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Effect of interaction anisotropy on the superconducting transition temperature
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We study the inBuence of pairing interaction anisotropy on the superconducting transition tem-
perature T . Our approach involves examining the normal-state instability to Cooper-pair formation
using the Bethe-Salpeter equation within a number of simplifying approximations. We make a de-
tailed study of some simple models and find that anisotropy (regardless of its relative strength)
has always the effect of increasing T . We then consider the generality of this result and find
that a general theorem ensures that it holds under rather nonrestrictive assumptions. We discuss
the possible implications of our results for superconductivity in real anisotropic materials such as
high-temperature superconductors.

I. INTRODUCTION

The calculation from first principles of the supercon-
ducting transition temperature T is in practice a very
diFicult problem even in the cases where the pairing
mechanism underlying the superconducting state is well
understood. It is well known that in elementary ver-
sions of the Bardeen-Cooper-Schrieffer (BCS) theory T,
is treated in effect as a free parameter that determines
the strength of the modeled superconducting interaction
and attention is then focused on dimensionless quantities
such as the ratio 6/T, (where 4 is the order parameter)
which are predicted by the theory. Even in some more
sophisticated treatments of standard superconductors,
it is apparent that some information about the strength
of the electron-phonon coupling is derived from a pri-
ori knowledge of the transition temperature and that the
calculation of T, has often in it at least a modicum of a
posteriori element. To put it in a different way, transi-
tion temperatures have been often calculated, but seldom
predicted.

The extension of the transition temperature range in
the past decade has brought a fresh surge of interest in
this problem. The obvious question as to why the transi-
tion temperatures in the so-called high-temperature su-
perconductors (HTSC's) are so much higher than previ-
ously thought possible is rather hard to answer when the
calculation of T, itself is in any case a rather dubious
undertaking.

As we shall briefly review below, the difBculties in cal-
culating T, arise from the exponential sensitivity of the
result to the input parameters needed to solve an inte-
gral equation. However, these diFiculties do not preclude
progress if one emphasizes, rather than the value of T,
itself, the identification of factors that cause substantial
increases or decreases of T in some materials as com-
pared to others. In this way, at least some of the un-
known factors can be canceled away in the computation

of some appropriate ratio. The relative qualitative or
semiquantitative trends in the transition temperature as
some of the relevant parameters are varied are compara-
tively much easier to infer, as they can be derived from
corresponding variations in the solutions of the appro-
priate equation. It is then possible to investigate which
factors lead, other things being equal, to a higher T, .
This will be our emphasis here.

In this paper we present the results of a study which
sheds light on some of the questions introduced in the
above paragraphs. A brief account of some of our
main results has been previously given. We consider the
"Cooper" instability of the Bethe-Salpeter equation and
focus our attention specifically on the influence of the
pairing interaction anisotropy on the resulting transition
temperature. We begin by considering some very simple
models within the weak-coupling formalism. We solve
these models for the temperature T at which the insta-
bility occurs and find that, for these examples, the transi-
tion temperature obtained for an anisotropic interaction
is invariably larger than that obtained for a correspond-
ing isotropic system having the same value of the BCS
coupling constant (defined in the usual way as an average
over the Fermi surface). We then consider a more general
case and formally show that, within some rather nonre-
strictive assumptions, it is generally trpe that anisotropy
leads to larger transition temperatures. Furthermore, the
numerical results from our models indicate that the in-
crease in T arising from anisotropy effects can be quite
substantial.

That anisotropy may lead to an increase in T has long
been part of the lore of superconductivity theory. To our
knowledge, the first statexnent to this effect appears as a
nearly incidental remark in a paper dealing with weak
anisotropy in the context of studying the effect of im-
purities in possibly decreasing T . The effect of weak
anisotropy on a variety of properties was subsequently
studied mostly in terms of the same separable model po-
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tential by other authors. ' While our results agree with
these references (and with other previous work as de-
tailed later in the paper) in the appropriate limit, we
take here a much more general point of view. Thus, our
results are not limited to weak anisotropy, to any par-
ticular interaction model, or to a specific partial wave or
gap symmetry. We discuss also a new interpretation of
gap anisotropy as being possibly connected to a broken
symmetry in the system.

Anisotropy is, of course, a salient characteristic of most
HSTC's and it is well known that there is often a correla-
tion among HTSC's within the same "family, " between
T and the degree of anisotropy. This has been an impor-
tant part of the motivation for this work. However, we-
caution the reader that, while our conclusions are in our
opinion highly suggestive as to some possibilities for high-
temperature superconductivity, one should nevertheless
keep in mind that the models and formalism discussed
here are clearly too oversimplified to be an accurate de-
scription of these materials. In addition, there are ad-
ditional factors not studied here, such as the eKect of
momenta and frequency dependence of the interaction
away from the Fermi surface, which are known to have a
strong in8uence on T . These and other considerations
must be kept in mind. Nevertheless, there is a consid-
erable degree of generality in our argument that makes
it more likely that our results have relevant implications
for these and possibly other physical systems.

After this Introduction, we discuss in the next section
our formalism and some model examples. In Sec. III,
we turn to more general results and. discuss our conclu-
sions. We show that the results obtained from the models
studied in Sec. II have a wide range of validity, and sug-
gest an additional interpretation of the extended results
as representing a possible broken symmetry eKect in the
interaction mechanism.

For many ordinary superconductors one has the gener-
alization A, @ = [A —p(l+ 0.62A)]/[1.04(l+ A)], where p,

is a dimensionless measure of the Coulomb repulsion. It
is also worth noting that the numerical solution of the
Bethe-Salpeter equation for liquid He within the spin
fluctuation model can be fitted to the form (2.1). The
pervasive form of the above eqation is a good illustra-
tion of the difFiculties that arise in the calculation of T, :
The result depends exponentially on the input parame-
ters needed to solve an integral equation.

In Fig. 1 we show schematically the Bethe-Salpeter
(BS) equation, which for our purposes can be conve-
niently written as

I (k, k') = V(k, k') + ) ) V(k, k )G(k, ~)
ky

x G(—ki, —~)I'(ki, k'), (2.2)

where, within weak coupling, G(k, cu) is a free fermion
Green's function and the u are Matsubara frequencies. In
(2.2), V(k, k ) is the effective pairing interaction (which
we assume throughout this paper to be frequency inde-
pendent) and I' the vertex function. T, is the highest
temperature at which I' as depicted in Fig. 1 diverges.

We now make the following additional assumptions,
which permit us to drastically simplify Eq. (2.2). We
will relax some of these assumptions in the next section.
First, we assume that V vanishes unless the energies cor-
responding to the fermions with wave vectors k and k'
are within an energy range wp about the Fermi surface,
with ep (& e~, where e~ is the Fermi energy. Next, we
take the Fermi surface to be spherical (or circular if the
system is two dimensional). Finally, we consider a simple
parabolic band characterized by a single effective mass.
With these rather drastic assumptions, it is easy to find
the instabilities of I as given by Eq. (2.2). Consider first
the case where the pairing interaction is isotropic. Then,
one can expand in terms of Legendre polynomials:

II. FORMALISM AND EXAMPLES
V(k, k') = ) Ue(28+ l)Pe(cosy),

e

(2.3)

A. General considerations

Although the transition temperature can be calculated
in elementary cases from the gap equation (by finding
the temperature at which the gap vanishes) it is far more
convenient in general to calculate T from the proper-
ties of the normal phase by finding the temperature at
which a pairing instability in the Bethe-Salpeter equa-
tion for fermion-fermion scattering occurs in the appro-
priate channel. This instability in the ground state of the
Fermi liquid leads to the formation of Cooper pairs. For
many simple cases, study of this instability leads to an
expression for T of the McMillan form

r(k, k') = —) .I'e(2~+ 1)Pe(cosy).
e

(2 4)

Then, the radial integrals in (2.2) are elementary and
one has the solution

k' k'

where p is the angle between k and k', K(0) is the density
of states at the Fermi surface, and the Pg are Legendre
polynomials. Similarly,

T, = 1.134n(dp exp( —1/A, g), (2 1)

where ~p is a cutoK frequency and o. a number of order
unity. In the BCS model one has ~ = 1 Mp is identified
with the Debye frequency, and A g is simply A, the dimen-
sionless electron-phonon coupling constant of the model.

-k' —k'

FIG. 1. Schematics of the Bethe-Salpeter equation.
Dashed lines represent interactions, and solid lines fermion
propagation. Shaded squares represent the vertex function I .
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Ug

1+X(0)Ug' (2.5)

V(k, k') = ) Uq YP(k)YP '(k') (2.6)
e, m, e,~

and, similarly, for the vertex function,

I'(k, k') = ) I' Y (k) Y, *(k'). (2.7)
E,m, E,mi

These expansions are not immediately useful because
the BS equation is no longer, in general, diagonal in terms
of spherical harmonics. However, in all physical cases the
matrix U whose matrix elements are the expansion coef-
ficients in Eq. (2.6) (with each pair I., m labeling the rows
and E', m' the columns) will be diagonalizable. Then it
follows from the linear structure of (2.2) that the corre-
sponding matrix I' is diagonal in the same representa-
tion as U. If we denote by U the eigenvalues of U, with
the functions (k~o.) being the corresponding normalized
eigenfunctions, then the solution to (2.2) is given by

where X(0) = —N(0) ln(1.134&so/T). One obtains then
the well-known result that T is determined by the most
attractive of the Ug. (We employ here the common con-
vention in superconductivity of taking the attractive cou-
pling constants as being positive. ) In the ordinary BCS
case this is Uo, which equals the averaged interaction over
the Fermi surface, and one recovers from (2.5) the usual
BCS formula for T, of the form in Eq. (2.1) with a bare
A = Uo. In He it is the 8 = 1 coupling constant which
turns out to be most dominant.

Consider now the case where the interaction is
anisotropic. Then, one cannot expand in Legendre poly-
nomials but there are still several methods one can use
to solve the BS equation. One can, in many cases, solve
(2.2) by iteration, or by performing a double expansion.
Here we use the second procedure, although we have dou-
ble checked the results with the iteration method. For
an anisotropic interaction a double expansion in terms of
spherical harmonics is still valid:

TBCS g i34 —1/A
C (2.11)

with

pBGS Uo, o
0,0 ' (2.12)

For higher partial waves the definition of a "BCS" cou-
pling constant is less unambiguous. A consistent defi-
nition is obtained by multiplying (2.6) by Pg(cosy)
[4'/(21+1)j P YP(k)YP*(k') and then averaging over
angles. In this way one obtains a "BCS"isotropized tran-
sition temperature for the E partial wave given by the
form (2.11) with A replaced by A&

PBCS y ~ UE, m

21+1 (2.13)

For an isotropic interaction, one recovers from (2.13) the
standard result ' for the BCS coupling constant in
each partial wave. In that case, one will always have that
the largest A& equals A, since the interaction matrix
is then diagonal in E and independent of m.

B. Simple example: Perturbation theory

To explore the implications of these results, let us con-
sider first a very simple example. Let us study, in two
dimensions, the interaction

the symmetry of the order parameter cannot be deter-
mined from the above considerations, although it might
be determined ' from a study of the Ginzburg-Landau
region. In two dimensions, a similar result is obtained by
expanding in terms of planar harmonics.

It is of course relevant to compare these results with the
corresponding ones in the isotropic case. Consider first
the 8-wave state which is obtained in the usual version of
the BCS theory after first averaging the interaction over
the Fermi surface so as to deal with a single coupling
constant. By performing this average in the interaction
(2.6) one immediately obtains

1(k, k') = ) I' (ki )(k'i )*, (2.8) V(k, k') =
1 + a(k —k' )

2 + b(k„—k„')2 ' (2.14)

where the eigenvalues of I' are given by

U
1+ X'(0)U (2.9)

T. = S.S34~,e —'~". (2 1o)

where X(0) is as defined below (2.5). The transition
temperature is determined simply by the largest positive
eigenvalue of U. We will denote this largest eigenvalue
by Ao in this work. Thus we have

where Vo is a positive (attractive) dimensionless constant,
the interaction strength in units of N(0) for this example,
and a and b are constants (which we take to be positive).
The wave vectors are assumed to be given in units of k~,
the Fermi wave vector, so that a and 6 are dimensionless.
The interaction (2.14) can be given a physical interpre-
tation as some screened boson-mediated interaction. In
the limit a = 6 it is isotropic.

As discussed in the previous subsection, we assume
that the wave vectors in (2.14) are on the Fermi circle.
Then, we consider the expansion of V in planar harmon-
1cs:

If this eigenvalue is nondegenerate, then the symmetry of
the order parameter immediately below T is determined
by the corresponding eigenfunction. If it is degenerate,

V(k, k') = ) U e* ~e
m m'

(2.15)
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where P and P' are the azimuthal angles defining the
vectors k and k' on the Fermi circle. In the limit a = b,
this interaction is trivially diagonal and one has (see the
Appendix)

The transition temperature is now given by combining
(2.10) and (2.17). We want to compare this result with
the corresponding one in the isotropic case, to the same
order. From (2.12) and the above calculations, it follows
that

TB&TTl
b h y

7 (2.16) = Uo o + Uo o + Uo o = Ao —~Ao.Bcs (o) (~) (2) (2.21)

where @ is defined by cosh/ = (1 + 2b)/(2b). It follows
from (2.16) and the two-dimensional version of (2.5) that
pairing will be, in the isotropic case, in the 8 wave.

In the general case, it is not easy to obtain the elements
of the matrix U, defined by (2.15), in closed form. There-
fore we will discuss here the case where the anisotropy
is small, b —a, and expand in the small dimensionless
parameter, b—:b —a, to lowest nontrivial (second) order.

In the language of the previous subsection, the largest
eigenvalue of the zeroth-order (in b) approximation to the
matrix U is that corresponding to m = 0. We now want
to see how the anisotropy perturbs this eigenvalue. This
is straightforward, using standard perturbation theory
techniques. All of the necessary integrals can be done
using complex variable methods. Some details are given
in the Appendix. One obtains the result

o
——Uo, o+Uo, o +Upo+AAp,(o) (~) (2) (2.17)

where the first term on the right side is the zeroth-order
part as given in (2.16). The next two terms are the diag-
onal corrections corresponding, respectively, to the first-
and second-order terms in the expansion of V, as dis-
cussed in the Appendix:

Vph (1 —cosh g)
(2b) sinh

(2.18)

b 9 (cosh g —1)
(2b)s 4 sinh

(2.19)

h Vpe ~sinhg 1
16bs 1 —e &

~
sinh g

cosh @(cosh g —1)
sinh

1+cosh'
(2.20)

That this correction arises from coupling to the d-wave
state, rather than the p-wave state, is related to the fact
that the model interaction is spin independent, and there-
fore will not mix singlet and triplet states. The eigenvec-
tor corresponding to the eigenvalue in (2.17) is a linear
combination of s and d states, consistent with the fact
that m, is no longer a good quantum number for the prob-
lem. The coeKcients of the linear combination can easily
be found &om textbook formulas.

and, finally, LAp is the second-order correction due
to coupling between o8'-diagonal first-order matrix ele-
ments. It follows &om the discussion in the Appendix
that this term involves only couplings to the d-wave state,
and is given by

Now, it is readily seen from (2.20) that the quantity AAp

is positive definite. Therefore one has Ap & A, and
consequently T & T, with the equality applying only
in the limit a = b. Thus, the anisotropy always leads to
an increase in the transition temperature: For this model,
an anisotropic system will always have a larger T, than
an isotropic system having the same value of the pairing
interaction averaged over the Fermi surface. The fact
that the lowest-order correction to A goes as b agrees
with what was found in Ref. 4 for the separable weakly
anisotropic model potential4 V = Vp [1+a(k)] [1+a(k')]
(where a is small).

C. Exactly solvable model

One might suspect that the final result for the model
in the previous subsection would be valid only in pertur-
bation theory. Indeed, that the o8'-diagonal second-order
correction to the largest or smallest eigenvalue of a given
operator has a definite sign follows from the form of the
perturbation theory itself. To check that this is not the
case, we consider here a simpler model that can be solved
exactly.

We will work now in three dimensions with the inter-
action given by

V(k, k') = Vp[l+ a(k —k')
+b(ky —k„') + c(k, —k,') ], (2.22)

where again Vp is the strength of the interaction in units
of N(0), the momenta are in units of k~, and a, b, and c
are dimensionless constants. We make no assumption as
to their signs in this case. Although the physical interpre-
tation of the interaction (2.22) is not as straightforward
as that of (2.14), one can see that it is not unphysical in
real space. The main advantage of this model is that it
can be solved easily and exactly and therefore it will help
us understand the significance of the previous results in
a nonperturbative setting. We will also be able to in-
vestigate triplet pairing states. The interaction (2.22) is
isotropic in the limit a = b = c. One can consider also
the particular case a = b g c where the anisotropy is
limited to the z direction, as was done in Ref. 3.

Once again, we assume that all relevant wave vectors
are on the Fermi surface, so that the interaction (2.22)
can be rewritten in terms of the polar and azimuthal an-
gles of k and k'. lt is then straightforward to rewrite
(2.22) in terms of spherical harmonics, and thus obtain
the matrix elements U&I defined in (2.6). Only the
range of values 8 & 2, E' & 2 appears since no powers of
the sine or cosine higher than two are present. There-

I I

fore the matrix U&
' [see (2.6)] is fairly small in size.



ORIOL T. VALLS AND M. T. HEAL-MONOD

Further, since the interaction is spin independent, sin-
glet and triplet states (even and odd values of / and E')
again decouple and one obtains separate 4 x 4 and. 3 x 3
matrices for the two cases. The only nonvanishing matrix
elements for the singlet subspace are found to be

Up'p = 1+ (2/3)(a+6+ c), Up'p = (2c —a —6),

22 22 1
Uo, o

= Uo, o
= 30(a ~) (2.23)

plus those obtained by interchanging E ++ 8' and m ~ m'.
For the triplet subspace one similarly has

Ui'p ———(2/3)c, Ui", = Ui' i = —(1/3)( + b),

Ui", i
' = —(1/3)(a —t). (2.24)

It is now straightforward to find the eigenvalues and
eigenvectors. We tackle first the singlet case. There are
four eigenvalues, but two are trivially zero. Introducing
the auxiliary quantity P,

(2.25)

we have for the two nontrivial eigenvalues

=(/)[U' + ( ') + P]. (2.26)

(k~0) = n~ Yo (k) + p+ Y2 (k) + p+[Y2 (k) + Y2 (k)],

(2.27)

where

We see that A+ & A, and therefore we have, if singlet
pairing is favored, that Ap

——A+ as given in (2.26). The
corresponding eigenvector, as seen from the form of the
submatrix defined by (2.23), is a linear combination of
1 = 0 and E = 2 states, specifically,

linear combinations of Yi and Y& . If one of the con-
stants a, 6, c, is large and negative (the "repulsive" sign)
we still get a finite T„although in the 8 = 1 channel.
That a strong repulsive anisotropic interaction may lead
to pairing was pointed out in Ref. 20.

The corresponding BCS coupling constant; as given by
(2.13) is

(2.31)

which can never be larger than the largest of the eigen-
values in (2.30). Hence, we are led again to a result of
the form (2.29).

Numerically, the increases in T, resulting from the
anisotropy can easily be very considerable, because of the
strong dependence of T, on the coupling constant. Let
us focus on the singlet case for some numerical examples.
Assume, for example, w0 ——300 K, a = 6 = 1, c = —1,
and a BCS transition temperature of 3 K. From (2.12)
and (2.23), we can obtain the BCS coupling constant,
which gives us the value of the strength Vp in (2.22). On
the other hand, using this value of V0 and the same values
of the other parameters we find that the exact transition
temperature as given by (2.10) [with Ap as in (2.26)] is
4.91 K. If we decrease the value of c, e = —2, then we
get T = 15.2 K. With u0 ——600 K and the previous val-
ues for the potential parameters, we get an increase in
T, from 20 K to 67 K. Examples of much larger increases
can easily be found, in both the singlet and triplet cases,
although the results must be viewed as only indicative,
since they are then beyond the weak-coupling limit.

Finally, the two-dimensional version of the model
(2.22) can of course also be solved exactly, with the same
conclusions. In that case, and with a g 6, the singlet
state is, as in Sec. II B, a linear combination of 8 and d
states.

III. GENERAL RESULTS AND DISCUSSION

1
D'
U2'2

0,0

D

U2i0
0,0

p+ =

D—:Q(A+)2 + p2. (2.28)

(2.29)

and this is no longer merely a perturbative result.
A similar situation occurs for triplet pairing (E = 1).

The three eigenvalues of the matrix with nonzero matrix
elements as given in (2.24) are

= —(2/3) a, Ab = —(2/3)b, = —(2/3) c.

(2.30)

The corresponding eigenvector for A is the Yz spherical
harmonic, while those corresponding to A and Ab are

On the other hand, the BCS coupling constant is given by
(2.12) and the first of (2.23). It follows then immediately
from (2.26) that we have also here

The results of the previous section are a strong in-
dication that anisotropy in the pairing interaction has
a favorable efI'ect on the transition temperature. To be
more precise, we have shown the following, for the mod. els
studied there: Consider two systems with the same form
for the pairing interaction [e.g. , both with pairing inter-
actions of the form (2.14) or the form (2.22)] but with dif-
ferent values of the parameters controlling the degree of
anisotropy. Let us, for definiteness, assume that both un-
dergo pairing in the s wave (similar considerations apply
to the other partial waves in our last example). Assume
then that the two systems are such that they both have
the same value for the average of the pairing interaction
over the Fermi surface, which means that they have the
same value for the BCS coupling constant, but that the
interaction for the first system is isotropic, while that for
the second system is not. In the language of the previ-
ous section, both systems have the same value of U0'0
(or Up p in the two-dimensional case) but only the first
system is diagonal in the spherical (or planar) harmonic
basis. Then, we have shown that the second system will
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have a superconductiong transition temperature higher
than the erst. It is in this sense that our arguments in-
dicate that pairing is favored by anisotropic interactions.

It is natural at this point to approach the question of
the generality of our results. At the level of the assump-
tions we have considered in this work, it is easy to see that
our results are very general. In effect, we have that the
BCS coupling constant is given [see (2.12)j as a diagonal
matrix element of U, while the exact coupling constant
is the largest eigenvalue. But, assuming only that the
spectrum of U is bounded from above, it follows immedi-
ately that its largest eigenvalue, which we have denoted
by Ao, cannot be smaller that the largest of all the diago-
nal elements. This result, which for finite matrices is one
of the basic theorems related to Rayleigh's quotient,
can be seen most easily from the variational method: I.et
lu) be a normalized trial vector in the Hilbert space of
fermionic pairing states, and consider its expansion in
terms of the eigenstates ln} as defined in the paragraph
below (2.7):

(3.1)

One then has

(3.2)

where the A are the eigenvalues, and we have, in the
last step, made use of the state normalization. If one
takes for the trial state lu} any state in the original basis
(the spherical harmonics in our case), one has the proof
of the Rayleigh's quotient statement cited above. Thus,
the situation found in the previuos examples is actually
a general property.

Having made this point, we can now go on to consider
the effect of removing some of the assumptions made in
order to derive our previous results. Let us begin with
removing the assumption that the Fermi surface is spher-
ical, and that the crystallographic structure of the mate-
rial is not relevant. In general, we could then still assume
that all angular dependences can be expanded in terms of
the complete set of spherical harmonics, while the radial
dependence of the interaction is through the energy, and
can be dropped if all wave vectors are still on the Fermi
surface, whatever its shape. This point of view would
lead straightforwardly to a formal extension of the valid-

ity of the results. However, we will take an alternative
point of view, involving more general, although maybe
more speculative, considerations, and a somewhat differ-
ent concept of what anisotropy means.

When considering a nonspherical Fermi surface, it is
often convenient to expand in the appropriate complete
set of functions related to the crystal symmetry group
as the spherical harmonics are related to the rotation
group. These functions determine in principle the possi-
ble symmetries of the order parameter, which have been
sorted out for the symmetry groups corresponding to
high-T superconductors. Let us denote these functions
as p, (k) and the corresponding states simply as li}. Con-

sider now the matrix V of the pairing interaction in the
basis set of these functions p;(k). Expanding also the
vertex function I' in terms of the states li}, one can for-
mally solve the BS equation in terms of those states and
conclude again that the largest attractive eigenvalue of
V determines the transition temperatures as in (2.10).
Then, the same proof leading to Eq. (3.2) shows that
an anisotropic system, in the sense of one in which the
matrix V is not diagonal, leads to a higher T than one
in which this matrix is diagonal.

We have introduced, in the last paragraph, a subtly
different version of the meaning of "anisotropic, " which
earlier in the paper simply meant "not invariant under
rotations. " In the last paragraph we are considering it
with the meaning of "having a lower-symmetry than the
crystal structure. " It is only under this second mean-
ing that the full generality of our conclusion as derived
from the statement (3.2), which in plain language is that
anisotropy favors superconductivity, applies. It is ob-
vious that off-diagonal pairing interactions in the sense
just described are quite unusual, if indeed they exist at
all. Ordinary phonon interactions have, of course, the
symmetry of the lattice. But it is possible for a sys-
tem to have, for example, a magnetic instability with a
symmetry lower than that of the lattice. Thus, one can
in principle imagine an exotic, electronic pairing mecha-
nism involving lower-symmetry antiferromagnetic fIuctu-
ations that would have this property. It is even possible
to imagine a phononic mechanism having this property
in a system which is simultaneously near a superconduct-
ing and a structural instability. In effect, we are saying
that this kind of broken symmetry would always lead to
an increase in T,.

We have used a weak-coupling form (bare electron
propagators) of the Bethe-Salpeter equation in this work.
Strong-coupling effects were considered in a previous
separable model in the weak-anisotropy limit. More
recently, the interplay of strong-coupling effects and
anisotropy was studied by Combescot, who found that,
because of mass renormalization effects, strong coupling
suppresses anisotropy. It therefore would tend to di-
minish anisotropy related T enhancement. However,
HTSC's remain strongly anisotropic even though the cou-
pling is presumably not weak. On the other hand, the
interplay of anisotropy with Coulomb repulsion effects
may well lead to further increases in T . Therefore,
although the results would depend on the precise details
of the strong-coupling interaction, we believe that even if
inclusion of strong-coupling effects may diminish the gen-
erality of our results, there would still be a wide range
of circumstances where our main qualitative conclusions
would apply. It is most unlikely that lifting the restric-
tions imposed by our assumptions would invariably lead
to the general invalidation of our results. One reason for
this is the ubiquity of (2.1), that is, of the exponential
dependence of T on the effective coupling strength. We
have found that anisotropy increases the bare coupling
strength by bringing in a contribution from a different
partial wave (symmetry state). In the strong-coupling
case, the net effect will depend also on how this contri-
bution influences the effective mass renormalization or
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repulsive effects. In any case it does not seem to us likely
that the increase in the bare coupling would be invariably
canceled. away. Another reason is the physical interpre-
tation of our result: By allowing anisotropy, one in effect
introduces additional degrees of freedom in the problem
and, because of the variational nature of BCS theory, this
increase will lead in general to higher transition tempera-
tures. Our results have been obtained in the clean limit ~

Impurities might tend to diminish anisotropy effects and
consequently partly negate the T enhancement, but any
such effect should not affect, e.g. , HTSC's where the co-
herence length is smaller than the mean free path.

One can at this point only speculate whether these
considerations have any relevance to real materials or, in
particular, to HTSC's. The enhancement in T, found in
deformed Ti-Mo structures and in In under uniaxial
stress might be related to our ideas although experimen-
tal evidence on HTSC crystals under uniaxial pressure
is ambiguous. A combination of 8 and d two-dimensional
states not dissimilar to that obtained in the perturba-
tion model of Sec. II8 or the two-dimensional version of
(2.22) remains a leading candidate to explain the many
apparently divergent experimental results (see, e.g. , Refs.
31 and 32) on the pairing state of HTSC's. Several of the
high-temperature mechanisms for superconductivity that
have been proposed (see for example Refs. 8 and 9) do en-
large the configurational space for the order parameter by
considering explicitly its dependence on quantities away
from the Fermi surface. Variational considerations such
as those presented above show that such an expansion of
the relevant Hilbert space cannot lead to a decrease in
T, and of course usually will lead to an increase. We
therefore consider it likely that, in some sense, an ingre-
dient of this kind will be present in the ultimate explana-
tion of the mechanism of high-temperature superconduc-
tivity. It is obvious, nevertheless, that the speculations
presented in these last paragraphs are insufFicient to de-
termine the precise nature of this ingredient.
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APPENDIX A: EXPANSIONS

We briefly discuss here the integrals required in the
computations of Sec. II.

In terms of the azimuthal angles P and P' and the
dimensionless parameters 6 and b = 6 —a, the interaction
(2.14) can be written as

v(p, p') =
1 + 26[1 —cos(P —P')] —d(cos P —cos P') 2 '

(A1)

which can be expanded as indicated in (2.15). Consider
first the zeroth-order result of Eq. (2.16). One has

2' im@U", ~
cosh Q —cos P

[recall that g is defined below (2.16)], which is triv-
ially done by contour integration after the change z =
cosP. The evaluation of the second-order terms [Eqs.
(2.18), (2.19), and (2.20)] involves evaluation of the inte-
grals

IP a
2' I p

d i i imp —im'~' (cos P —cos P )ye e
[cosh g —cos(P —P')]&

' (A3)

The obvious change of variables P = Pi+$2& P' = 4i —4'2

reduces IP'~, to the product of an elementary integral
times a second integral which, for the small values of
p and. q required. , is straightforwardly, &f somewhat te-
diously, evaluated by the same contour method as (A2).
The case (m, m', p, q) = (0, 0, 2, 2) leads to (2.18), while

(m, m', p, q) = (0, 0, 4, 3) leads to (2.19).
To derive (2.20) one needs to calculate the matrix el-

ements required, U 0, since this term is the usual sum
1

over states of squared matrix elements divided by en-

ergy denominators. These matrix elements involve the
integral I ' 0. It follows from the elementary integration
alluded to in the above paragraph that this integral is
nonvanishing only for m = +2. Thus, only I2'o is needed. .
As mentioned in the body of the paper, 8-wave pairing
couples only to d-wave pairing at this order. The single
zeroth-order energy denominator in the standard second-
order perturbation theory formula is then given in terms
of the zeroth-order matrix elements (2.16). Putting to-
gether these pieces one obtains (2.20).
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