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The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes
where diagonal long-range (solid) order dominates as well as conducting regimes where oiF-diagonal
long-range order (superfluidity) is present. In this paper we describe the results of quantum Monte
Carlo calculations of the phase diagram, both for the hard- and soft-core cases, with a particular
focus on the possibility of simultaneous superHuid and solid order. We also discuss the appearance
of phase separation in the model. The simulations are compared with analytic calculations of the
phase diagram and spin-wave dispersion.

I. INTRODUCTION

A lot of at tention has been focused on the inter-
acting electron problem in the last several decades,
whereas the interacting boson problem has been con-
sidered more often in the framework of specific appli-
cations only. However, there are a number of impor-
tant situations where the elementary excitations are ei-
ther intrinsically bosonic in character or else can use-
fully be viewed in terms of bosonic models. He is
an example of the former situation, while quantum
spin systems, granular superconductors, and flux lines
in type-II superconductors are examples of the latter.
Therefore it is important to understand in detail the fea-
tures of model boson systems, in much the same way that
one studies the Hubbard, Anderson, and t-J Hamiltoni-
ans for correlated fermions. In this paper we consider
a lattice model of interacting bosons, the Bose Hubbard
(BH) Hamiltonian

H= t) (atas+a a—) —p) n +Vo) n;
(ij) i i

+Vj) n, n, +V, ) n, n, .
(ij (('I ))

Here a; is a boson annihilation operator at site i, and
n; = a,.a, . The transfer integral t = 1 sets the scale of
the energy, and p is the chemical potential. Vp Vj and
V2 are on-site, near-neighbor, and next-near-neighbor
boson-boson repulsions.

The interactions Vo, Vj, and V2 promote the formation
of "solid" order, where the boson occupations fall into

regular patterns, at special densities commensurate with
the lattice. The hopping matrix element t favors mobile
bosons, and consequently a superfluid phase at T = 0. In
what follows the nature of the correlation functions will
be studied as we change the Hamiltonian parameters and
the density p = ~ P,.(n;).

When Vo ——oo, the BH model maps onto the quantum
spin-1/2 Hamiltonian

H =-t) (s+s;. +s+s;)+v) s;. s;.
(") (ij)

+v) ss„—H) s;.

The field H, = p, —2Vj —2V2. Since n; ++ S; + 2,
ordering of the density corresponds to finite wave vector
Ising-type order. Similarly, a, ~ S; so that superfluidity
maps to ferromagnetic ordering in the XY plane. One
of the things we shall be interested in in this work is
the possibility that density and superfluid order are not
mutually exclusive. Indeed, at V2 ——K, = 0, the special
point Vj ——2t corresponds to the Heisenberg Hamiltonian
where Ising and XY order coexist. It has been suggested
by various authors ' that the addition of further terms
like V2 or H, could stabilize this "supersolid" from a
special symmetry point to a broader area of the phase
diagram. Precisely at the Heisenberg antiferromagnet
(AF), the effect of a field H, is known: It breaks the
full rotational symmetry and selects ordering in the XY
plane since the spins can more easily take advantage of
the field energy. This argument has been used to suggest
why doping favors the superconducting over the charge-
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density-wave (CDW) state in the negative-U Hubbard
model where an analogous "supersolid" symmetry exists
at half-filling.

While there have been many mean field (MF) studies
of the spin Hamiltonian Eq. (2), there have been to date
only a few numerical studies. Monte Carlo studies
of interacting quantum boson and spin models provide a
useful, exact method to study the nature of the correla-
tions on Gnite lattices. Combined with finite size scaling
methods, they can be used to extract information con-
cerning the thermodynamic limit. Boson simulations are
somewhat easier than related path integral methods for
interacting electron systems, since they can utilize algo-
rithms which scale linearly with the lattice size and can
reach essentially arbitrarily low temperatures.

This paper is organized as follows: In Secs. II and
III we determine analytically the MF phase diagram, ex-
tending past work by considering additional types of or-
der, and describe spin-wave calculations of the dispersion
relations in the various phases. In Sec. IV we provide
numerical results for the soft-core model, extending our
earlier studies. In Sec. V we describe results for the
hard-core phase diagram. Conclusions are presented in
Sec. VI.

II. MEAN FIELD PHASE DIAGRAM

Previous work established the MF phase diagram of
the spin Hamiltonian considering only the possibility of
superfluidity and Neel-type ordering of the density. ' '

At half-filling, or equivalently at zero magnetization
M = 0, for Vj ) 2and0 & V2 & Vi —2thespins
form a Neel state, corresponding to a checkerboard Bose
solid with an ordering vector k, = (7r, vr) For V2.

max (Vi —2; 0) a ferromagnetic phase is formed, with a
net moment M „g 0 and M, g 0. This phase corre-
sponds to a superPuid, and is also stable for arbitrary Vi

and V2 away &om half-filling. A fully polarized magnetic
phase in a strong magnetic field II, where only M, j 0,
corresponds to a Mott insulator with precisely one boson
per site. As the solid and the superfluid phases possess
different broken symmetries, one could expect that the
transition between them is first order. However, a rather
different scenario has also been put forward, suggesting
that the, presumably, first-order transition is split up
into two distinct second-order transitions, where the two
order parameters vanish at separate points. In the
regime between the two transitions both order parameters
are nonzero; hence it has been termed a supersolid.
This intriguing possibility is the subject of the investiga-
tions reported in this paper.

The mean field analysis indeed Gnds such a super-
solid phase, ' ' although in the hard-core limit longer-
range forces (V2 ) 0) are needed to stabilize it. How-
ever, recently it was claimed that this conclusion changes
in the soft core case, and a supersolid phase exists
with nearest-neighbor interaction alone. Finally, recent
studies on the related Heisenberg model with compet-
ing Grst and second neighbor couplings Ji and J2 es-
tablished the possibility of additional phases: a collinear
phase, with alternating lines of up and down spins, at
large J2/Ji, and a disordered phase at intermediate
values of J2/Ji. ' These differing results clearly call
for a reinvestigation of the problem.

The MF phase diagram of the spin Hamiltonian Eq. (2)
worked out by Matsuda and Tsuneto, and described
above, allowed only for a two-sublattice magnetic order-
ing of the spins corresponding to a Neel solid. Represent-
ing the spins by classical vectors of length S we extend
earlier MF analyses ' for the case of a square lattice
to include also the possibility of a collinear phase which
is expected to form for intermediate to large next-near-
neighbor repulsion V2 (see Fig. 1). Assuming that the
spins are ordered in the 2CZ plane, the MF energies per
spin, e~ and e~, of the Neel and collinear spin configu-
rations are given by

eiv = —4S sinOg sin Ogy + 2S Vi cosOg cos0~ + V2S (cos 0~ + cos 0~) — S(cosOg + cos Oii),
2

2 ~ Vj S 2 2 H
ez = —S (sin Ozi + sin 0+2) + (cos Ozi + cos Oz2) + 2V2S cos O~i cos 0~2 — S (cos 0~] + cos 0~2) . (4)2 2

0~ and 0~ are the angles between the spin direction and the z axis on sublattices A and B, respectively. 0~i and
0R2 are the corresponding angles in the collinear phase on even and odd rows. The different phases are identified as
follows:

cos0~ ——cos0~ & 1 or cos0~y = cos0~2 & 1,
cos 0~ = —cos 0~ = 1)

cos 0~y ———cos 0~2
sinO~ g sin 0~ and —1 & cos 0~ g —cos 0~

sin O~i g sin 0~2 and —1 & cos 0~] g —cos 0~2
cos 0~ ——cos 0~ ——1 or cos 0~i = cos 0~2

sup erflui,
Neel solid,

collinear solid,

Neel sup ersolid. ,

collinear sup ersolid,

Mott phase.

We performed the MF analysis in the same spirit as in Refs. 5, 6, and 11. One proceeds by minimizing e~ and
e~ separately with respect to the angles 0~, 0~ and 0~~, 0~2, respectively. Then the results for fixed magnetic Geld
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H are translated to fixed magnetization, i.e. , boson density. Finally, we compare the energies of the diferent phases
to obtain the complete MF phase diagram of the spin Hamiltonian Eq. (2). Explicitly, for two-sublattice Neel-type
ordering we find the following phases for Vj ) 2 and 0 & V2 & Vj —2:

1
2

m=0,
10& m&—
2

Vj —V2 —2 1
& m& —

)
Vj —V2+ 2 2'

1
m )

2

solid,

Vj —V2 —2
N eel sup ersolid,

Vj —V2+ 2'

superfluid,

Mott insulator, (6)

where m =
~p

—
2 ~

is the magnetization of the system.
For 0 & Vi & 2 there is no Neel order and for m g 0 the
MF ground state is always superfluid.

Similarly we analyze the phase diagram following from
minimizing e~ for the ordered collinear spin structures
corresponding to an ordering wave vector k, = (0, vr) or
(a, 0). At half-filling the collinear solid (see Fig. 1) is re-
alized for arbitrary values of the near-neighbor repulsion
Vj. The reason is that at half-filling the energy for the
collinear solid is ec = —V2/2, i.e. , independent of Vi due
to the cancellation of S, S. energies for near-neighbor
sites on the same and neighboring rows. Away from half-
filling only the superfluid minimizes e~ for V2 & 2. For
V2 ) 2 a collinear supersolid appears in the phase dia-
gram and the boundary between the superfluid and the
collinear supersolid is determined by

1 V2 —2
0 & m& —,collinear supersolid,

2 V2

1 V2 —2 1
& m& —, superfluid,

2 V2 2'

which is again independent of Vj. For V2 ) 2 the

1
e~ ————V2, collinear solid,

2
uperfluid,ejy=eg = —1,

1
e(v = —(V2 —Vi),

2
Neel solid.

The resulting phase diagram is shown in Fig. 2. Interest-
ingly, for 2 & Vj & 4 increasing V2 drives two transitions:
First increasing V2 frustrates the Neel solid and leads to
a transition to a superfluid. Increasing V2 further sta-
bilizes collinear order and leads to a transition from a
superfluid to a collinear solid.

Away from half-filling, 0 & m & 1/2, no solids, neither
Neel nor collinear, are MF solutions. Instead, transitions
occur between the superfluid and the Neel and collinear
8upersolid phases. The boundaries between the different
phases are given by

collinear supersolid phase occurs in a density strip of
width g(V2 —2)/V2 around half-filling.

Given the MF solution for e~ and e~ separately, a
comparison for the energies of the difFerent phases allows
to map out the complete mean field phase diagram of the
spin Hamiltonian Eq. (2). E.g. , at half-filling, m = 0, we
have to compare

]I,

]k ]I
Ir'

Neel Solid

]( ]S ]i

'I( I( )( 'I(

Collinear Solid

1+4m
V2 ——Vj —2, superfluid to Neel supersolid,

1 —4m2 '

2
V~ ——,superfluid to collinear supersolid,

1 —4m2 '

1 4m'
V2 ———Vj —,Neel to collinear supersolid.

2 1 —4m2'

I'I (l I'I (i

]I, ]4 ]I ]I,

Mott Insulator Superfluid Colline

Neel Supersolid Collinear Supersolid

FIG. 1. Mean field phases MF of the XXZ spin Hamilto-
nian Eq. (2) on a 2D square lattice.

FIG. 2. Hard-core mean field phase diagram at half-filling

p = —from comparing the energies of the superHuid, and Neel
and collinear solids.
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Finite doping leads to a rigid shift of the phase boundary
lines obtained at half-filling with the solid replaced by
supersolid phases. For

1+4m 1+ 2m
2 &V, &4

1 —4m2 1 —4m2 '

0 4-

0.3-

V1 =3
I I

SUPERFLUID

S."=m —~,

S =s —b,

S~ = m+~,
S~ = s+b,

and expanding to second order in the (small) fluctuations
e and b. The expectation value e of the ground state
energy per site takes the form

e = esF —4V2e + Vo[(12s + 4m —1)b

+(12m + 4s —l)s + 16smeb],

esp = —8s +4(Vi+ V2)m + —Vo(4s +4m —1)
8

(12)

this still allows for two transitions with increasing V2,
from a Neel supersolid to a superfluid to a collinear su-
persolid. The Vi-V2 phase diagram for a fixed magneti-
zation m = 0.2 is shown in Fig. 3. In addition, Figs. 4
and 5 show the phase boundaries in the V2, m plane for a
fixed value of Vi and in the Vj, m plane for a 6xed value
of V2, respectively.

Recently it was claimed that a finite core repulsion
Vp & oo qualitatively changes this picture. Supersolids
were found to exist even at half-filling, moreover iitithout
the next-nearest-neighbor repulsion V2. To study these
claims we extend the MF analysis by introducing an
approximate soft-core representation allowing the spin
length S to be a variational parameter and adding a
term H, „,t, ;„t ——Vo P, (S, —1) to the Hamiltonian.
The minimization of the ground state energy is now done
separately with respect to S,S and S, , S, .

We expand the ground state energy around the super-
fluid phase, and consider the eigenvalues corresponding
to small spatial modulations of the density and super-
fluid order parameter, in effect generating a Ginzburg-
Landau-type expression. The superfluid-collinear super-
solid transition is studied by writing

0.2-

0.1-

/
/II

/I
I

I
I

I
I
I
I
I
I
I
I

COLLINEAR—

SS
I

I3 6.5 1.0 1.5 0.0 2.5 8.0 8.5 4.0

FIG. 4. Hard-core mean field phase diagram, magnetiza-
tion m versus V2, for fixed Vi ——3. SS denotes the supersolid
phases.

2=1 2 2
s = ——m + —.

4 Vp

A zero, eigenvalue of the energy matrix signals the phase
transition. The condition for the vanishing of the deter-
minant can be solved for V2 for arbitrary m,

8m
V2 ——2+

1 —4m2 + 12/Vo
' (14)

which gives the phase boundary between the superfluid
and the collinear supersolid. With the same procedure
the phase boundary between the superfluid and the Neel
supersolid is at V2 ——Vi —2 —16m /[1 —4m + 16/Vo].
As in the hard-core case the phase diagram displays Neel
and collinear supersolid and superfluid phases. At half-
filling the supersolid phases vanish, and two insulating

The ground state energy is the sum of eigenvalues of a
matrix in the (s, h) space. First we solve for s at a fixed
number of particles, i.e., fixed m, in the superconducting
state where b = e = 0, and obtain

O.G

Collin
0.4-

0.3-

0.2-

0.1-

FIG. 3. Hard-core mean field phase diagram (bold lines)
away from half-filling for m = ~p

——
~

= 0.2 from comparing
the energies of the superHuid and Neel and collinear super-
solids. Thin lines indicate the phase boundaries at half-filling
m. = 0 (see Fig. 2).

0

V1

10

FIG. 5. Hard-core mean field phase diagram, magnetiza-
tion m versus Vj, for fixed V2 ——1.
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solids are direct neighbors to the superHuid, in contrast
with the result of Ref. 9. This result is independent of
Vp, i.e., it is true both in the soft- and hard-core limits,
in agreement with the above hard-core MF calculation. cos 0~(~)

S'g~(&pa) =
SiIl 0~(~)

0 —siIl 0~(~)
1 0 SigA(g gH) ~

0 cos 0~(gy)

to align the spins along the local d.irection of the magne-
tization by

III. SPIN-WAVE ANALYSIS

The analyses of the spin-wave Huctuations which exist
in the literature ' ' are in disagreement. The spectrum
has been found to be either linear or quadratic at
the solid-supersolid phase bound. ary. This dependence
is crucial for numerical studies, as it determines the dy-
namical critical exponent z and thereby the appropriate
finite size scaling of the lattice.

To settle the issue, we redo the linear spin-wave theory
analysis for the spin model of Eq. (2) and determine the
spectrum in the superQuid, the Neel solid, and the Neel
supersolid. Again we assume that the spins are ordered
in the LZ plane with an angle 0~(~) to the z direction.
On each sublattice the spin quantization axis is rotated

To diagonalize the spin Hamiltonian Eq. (2) in terms of
the rotated spins S we introduce spin raising and lowering
operators at and a on sublattice A by

(16)

which obey the usual bosonic commutation relations in
the large S limit. Similarly, the operators bt and b are
introduced on sublattice B. After Fourier transformation
this leads, up to a constant energy shift, to the linear
spin-wave Hamiltonian

A A A A

Haw = ), ' Ha (baba+a aii a) +H33 baba+ b ab a) + Ha& (bab a+ bab a)

+H34 bkb k+bkb k +H31 akbk+a kb k+Qkbk+a kb k
At At

+H41 +kb k + + kbk + +kb —k + +—kbk (17)

neglecting higher-order terms in a and b. Due to the two-sublattice structure the k sum is restricted to half of
the Brillouin zone, i.e., to momenta with cos(k ) + cos(k„) & 0. In the superfiuid and the supersolid phases the
k-dependent coefficients in Eq. (17) are given by

S1Il 0'
H11 ——2 . + H21

sin 0~
~ 2 (2)H21 = —V2 sin 0~ pk2

H31 —pk —1 —cos 0~ cos 0~ + —Vj sin 0~ sin 0~(1) 1
2

Sill 0~
H33 ——2 . + H34,

S1Il 0'
1 . 2 (2)H34 ———V2sin 0~ pk2

H41 —H31 + 2+k )
(1)

H
2

sine/ ——2 cos 0g sin 0~ + Vj cos 0~ sin 0/

+V2 cos 0~ siI10~)

H.
2

sill0/ = 2cos0~ sin0/ + Vj cos0/ sirl0/

+V2 cos 0~ siIl 0' . (19)

where pz
——

2 [cos(k ) + cos(k„)j and
cos(k ) cos(k&). The coefficients of the first-order terms
are required to vanish which leads to the conditions

These two equations determine the angles 0~ and 0~ for
a given value of the magnetic field H . The solutions
of Eqs. (19) determine the phase diagram of the model.
These equations fully coincide with the ones obtained by
minimizing the free energy in the previous section. We
have already used Eq. (19) to eliminate the magnetic
field in the expressions for the coeKcients H11 and H33
in Eq. (18) of the spin-wave Hamiltonian. However, for
the Neel solid and the Mott insulator phases where both
sin 0~ ——0 and sin 0~ ——0 the elimination is not possible
and instead H11 and H33 are given by

1
H11 = V1 —V2 ——H,

2

1
H33 ——Vj —V2 + —H

2
Neel solid,

1
H1 j —H33 — Vj V2 + —H, , Mott insulator.

2
(20)
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Equation (17) is diagonalized by a generalized Bogoliubov transformation using the equation of motion iBtai, =
[ag, Hsvv] with ag oc e ' . In the boson language the Bogoliubov transformation involves coupled density and
phase modes. As a result we obtain the spin-wave dispersion in the form

~+( ) (Hll H21 + 2 31 H41 + H33 H34 + ((Hil H21 H33 + H34)2
+4([H11 —H21] [H31 + H41] + [H33 + H34] [H31 —H21])

X([H33 H34][H31 + H41] + [Hll + H21][H31 H21])) (21)

(~)
'

~+(k) = (V, —V, ) —(2Y„+ H, . —
2

(22)

Thus, there are two excitation branches in a halved mag-
netic Brillouin zone. Both branches are gapped.

(ii) In the superfluid there is a Goldstone mode of linear
k dependence at small k, and a well-developed minimum
around k, = (7r, vr). Taking the continuum limit carefully
identifies this with the roton part of the helium disper-
sion. Explicitly, with s = sin0~ ——sin0~, the dispersion
in the extended zone is given by

Typical dispersions are shown in Fig. 6 in the diferent
phases and on the phase boundaries. We now overview
the dispersion relations in the four phases.

(i) In the Neel solid which is realized for V2 & Vj —2

and H & 2/(Vj —V2)2 —4 the spin-wave dispersion is
given by

S~ (k) = —(2+ V2+ Vi) k,
2

~ [(vr, ~) —k] = 8A + (2 —34 —V2s ), (26)

ical exponent z = 2. This value of z agrees with that of
Chester and Cheng, but divers f'rom that of Liu and
Fisher, who obtain z = 1. We feel, however, that the
softening of the Goldstone mode is a physically realistic
picture, supporting our result.

At the generic superfluid —to—Neel-supersolid transition
the critical mode is at k, = (m, n). Inside the superfluid
phase the roton minimum is at this wave vector. How-
ever, in the solid, because of the zone halving, this roton
minimum is folded back to k = 0. In the superfluid where
sin 0~ ——sin 0~ ——s we study the small k expansion of
the single mode in the neighborhood of k = (0, 0) and
k = (vr, vr) (note that the Neel supersolid is only realized
for V, & Vj —2):

+s [V27k + (2+ Vj)71, ]).
(iii) In the Mott insulator phase for fields H, ) 2(2+

Vi + U2) all spins are aligned along the magnetic field
direction. There is a single gapped mode in the extended
first Brillouin zone with the dispersion given by

~(k) = —Vj —V2 —2P„
H (~)
2

(24)

1 1
(k) =- k

2 g(Vj —V2)2 —4

This means that the linear mode of the supersolid softens
into a quadratic one at the boundary, signaling the de-
struction of superfluidity, before lifting oA into a gapped
mode inside the solid phase. This yields a quantum crit-

(iv) Finally, in the supersolid phase one has a gapless
linear mode, and a gapped one, again in the halved mag-
netic zone.

To clarify the physics of the transitions we concentrate
on the dispersion at k —0 and k = (vr, vr) at the phase
boundaries. At the supersolid-Neel-solid transition the
critical mode is the Goldstone mode at small k. At the
critical magnetic field H; = 2/(Vj —V2) 2 —4, which de-
termines the Neel-solid —to—supersolid boundary by the
vanishing of the gap of the lower excitation branch of
the solid, we perform the small k expansion for w (k)
from Eq. (22). For Vj ) V2 + 2 where the solid exists at
half-filling we obtain

where 4 = 2 + (s /2) [V2 —2 —Vj]. At the boundary
to the Neel supersolid which is reached at a magnetic
field H, = 2/(Vi —V2) —4(Vj + V2 + 2)/(Vi V2 + 2)
the mean field conditions in Eq. (19) tell that exactly at
the transition the roton gap A disappears: The solidifi
cation is signaled by the softening out of the roton mode
of the superPuid. The dispersion relation of the rotons
also changes from a quadratic to a linear minimum; hence
z=l.

Two remarks are in order here. First, recalling the
original Landau argument about superfluidity it is clear
that a vanishing roton energy leads to a vanishing critical
velocity. In other words, upon approaching the transition
from the superfluid side the critical velocity (the slope of
the line connecting the origin of the ~-k plane with the
roton minimum) decreases to zero. At the same time the
superfluid order parameter remains finite through the su-
persolid transition. Inside the supersolid phase the spa-
tial periodicity is doubled, and so half of the excitation
spectrum has to be folded back to the origin. This sec-
ond branch acquires a gap, with a quadratic minimum
above it, and so the critical velocity will continuously
climb back to finite values.

Second, one can raise the question of how this picture
is going to be modified in the absence of an underlying
lattice. In this continuum limit the modes which go soft
are located at a finite magnitude of k, i.e. , on a ring
in momentum space. This means that the phase space
for these excitations is much larger than for the usual
Goldstone modes, which are centered around k 0. It
then is possible that these excitations may give rise to
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a Huctuation-induced first order transition instead of the
second-order one taking place on the lattice.

Similar expansions can be used to study the case of
half-filling. In this particle-hole symmetric case, not sur-
prisingly both transitions have z = l. In a recent Monte
Carlo study the same z value was used in choosing the

lattice size to study both the superBuid-supersolid and
supersolid-solid transitions, whereas we find z = 1 and
z = 2, respectively, ofF half-filling. Recently those simula-
tion were repeated with these diferent dynamical critical
exponents, and the resulting scaling curves showed con-
siderable improvement, thereby justifying the results of

V2=1 .5 h=2.6 V1 =4 V2=1.5, h=3.0, V1=4

3.6-

3.0.

2.6.
s

2.0.

1.6-

SOLID 4.0.

3.6-

2.6-
s

2.0.

1.6-

SOLID ------ SUPERSOLID-

3.0--

0.6-

0 6.5 1.0 1.6 2.0 9.6 8.0

qx =qy

0.6-

0
d.5 1.0 1.5 2.0 d.5 8.0

qx=qy

V2 ——1.5, h=3.8, V

4.0. SUPERSOLID

(c)
V2=1.5, h=5.0, V1=4

I I I I I

4.0- SUPERSOLID

3 6- SUPERFLUID

(cI )

1.0.

0.6-

0
0.6 1.0 1.5 2.0 2.5 8.0

q =q

2.6-
s

2.0.

1.6-

1.0-

0.6-

d.6 1.0 1.6 2.0 2.6 8.0

qx =Qy

V2=1.5, h=5.6, V1=4

4.0 SUPERFLUID

0 0.6 1.0 1.6 9.0 2.6 8.0

qx=qy

FIG. 6. Spin-wave dispersions in the (a) Neel solid, (b) at the Neel-solid —Neel-supersolid boundary, (c) in the Neel supersolid,
(d) at the Neel-supersolid —superBuid boundary, and (e) in the superiuid. In all plots Vs and Vi are fixed to V2 ——1.5, Vi ——4,
and the magnetic field h (H in the text) is varied.
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the spin-wave analysis.
Finally, at high fields, at the superfluid —to—Mott-

insulator transition the Goldstone mode softens out
again, leading to z = 2, in agreement with earlier field
theoretical predictions and numerical simulations.

We have repeated the spin-wave calculation for the
collinear ordering for an ordering wave vector k, = (0, m).
In this case the coefficients of the Hamiltonian Eq. (17)
outside the collinear solid and the Mott insulating phases
are given by

( sin OR, 5 1 2Hl1 ——
~

1 + .
~
+ —(VI sm ORI —2 —2 cos ORI) cos(k~),

sin ORI ) 4

Sill OR1 ) 1 2Hss —
~

1 +
~
+ —(VI sin OR2 —2 —2 cos OR2) cos(k )Sill OR2 ) 4

H2, ——sin OR i (2 + Vi ) cos (k~ ),=1 2

4
Hs4 ———sin OR2 (2 + Vl) cos(k ),=1 2

4
=1 V2 . (2)Hsi ———

[
—2 —2 cos ORI cos OR2 + Vl siI1 ORI sill OR2] cos (k&) + —sill ORI sill OR2 pk

H41 ——Hsi + cos(k„) .

The MF conditions are read off from the vanishing of the terms linear in the spin-wave operators as before,

(27)

H, sin ORI ——2 cos OR1(sin ORI + sin OR2) + Vl Sill OR1(COS ORI + COS OR2) + 2V2 COS OR2 S1I1OR1

H, sinOR2 ——2cos OR2(sin ORI + sin OR2) + Ul SlllOR2(COSOR1+ COSOR2) + 2V2 COSOR1 S111OR2. (28)

For the superfluid and the Mott insulating phase the spin-
wave dispersions are obtained identical to the ones de-
rived above in Eqs. (23) and (24). In the collinear solid
with sine~q ——sinOR2 ——0 the coefFicients Hqi and H33
are replaced by

1
Hll ——V2 — H, —cos(k—),2

1
Hss ——V2 + H, —cos(k —) .

2

The two gapped modes in the collinear solid for mag-
netic fields H & 2+(V2 —1)2 —1 and V2 ) 2 follow as

culations are performed using a path integral represen-
tation on the BH partition function by discretizing the
inverse temperature P into L intervals, P = L A7. A
description of the technical details is contained in Ref. 27.
In order to characterize the phase diagram, we measure
the boson winding number to determine the superfluid
density p, . We also measure the density-density corre-
lations c(1) and their Fourier transform, the structure
factor S(k):

c(l) = (n(j, r)n(j+ l, r)),

S(k) = —) e'"' (c(l)).

1
w~(k) = [V2 —cos(k )]2 —cos2(k„) + H, . —

2
(30)

IV. SIMULATIONS OF THE SOFT-CORE MODEL

A. Results at half-Ailing

In this section we describe the results of numerical
simulations, and compare them with the picture gained
from the analytical considerations. Our Monte Carlo cal-

As for the Neel supersolid, the collinear supersolid has
one gapless linear mode at small k and a gapped one in
the halved magnetic Brillouin zone which in the case of
collinear ordering with wave vector k, = (0, vr) is deter-
mined by ~k„~ & a/2. The transition from the superffuid
to collinear supersolid is now driven by the softening of
the roton mode at k„= (0, vr). The dynamical exponent
is again z = 1. Also the exponents at the superfluid-
to—collinear-solid and at the solid-to-supersolid transition
are identical to the exponents found for the Neel ordering
transitions.

Our normalization of the structure factor is such that if
c(l) exhibits long-range order, S(k, ) will be proportional
to the lattice volume K = L, where L is the linear ex-
tent in the spatial dimension. If c(l) exhibits only short-
range order, S(k, ) will be lattice size independent. Here
k, = (Ir, m), (0, 7r), (vr, 0) are the possible ordering wave
vectors of the solid phase.

At weak coupling or high temperatures, c(l) exhibits
only short-range order. For I small, c(1) is enhanced but
very rapidly decays to its uncorrelated value p . How-
ever, at low temperatures for sufFiciently large interac-
tions, the density-density correlations show long-range
oscillations. The associated structure factor S(k) evolves
from being rather featureless to exhibiting a sharp peak
at k, = (vr, vr) as Vl increases, and a peak at k, = (0, vr)

or (Ir, O) as V2 increases. For our two-dimensional (2D)
system, for sufBciently large Vq, we expect a transition
in the Ising universality class. That is, T is fi.nite. In
fact, if t = 0, we have T = 0.567 Vj. But even for a
zero-temperature phase transition such as would occur
at the Heisenberg point of the hard-core model, one will
still observe "long-range order" at fi.nite T when the di-
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verging correlation length exceeds the spatial lattice size
as T is lowered. In such instances, of course, a careful
study of finite size effects is required to draw conclusions
concerning the existence of long-range order. Here we al-
ways report results for temperatures such that ( ) L„so
that observables have taken on their ground state values.
We have checked the scaling behavior to be sure that the
ground state is genuinely ordered, when so claimed.

Figure 7 shows the superfluid density p, and structure
factor S(vr, vr) as a function of Vq for Vo ——7 and V2 ——0.
We see that at Vi 2.5 there is a phase transition &om
a superfluid to a solid phase. The transition on the 8 x 8
lattice shown is already rather sharp; finite size rounding
in the raw data for the structure factor and superfluid
density near the transition point is further reduced as
one goes to 10 x 10 lattices. That one has true diago-
nal long-range order in the solid phase is confirmed by
the fact that the structure factor scales linearly with the
lattice volume. Indeed, at Vq ——8, S(vr, 7r) is almost pre-
cisely 100/64 times as large on the 10 x 10 lattice than
the 8 x 8. There does not appear to be any window of
coexistence between the superfluid and solid phases at
half-filling. To within limits set by rounding, the tran-
sition points for S and p, coincide almost precisely. We
can make this statement more quantitative by perform-
ing the appropriate scaling analysis on the data. For
example, we have plotted L„S(m, m) and L„p, versus Vq

for different values of the exponent ratios a, b. Curves
for different lattice sizes should cross at the same crit-
ical value of Vj for the appropriate choices of a, b. A
complication is that the imaginary time lattice size must
be scaled as the appropriate power of the spatial extent,
and the dynamic exponent z could be different for the two
transitions. Making the simplest assumption that z is the
same, however, as was already suggested by the raw data,
this scaling procedure shows that the transition points
for the two observables are within 0.5%%u&'& of each other.
While the structure factors do indeed cross nicely, the
superfluid density curves come together rather than pass
through each other. This seems to be a rather generic

feature of simulations of the Bose Hubbard model2s as
opposed to related conserved current models.

As V~ is incre'ased, c(1) shows a similar transition from
featureless uncorrelated behavior to long-range order, al-
though in this case V2 favors the formation of a "striped"
collinear phase with alternating lines of occupied and
empty sites. The structure factor S(k) develops a peak
at k, = (vr, 0) or (0, vr).

In order to determine whether V2 can drive a supersolid
phase at half-filling, we turn on V2 close to the point
where the transition between superfluid and solid occurs
in Fig. 7. The density p = 0.5. We show in Fig. 8 a
plot of p, and S(k) for k = (0, vr), (~, 0), and (7r, 7r). We
see that V2 drives the Neel solid into a superfluid, and
then at yet larger values causes the formation of a striped
solid phase. Again, the plots suggest that there is no
supersolid phase at p = 0.5. Scaling plots similar to those
constructed at V2 ——0 do not reveal any evidence for
distinct critical points for superfluid and solid transitions
to within our numerical accuracy.

We can put data &om Figs. 7 and 8 together with
similar runs for different sweeps of Vq and V2 to ob-
tain the ground state phase diagram of the soft-core BH
Inodel at Vo ——7 and p = 0.5. This is shown in Fig. 9.
At weak couplings we have a superfluid phase, while at
strong couplings there are two possible solids: checker-
board and striped. A strong coupling analysis predicts a
phase boundary between the solid phases at V2 ——2'.
The superfluid phase extends out along this line in a very
robust manner, as opposed to the situation in 1D, where
the superfluid window was rather narrow. This is a con-
sequence of the highly degenerate nature of the strong
coupling (t = 0) ground state along the line Vq ——2V2.
As can easily be seen, not only do the Neel and checker-
board solids have the same energy, but an infinite num-
ber of defect states are degenerate as well for V1 ——V2.
For example in a horizontally aligned collinear solid a
whole column can be shifted up and down without en-
ergy cost. ' This large degeneracy stabilizes superflu-
idity, even at large coupling. We will comment further on
this point when discussing the hard-core phase diagram.
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FIG. 7. The superfiuid density p, and S(s', vr) as a function
of Vz for Vo = 7 and Vz = 0. The density p = 05 and P = 4.
The transitions in p, and S(vr, m) appear to occur at roughly
the same value of Vj .
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FIG. 8. The superfluid density and structure factor as a
function of Vq at Vo ——7, Vj ——2.75, and p = 0.5.
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FIG. 9. The ground state phase diagram of the BH model
at p = 0.5 and with a soft-core on-site repulsion Vo ——7.

B. Results o6' half-Ailing

FIG. 11. The superQuid density and structure factor for
the same parameters as in Fig. 8, except now the system is
doped to p = 0.56. A superfluid tail remains in the (striped)
solid phase.
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FIG. 10. The super8uid density and structure factor for the
same parameters as in Fig. 7, except now the system is doped
to p = 0.53. A superfluid tail remains in the (checkerboard)
solid phase.

Although it does not appear that the BH model ex-
hibits a supersolid phase at p = 0.5, we can see the co-
existence of diagonal and off-diagonal long-range order
when the filling is shifted away &om p = 0.5. In Fig. 10
we show p, and S(vr, x) for the same parameters as Fig. 7
except now p = 0.53. We see that although p, declines
significantly when the solid forms, the excess boson den-
sity h = p —0.5 (the magnetization m in spin language)
remains mobile in the solid background. Indeed, simula-
tions at different densities (we found supersolids out to
dopings of 0.675) show that the tail in p, is precisely pro-
portional to b. Figure 11 shows the analogous plot for a
striped supersolid. Note that we have here separately dis-
played p, and p, &. As expected, the superHuid density
in the x and y directions is correlated with the direction
in which the striped solid channels run, as determined by
the ordering wave vector k, = (m, 0) or (0, vr). If we had
separately measured p, and p, b on the two sublattices
of the checkerboard solid, we would have found an analo-

gous symmetry breaking. The nonzero value of p, —p, b

is closely related to the appearance of a nonzero order
parameter m —m b in the language of the spin Hamil-
tonian Eq. (2).

If we were to use finite size scaling techniques to lo-
cate the precise phase boundaries, it would be necessary
to scale the imaginary time length L as a power of the
spatial length L, where z is the dynamic critical expo-
nent. As we have earlier described, it may be that difer-
ent values of z are associated with the two transitions off
half-filling, in which case the finite size scaling analysis
is much more delicate. We do not see the necessity
of such a study here, since the supersolid phase occupies
an extended portion of the phase diagram, and its exis-
tence is not predicated on proving the distinctness of two
transition points.

Figures 10 and 11 provide compelling evidence for the
existence of a supersolid phase. Our physical picture of
this supersolid is one in which p = 0.5 of the bosons
freeze into a rigid solid structure, while the remaining b

remain mobile. As we have seen, a signal of long-range
order then is present in both the diagonal (n;n~) and
ofF-diagonal (a;at) channels.

We have conducted our simulations of the BH Hamil-
tonian in the canonical ensemble, and have presented our
results by specifying the density p rather than the chem-
ical potential p. In describing the nature of the phase
diagram it is important to note that due to the existence
of a gap in the solid phases, the p-p relation is nontriv-
ial. If the gap is nonzero, when we dope our system even
slightly away from half-filling, the chemical potential is
shifted by a considerable amount. In the language of the
spin Hamiltonian Eq. (2), a sizable field H, is required to
change the magnetization of the gapped Ising phase. In
Fig. 12 we illustrate this point by drawing the p/Vj-1/Vj
phase diagram. A sweep at constant chemical potential
reveals a supersolid windom A sweep at fixed density
skirts the pure solid and remains in the supersolid phase.
This is why we see in Figs. 10 and 11 a supersolid for an
extended region V ) V„;q rather than in some narrow
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region between phases exhibiting a single type of order.
If we now examine densities p ( 0.5, we find qual-

itatively similar results: A super6uid phase gives way
to a striped supersolid phase as V~ increases. By these
measures, hole or particle doping appears qualitatively
similar. The same is true of the checkerboard supersolid,
where results for hole doping are entirely reminiscent of
the analogous particle doped case.

In fact, however, something rather different does go on
with particle and hole doping. In Fig. 13 we show the
ground state energy as a function of doping for Vo ——7,
Vj ——3, and V2 ——3. For these parameters, as we have
seen, we have a striped supersolid oR' half-61ling and a
striped solid at p = 1/2. The change in slope of Eo at
p = 1/2 reflects a jump in the chemical potential which
is, in fact, just the gap in the solid phase. There is
nothing particularly unusual here. The strange feature
occurs for the checkerboard case. In Fig. 14 we show the
ground state energy as a function of doping for Vo ——7,

FIG. 14. The ground state energy as a function of density
for Vo ——7, Vj ——3, V2 ——0.

Vj ——3, and V2 ——0. The fact that Eo(p) is concave down
for p ( 0.5 indicates an instability to phase separation.
Previous studies have suggested the possibility of phase
separation in systems with attractive boson interactions.
However, we do not have these Lennard-Jones-type po-
tentials here, only purely repulsive ones. It is not im-
mediately apparent why mobile holes (or particles) in a
rigid solid background should segregate themselves.

A possible explanation, however, is as follows: Con-
sider an isolated doped hole in a checkerboard solid. In
order to move to another site of the same sublattice, it
must pass through an intermediate site on the opposite
sublattice, a state of energy 2'. Thus the hole's effective
hybridization is t,~ = t /2'. (This sort of argument has
previously been used to predict the shape of the phase
boundary in the one-dimensional extended BH Hamil-
tonian, in good agreement with simulations. 2

) If two
holes are near each other, the intermediate state is lower
in energy, and so the effective hybridization is increased.
This suggests a possible mechanism for phase separation:
increased mobility of holes which propagate coherently.
Of course, the increase in t,g is partially oR'set by the
entropy cost of confining one hole near the other. Un-
fortunately, there appears to be an analogous increase in
t ~ for doped particles which are proximate, and so this
reasoning does not explain the fact that E(p) is concave
down for p ( 0.5 only. Nevertheless, the simulations
provide compelling evidence for a lack of particle-hole
symmetry.

In principle, one can also examine the issue of phase
separation through anomalies in S(k) for small k. How-
ever, our use of the canonical ensemble makes this ap-
proach nontrivial. Further work on the question of phase
separation is needed.
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V. SIMULATIONS
OF THE HARD-CORE MODEL
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FIG. 13. The ground state energy as a function of density
for Vo = 7, Vi. = 3, V2 = 3.

VVe now examine the phase diagram in the hard-core
case. This is important to do for a number of reasons.
First, it allows us to make a connection to the spin model



8478 SCAI.ETTAR, BATROUNI, KAMPF, AND ZIMANYI

limit, Eq. (2). Second, as we have seen at Vo ——7, some
of the interesting transitions occur at Vj and V2 values
which are getting rather large, while we expect in most
physical situations that the on-site Vo should be substan-
tially greater than the near-neighbor interactions. One
consequence of this is that the doped bosons in the su-
persolid phase for our soft-core model could move on the
occupied sublattice, since the cost of Vo was less than the
coordination number z times the near-neighbor interac-
tion strengths. In the hard-core model such multiple oc-
cupancies are forbidden, and we want to make sure that
our conclusions are not affected by this change.

Figure 15 shows results for the superQuid density and
structure factors for the half-filled case. We sweep V2 at
fixed Vj ——3. A Neel phase appears at small V2. For
larger V2 the superBuid phase appears before making a
transition into a collinear solid for yet larger V2. If V1
is suKciently small, the Neel phase at weak V2 is elimi-
nated, and the system remains superBuid down to V2 ——0.
Data for this and other sweeps are summarized in Fig. 16
where the resulting ground state phase diagram is shown.
Note that we find the superHuid —Neel-solid transition at
V2 ——0 occurs at a value Vj close to 2t, which is the re-
sult expected based on the mapping to the spin model,
Eq. (2).

As in the soft-core case the weak coupling superHuid
extends out along the V2 ——Vi/2 strong coupling bound-
ary between the two solid phases. Unlike analogous
studies in 1D, this superHuid wedge is dificult to close,21

a phenomenon which we earlier explained by the large
degeneracy of competing solid phases along the strong
coupling line. We have conducted simulations along the
line V2 ——Vj/2 and find that the super8uid density van-
ishes at Vj 7. Interestingly, there is no inset of solid
order at this point. This needs further study, for exam-
ple, to understand if some disordered dimer phase might
exist in this regime, in analogy with related spin systems.

Figure 17 is a plot for a doped lattice with b = p—
1/2 = 0.0625. The main difFerence is that, as in the soft-
core case, there is a superHuid tail after the structure
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FIG. 16. The phase diagram of the half-filled hard-core
model. The dashed lines are the results of the mean field
analysis presented earlier in the paper.
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factor exhibits the transition into the solid phase. That
is, there is a supersolid in the hard-core case as well.
As expected, doping inhibits somewhat the formation of
crystalline order, so that stronger couplings are required
to induce the crystalline order as is seen by comparing
the doped phase diagram, Fig. 18, with Fig. 16, the phase
diagram at half-filling. Despite considerable rounding of
the transitions, scaling analyses conclude that the regions
where S is large are indeed ordered.

Finally, Figs. 19(a) and 19(b) show the ground state
energy as a function of filling for the hard-core model at
Vj = 81 V2 = 0 (Neel solid) and Vj = 8 V2 = 4 (collinear
solid), respectively. The data are qualitatively similar to
the soft-core model. In the collinear solid Eo is concave
up, with a change in slope at p = 1/2 which is the gap. In
the Neel solid Eo shows a tendency for phase separation.

tures. Here the motion of doped bosons in the BH model
which we have studied with our simulations has a close
connection with the idea of "defectons" in a solid where
quantum tunneling caused by the finiteness of the de
Boer parameter delocalizes lattice defects at low tem-
perature. It is also of interest to study the behavior
of the diffusion constant D for the full range of tem-
perature. Here we expect that defects are localized at
high T, and D first decreases exponentially as T is low-
ered in this classical regime. D should then exhibit a
plateau as quantum diffusion takes over, and ultimately
increase again as delocalization occurs. While they fo-
cus largely on the behavior of single defectons, Andreev
and Lifshitz also consider the possibility of long-range
Coulomb interactions causing localization into a "defec-
ton superlattice. " Our insulating checkerboard solid is
in fact an illustration of this. The Bose-Hubbard model
with only on-site Vo has no solid phase at p = 0.5, but
when Vj is turned on, an ordered lattice does form.

We have focused here on zero temperature; the finite
temperature phase diagram of the 2D BH model would
be interesting to study as well. The solid transitions are
in the Ising universality class, and hence have a finite T .
Similarly one expects a Kosterlitz-Thouless-type finite
critical temperature for the superHuid transition. As for
the topology of the phase diagram, several possibilities
have been explored by Liu and Fisher. One intriguing
case is the appearance of a tetracritical point, where the
three ordered phases (superfluid, supersolid, and solid)
come together, giving way to the disordered phase with
further increase of the temperature. This happens within
a limited, but finite range of parameters on the mean field
level. The corresponding scaling theory was developed by
Nelson and Fisher. Other alternatives include a super-
solid phase which exists only at finite temperatures, and
that the tetracritical point is split into bicritical points.
We hope to take up some of the issues in a further pub-
lication.

In the path integral representation of the BH parti-
tion function used in our simulations, particle number
conservation leads to boson "world lines" propagating in
the original two spatial dimensions plus an additional
imaginary time direction which runs from 0 to P. This
picture has been used to suggest close analogies between
the physics of vortices in type-II superconductors and
the phase diagram of the 2D Bose-Hubbard Hamiltonian.
Frey, Nelson, and Fisher have recently discussed both
thermally driven and quantum phase transitions, for ex-
ample, as caused by the introduction of defects or in-
terstitials into the Abrikosov lattice, in these vortex sys-
tems. This also has close connections with the results we
have discussed here.

VI. RELATED ISSUES

Up to now we have focused on the ground state phase
diagram of the BH Hamiltonian. It is interesting to con-
sider also the behavior of the system at finite tempera-

VII. CONCLUSIONS

In this paper we have considered quantum phase tran-
sitions in the Bose-Hubbard Hamiltonian. We identified
several phases: solid and supersolid phases with Neel and
collinear patterns, and a super8uid and a Mott-type in-
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sulating phase. The phase diagram has been determined
analytically and the spin-wave spectrum has been calcu-
lated. The dynamical critical exponents at each transi-
tions were calculated and preexisting controversies were
settled. Our numerical work, utilizing quantum Monte
Carlo methods, provided a detailed study of the diferent
phases. Concerning the phase diagram the existence of
supersolid phases has been forcefully con6rmed. These
phases exist only oK half-filling, in accordance with the
mean field results, but in disagreement with some recent
claims. The possibility of phase separation in the model
has been investigated as well, and provides evidence for
a violation of the previously assumed particle-hole sym-
metry of the model.
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