, do not depend on B.

To see the inhuence of the scaling, we can compare the
magnetic field dependences of the measured creep rate
S(B ) and the logarithmic susceptibility y~„(B ). Figure 4
shows that there is indeed a strong correlation between
the forms of the two functions and that both have a
close-to-linear B dependence over most of the field range.

The values of kE and yE could be obtained from the
dependence of the fishtail peak position on E using Eqs.
(4) and (5), but a more general method (which does not
require the presence of a fishtail peak and is also more in-
formative because it includes data from the entire field
range with equal weight) is to plot S(B) versus y&„(B), as
shown in Fig. 5. In the higher-field region, these plots
can be fitted by straight lines, as suggested by Eq. (6); the
lines have gradient and intercept on the abscissa equal to—yz and kz, respectively. We will return to the low-
field data in Sec. IV 8 1.

Figure 6(a) shows yz and kE as a function of tempera-
ture in the range 30(T & 77 K (the present approach be-
comes inapplicable at low temperatures for reasons that
will be explained in Sec. IV B 2). Over this range
kE=1.05+0.05 and shows no systematic temperature
dependence, '

yE =0.04 and tends to increase slowly with
temperature.

2. Scaling with respect to T at constant E

The approach to quantifying the temperature scaling is
essentially identical to the electric field case. We intro-
duce two parameters yT and kT, which are entirely
analogous to yz and kE, and so we have [see Eq. (6)]

=k~(E, T)

The quantity 0&'= (8 lnJ/8 lnB )z T will play an impor-
tant role in what follows and has a direct physical inter-
pretation as the (logarithmic) sfope of the measured
M(H) loops. We will denote it as y&„and call it the loga-
rithmic susceptibility. Note that the ambiguity men-
tioned above is no longer present in Eq. (3) because J,„
and B „can be freely replaced by any other characteris-
tic position (J,h,„,B,h„) on the loops, and scaling re-
quires that

BlnJ „BlnJ,h„
aim .„, aim, „., (4)

with

0.2- -4.8

0.1- -2.4

=y T(E, T)[kT(E, T) yi„(B,E,T)], —
nT BE

(7)

and O.G= --0.0

a l~,„
8 lnE

8 lnB,h„
a lnE

=yF(E, T) . (5)

The parameter kz(E, T) is the gradient of translations as-
sociated with changes in the electric field (see Fig. 2), and

FIG. 4. Logarithmic susceptibility y&„(8) and the creep rate
S(8 ) calculated, respectively, from the measured J(8 ) at 50 K
and its sweep rate dependence.
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FIG. 5. S(B) plotted against y&„(B) with B as the implicit
variable for a series of temperatures between 30 and 77 K; the
fishtail peak occurs at y&„(B)=0. The steeper short segments
correspond to low H, where self-field effects are significant. At
each temperature, the higher-field data are almost linear; a
straight-line fit to them has gradient y E( T) and intercept on the
abscissa equal to —kE( T).

could proceed as before by plotting 8lnJ/BlnT versus
However, it turns out to be more convenient to use

the fishtail peak coordinates J,„(T) and 8,„(T), and
find kz. (T) and yz (T) directly from Eqs. (8) and (9), us-
ing the differences between magnetization loops at adja-
cent points.

For the illustrative sample used here, this procedure
results in the dependences shown in Fig. 6(b); the value of
kz- is very close to that of kE, which is just a formal way
of expressing the scaling equivalence of changes in E and
T for this crystal (Sec. III, Fig. 2). On the other hand, y z.

does not have any direct connection to yz, lying in the
range —1 & y~ & —10 and having a strong temperature
dependence.

B. Realistic scaling

Scaling implies some systematic behavior of the vortex
dynamics, and it would be unrealistic to expect a single
model to describe the vortices at all fields and tempera-
tures. The empirical observation is that scaling works
over a substantial range of these variables, and the argu-
ment of this paper is that a single model might be expect-
ed to be valid over the same range. Elsewhere on the B-T
plane, there might be a different scaling or no scaling at
all.

'

8 lnB,„(T)
yr(T)=

8 lnT
(9)

Again, it is implicit in ideal scaling that these parame-
ters be B independent. In order to evaluate them, we
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FIG. 6. Temperature dependence of the derived parameters:
(a) yE(T) and k&(T), as obtained from the linear fits of Fig. 5;
(b) y(T) and k&(T), as obtained from the temperature depen-
dence of the coordinates of the fishtail peak [Eqs. (8) and (9)]; '(c)
The scale current density Jo(T) and the scale energy Uo(T),
normalized to their values at 30 K and obtained from Eqs. (17)
and (18). Estimated uncertainties are indicated by hatched
areas.

1. Diferent vortex regimes

Deviations from scaling are evident in the low-field
magnetization data as presented in Fig. 3, and they show
up in Fig. 5 as the steeper, short segments at negative
yi„(8 ) (as was pointed out in Sec. IV A 1, the latter repre-
sentation is general and does not depend upon the pres-
ence of a fishtail peak). At higher fields and for a wide
range of temperatures, the plots of S(B ) against y,„(B)

are indeed linear within the experimental noise, and that
is the appropriate criterion of whether there is significant
scaling over a substantial sector of the B-T plane. We
may then infer that within that sector a single model of
vortex behavior should be dominant. The analysis then
proceeds as described for ideal scaling, and the data can
be used to extract the fundamental vortex parameters, as
will be described in Sec. V.

The low-field behavior is complicated by self-field
effects, ' and is more evident in the well-oxygenated crys-
tals described in Ref. 6. There we concluded that the
low- and high-field regimes (denoted region 1 and region
2) are associated with distinct vortex dynamics; in our re-
cent systematic study of deoxygenated crystals, we find
that as oxygen is removed, region 1 shrinks on the B-T
plane and region 2 expands.

2. Lou temperatures

At temperatures below about 40 K in well-oxygenated
YBa2Cu307 & and at correspondingly lower tempera-
tures in deoxygenated crystals, J becomes only weakly
dependent on 8 (apart from the low-field region) up to
the maximum fields available in magnetometers, typically
10 T. Also, S hardly varies from its "universal value" of
0.03.' The measured S(8) and y,„(B) then shrink to a
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small cluster of points when plotted in the form of Fig. 5,
so that straight-line fits to obtain yE and kE are impossi-
ble and our procedure becomes inapplicable. It is for
that reason that we do not show data here below about
30 K.

This inability to extract useful parameters at low tem-
peratures is not because the approach is Aawed, but rath-
er rejects the experimental limitations. As we have
pointed out previously, ' information about U,ff is con-
tained within the second derivatives of the E-J-B surface,
and if the derivatives S(B) and y~„(B) are nearly con-
stant over the experimental range of B, there is little that
can be learned about the vortex dynamics.

V. IMPLICATIONS
OF SCALING FOR FLUX CREEP

A. Rate equation and the E-J-B surface

We now consider the physical significance of the exper-
imentally observed scaling and the four parameters kE,
yE, kz-, and yz. obtained from it. We emphasize that so
far we have made no assumptions or utilized any model
for the vortex behavior, so that without any circularity of
the argument we can now analyze the implications of
scaling for the vortex dynamics of the system.

The usual description of Aux creep is given by the rate
equation ' in terms of thermally activated motion of
vortices and can be written as

E =Bead exp
—U,F(J,B,T)

kT (10)

where co is a characteristic attempt frequency, d is a
characteristic hop distance, and U,~(J,B,T) is the poten-
tial energy barrier in the presence of a driving force pro-
portional to J and B. The physics of the system is con-
tained primarily within the U,~(J,B,T) function.

It is worthwhile emphasizing that when a sample is
taken round an isothermal magnetization loop with fixed
magnetic field sweep rate, H' and therefore E are con-
stant, and so (apart from a slow logarithmic dependence
on B) U,~ is being held constant. This is achieved by the
dependences of U,ff on J and on B exactly counterbalanc-
ing each other.

Isothermal magnetic measurements are conveniently
described by a three-dimensional E-J-B surface, ' and we
utilize the geometric relation

+1n
a lnJ
alnB E ~

aU, ff= —S 1—
kT alnB J z.

Therefore it is evident immediately that a relationship be-
tween S and yl„, such as that shown in Fig. 5, bears
directly on the B dependence of U,ff.

lnE a lnJ a lnB
alnJ z alnB E alnE

Recalling that S=(81nJ/81nE)z, the susceptibility y&„ is

B. Characteristic energy Uo
and characteristic current density Jo

In order to progress further we need to suggest a func-
tional form for U,ff while retaining as much generality as
possible. Following Schnack et al. , we separate
U,~(J,B,T) into an energy term and a current density
term:

U,~(J,B,T)=UO(B, T) V
J

Jo B,T

kT JQ(B, T)
(12)

where v is the velocity cod. We have measured the number
ln(vB/E) to be 25+5 at 20 K (see Appendix B), and so it
is large compared to unity and therefore insensitive to
changes in v. Hence we may neglect any field or tempera-
ture dependence of v in the following analysis (any
inAuence that these small dependences may have will be-
come incorporated in the functions Uo and Jo).

As shown in Appendix A, differentiation of Eq. (12)
with respect to each of lnB, lnE, and lnT yields equations
of just the same form as Eqs. (6) and (7), and so results in
straightforward express o s fo kE PE kv. a d yT.

a lnJp

a lnB
(13)

vB
y = I —lnE E

a lnU,
a lnB

(14)

a lnJp
kz- =kE+

y~ a nT (15)

vBy~= —yE ln E
a lnUp

lnT
(16)

These results show that the experimentally observed
scaling described in Sec. III can be translated directly
into the field and temperature dependences of Up and Jp
through the four measured scaling parameters kE, yE,
k~, and yz-. It is the simplicity of this linkage, requiring
neither complex manipulation of the experimental data
nor a model for the vortex dynamics and resting solely on
the rather general form for U,~ of Eq. (11), that makes it
so significant.

where Uo(B, T) is a characteristic energy barrier and
Jo(B,T) is a characteristic current density (or equivalent-
ly a force density). The function V(J/Jo) describes the
inhuence of the driving force on the effective activation
energy U,ff. Clearly, the absolute magnitudes of
U'o(B, T), V(J/Jo), and Jo(B,T) are undefined within
multiplicative factors.

We allow both Up and Jp to be functions of B and T,
and the purpose of the present analysis is to see how
much can be learned about their form from experiment.
We proceed by combining Eqs. (10) and (11):
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VI. EVALUATION OF THE FIELD
AND TEMPERATURE DEPENDENCES OF Up and Jp

A. Temperature dependence of Up(B T) and Jp(B T)

Equation (15) shows that the temperature dependence
of Jo is simply proportional to the difFerence between
M(H) loop scaling with respect to temperature and with
respect to electric field, as expressed by the parameters
kT and kE. It can be assessed immediately from a plot of
the measured data, as in Fig. 2, which shows that for the
illustrative sample these parameters are very nearly equal
(Fig. 6).

We integrate Eqs. (15) and (16) to find Jo( T ) and

Uo( T) explicitly:

FIG. 7. Schematic field dependences of the parameters
UQ(B ) and JQ(B ) and the resultant current density J(B), show-
ing how the fishtail peak in the magnetization arises from the
interplay of the two parameters.

dT
Jo( T ) =J( To)e"p y r(kT —kz )

TQ
(17) C. U z(J) function

Uo(T)= Uo(To)exp f 1+
ln uB/E)yE

dT
T

(18)

Knowledge of Jo(B ) and U&(B ) allows us to infer the
form of V(J ) or, equivalently, U, ir(J ). As we have just
seen, simple power laws Jo =A(T )8 and Uo =%(T)/8 fit
the data for the TmBazCu306 8 crystal rather well.
From Eq. (12) we then have

Figure 6(c) displays the results for the specific
TmBa2Cu306 s crystal and the near constancy of Jo(T)
with temperature.

%(T) J(B,T)
ln(uB/E)k A(T)B

(19)

B. Field dependences of Jp(B, T) and Up(B, T)

Recalling that scaling of the M(H) loops requires kE
and y E to be independent of 8 (Sec. IV), we can see from
Eqs. (13) and (14) that Jo(8) and Uo(B ) must have power
law dependences. We have

Jn(B, T)=A(T)B

and it is natural to plot BT as a function J(B )/B. These
data fit to a logarithmic form for V(J ) (Fig. 8), giving

J(B,T)=A(T)B exp — ln
ql( T) E (20)

The creep rate S can be obtained immediately from this
simple fit:

and $(B,T)= 8,kT
(21)

Uo(B, T)=4(T)B
where A( T) and qI( T ) describe the temperature depen-
dences of Jo(8, T ) and Uo(B, T ), respectively.

The experimental values for our illustrative sample as
given in Sec. III and Fig. 6(a) yield

Jo(8, T)=A(T)B'

and [with ln(uB /e ) =25+5 as evaluated in Appendix B]

Uo(B, T)=%(T)B

without any significant temperature dependence of the
exponents; hence, the B and T dependences are separable.
Thus, within experimental uncertainties, we have for this
TmBa2Cu306 8 crystal simply Jo(B ) ~ 8 and
Uo(8) ~ 1/B.

We can now understand the presence of the fishtail
peak in terms of the field dependences of Jo(B,T) and
Uo(B, T): At low fields, U,a, and so also the measured
current density J(8,T), is dominated by the increase of
Jo(8, T) with field, but eventually it is overtaken by the
decrease in Uo(8, T) (Fig. 7).

which is, of course, consistent with the observed linear
dependence of S on B shown above the low-field region in
Fig. 4.

400-

200-

0=

Low
+field

S 10 12 14
ln[J(B)/B (Acm T )J

FIG. 8. Isotherms of experimental data plotted in the form
BTagainst ln[ J(B)/B ]. In the low-field region, self-field effects
may be significant. The higher-field data fit well to straight
lines, suggesting that the function V(J), which controls the
current dependence of U,z, is well approximated by a simple
logarithm (Sec. VI C).
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VII. COMPARISON TO THEORY

The thrust of the present paper is to show how key pa-
rameters can be extracted reliably from magnetization
data. The meeting point with theory is the comparison
with the predicted dependences of U,& on J, B, and T.
We make this comparison to illustrate that theoretical
models often yield characteristic critical currents J, and
energy barriers U„and that the temperature and field
dependences of these should relate to the scaling parame-
ters of Eqs. (13)—(16). However, as the absolute values of
Uo and Jo are not uniquely defined, direct associations
between U, and Uo or J, and Jo must be treated with
caution.

It is not appropriate here to review exhaustively the
theoretical situation, ' but to illustrate the way forward,
we make a brief comparison of our results with the origi-
nal theory of collective pinning as proposed by Larkin
and Ovchinnikov. ' The presence of random disorder
causes the vortex lattice to be replaced by a glassy array,
in which the vortex positions are correlated only within a
Aux bundle of volume Q, . The pinning forces in the
volume Q, add randomly, so that U, ~F, ~Q,', where
U, is the energy with which the bundle is pinned and F,
is the maximum pinning force on the bundle. Given that
the pinning force per unit volume is J,B, we have
J,B=F,/Q, =Q, '~; hence, U, o-1/(J, B). If U, (B)
and J,(B ) have power law dependences U, ~ B" and
J, ~ B~, we obtain ( u +j ) = —1. Note that this result is
independent of the field dependence of Q„which is a
complicated issue.

We can make a direct comparison to the experimental
results as follows. For the illustrative TmBa2Cu306 8

crystal, we have measured Jo(B)ccB and Uo(.B)~B
which implies J,(B)~B and U, (B)~B ' and hence
( u +j ) =0(+0.3 ), in contradiction with the Larkin-
Ovchinnikov result.

The collective pinning theory has been modified to ac-
count for sample anisotropy and harmonic thermal Auc-
tuations of the vortex lattice. ' ' In this rather compli-
cated picture, several different pinning regimes are pre-
dicted. All but one predict a decreasing J, with field and
hence disagree entirely with our results; the one excep-
tion is when nonlocal effects soften the vortex lattice and
result in J, ~B and U, =const. This is a somewhat
better description of our TmBa2Cu306 8 data, but certain-
ly not satisfactory. Also, the inferred logarithmic depen-
dence of U,s on J (Sec. VI C) is not predicted by this
theory, but has been observed in other experiments. '

Stronger evidence about the vortex dynamics can be
obtained from a comparative study of several crystals
and particularly from the behavior as the anisotropy is al-
tered by withdrawing oxygen. Different regimes certain-
ly are visible, and they can be quantified by applying the
systematic procedure for analyzing the experimental data
developed here.

VIII. CONCLUSIONS

ductors, but previous analyses have been rather compli-
cated and so obscured the connection between the field
and temperature dependences of M and S on the one
hand and key pinning parameters on the other.

Here we have developed an analytical procedure that
incorporates the commonly observed scaling behavior of
the M(H) loops in (R)BazCu307 s and shown that it
yields quantities that can be related in a rather simple
fashion to the usual description of thermally activated
vortex motion. The important parameters that measure
the temperature and field dependences of the characteris-
tic current density and energy scales can then be obtained
directly, and so much more transparently, from the ex-
perimental data, without any deconvolution or fitting pa-
rameters. All of this can be accomplished without intro-
ducing any specific model for the vortex dynamics.

Deliberately, in this paper we have chosen for simplici-
ty to illustrate the value of the procedure by applying it
to the magnetization data obtained from just one
TmBa2Cu 307 & crystal. The manner in which the
characteristic energy and current scales change with oxy-
gen concentration will be discussed elsewhere.
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Differentiating (Al), with respect to lnB, yields

1=1n vB ln Uo

8 lnB T

Uo J+ V' 8 lnJ
al~ „ a lnJ,

BlnB ~ T
(A2)

with respect to lnE,

Uo J, alnJ
kT J BlnE

(A3)

and, with respect to lnT,

0=ln UB 0 lnUo1—
8lnT

Uo J
T J

8 lnJ
8 lnT

ln Jo
(A4)

nT

Substitution of (A3) into (A2) gives
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APPENDIX A: DERIVATION OF THE SCALING
PARAMETERS FROM THE RATE EQUATION

We start with Eq. (11),

The data from magnetization experiments contain all
the information relevant to vortex dynamics in supercon-

8 lnJ
8 lnE

( 8 ln Jo /8 lnB )T
—( 8 lnJ/3 lnB )@T

1 —ln(uB /E )(B ln Uo /8 lnB ) z.
. (A5)
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A comparison of (A5) with (5) shows that

0 lnJo

8 lnB z-
(A6)

and

vBy~= —yE ln E
3lnU
3 lnT

(A 10)

and

vB
y = 1 —lnE

8 lnUo

8 lnB z-
(A7)

Equations (A6), (A7), (A9), and (A10) are the key re-
sults that are used in the analysis. Note that no approxi-
mations have been used; for example, we have not as-
sumed that there is simple power law behavior of E on J.

Substitution (A2) in (A4) gives APPENDIX B: EVALUATION OF ln( vB /E )

8 lnJ
8 lnT

8 lnJo+
8 lnT

(A8)

1 n( BU/E)[1 —(BlnUo/BinT)z]
1 —ln( UB /E )( B ln Uo /8 lnB )r

8 lnJo B]nJ
8 lnB ~ 8 lnB

From Eq. (A10),

vB
ln

)'r/rE
(1—8 lnUD/8 lnT)~

vB
ln

yT

At low temperatures Uo can be considered to be insensi-
tive to temperature ' and hence

A comparison of (AS) with (6) shows that

9 lnUo
T E (A9)

Measurements of y~ and y ~ between 30 and 80 K allow
extrapolation to T=O; for the present sample, we find
1n( vB /E ) =25+5.
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