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This is an analytic study of the two-dimensional XY spin glass with +J disorder. The Hamiltonian
has a continuous spin symmetry and a discrete chiral symmetry, and therefore possesses, potentially,
two difFerent order parameters and correlation lengths. The cost of breaking the symmetries is probed
by comparing the ground-state energy under periodic (P) boundary conditions with the one under
antiperiodic (AP) and under re8ecting (B) boundary conditions. Two energy differences (domain-
wall energies) appear, AE and b.E, whose scaling behavior with system size is nontrivially
related to the correlation length exponents. For a speci6c distribution of the +J disorder we show
that the chiral and spin correlation lengths diverge with the same exponent as T goes down to 0. The
common exponent has a common cause, viz. the low reversal energy of domains of chiral variables.
For general disorder we give a heuristic argumentation in terms of droplet excitations that leads to
spin ordering on a longer, or equal, scale than chiral ordering. These results are in contrast with
interpretations of Monte Carlo simulations.

I. INTRODUCTION (q, q, + R)2 - e
—"~&.

Due to the rotational symmetry of the XY model, any
of its ground states is necessarily part of a continuum of
ground states related by global spin rotations. It was flrst
pointed out by Villain that the ground state of an XY
spin glass with random +J interactions has, in addition,
a twofold degeneracy. The two continua can be deduced
&om one another by a global spin reflection with respect
to an arbitrary axis. They are characterized by opposite
"chiralities, " that is, by an opposite sense of rotation of
the spins as one moves around a plaquette of the lattice.
At Gnite temperature one may have domains belonging
to different ground states ("chiral excitations"), so that
each plaquette has to be characterized by its own chiral
variable.

A number of recent theoretical papers have focused
on the role of these chiralities. The motivation for
this interest is the question of what the lower critical
dimension dg is of the XY spin glass, and by which
mechanism this system orders just above dg. Ozeki and
Nishimori have developed arguments for the bound
dt & 4 (see also Schwartz and Young ), which is sup-
ported by substantial numerical evidence (see references
in Ref. 9). However, all these authors consider the con-
ventional Edwards-Anderson order parameter associated
with the XY spins. Villain's discovery of a discrete sym-
metry therefore naturally led to the idea, due to Kawa-
mura and Tanemura, ' that in fact dg might be less than
4. We recall briefly how this idea has been investigated
in recent years.

One can define two correlation lengths (, and („asso-
ciated with the chiral variables q, (where r denotes the
center of a plaquette) and the spin variables S; (where i
denotes a lattice site), respectively:

and

Here ( ) denotes the thermal and . . the disorder aver-
age. For the low-temperature behavior of these correla-
tion lengths one expects for d ( dg

(,(T) T ' and (,(T) T * (T -+ 0). (1.2)

One method to investigate the relation between (, and
is to determine the correlation length exponents v,

and v, via finite-size scaling of "domain-wall" energies.
In simpler cases where there is a single symmetry and a
single correlation length with exponent v, this is done by
finding the ground-state energies for two appropriately
chosen distinct boundary conditions. The energy difFer-

ence LE will then generally scale with the linear system
size N as (AE~

In the present case, with both a continuous and a dis-
crete symmetry, the periodic (P) "reference" boundary
conditions can be changed in two ways: to antiperi-
odic (AP) and to reflecting (B) ones, this latter pos-
sibility having been first suggested by Kawamura and
Tanemura. Hence there are two energy difFerences to be
considered, LE and LE . Across an antiferromag-
netic seam two spins interact with each other's image
under reflection in the origin (of spin space). Hence AP
boundary conditions probe the spatial rigidity of spin or-
der, and the spin correlation length exponent v, is given
by the usual relation

Across a reflecting seam two spins interact with each
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other's image under reflection about a fixed axis (in
spin space). Since the chiral variables appear only when
the "spin waves" are integrated out —and notwithstand-
ing the obvious link between B boundary conditions
and chirality —it is not a priori clear exactly how these
boundary conditions probe the chiral order. In fact the
relation ~AE

~

N ~ ' that one might naively expect
is certainly not correct. The reason is that B boundary
conditions, upon closer inspection, appear to affect also
the spin-wave degrees of freedom. This was first realized
with remarkable intuition by Kawamura and Tanemura,
who then proceeded and extracted the chiral correlation
length exponent v, from a heuristic expression involving
both LE and LE+.

On the basis of Monte Carlo determinations of the
ground states of two- and three-dimensional systems
these authors conclude that in two dimensions v,
1.2 + 0.15 and v = 2.6 + 0.3. This implies that the
chiral variables have their own length scale and order in
larger domains than the spin variables. Similar conclu-
sions, namely, v, 1 and v 2, were reached by Ray
and Moore, also on the basis of Monte Carlo simulations
and a finite-size scaling analysis. These studies suggest
that as the dimension d is increased, v may vanish be-
fore v, does, so that just above dp there would be a
phase with long-range chiral order but exponentially de-
caying spin-spin correlations. Indeed this is precisely the
scenario that Kawamura and Tanemura ' find in Monte
Carlo simulations of the two- and three-dimensional XY
spin glass. In recent work on the two- and three-
dimensional Heisenberg spin glass Kawamura arrives
at fully analogous conclusions. If these are accepted, the
XY and Heisenberg vector spin glasses have their lower
critical dimensionality between d = 2 and d = 3.

In order to achieve a better understanding of the in-
terplay between chiral and spin variables, Ney-Nifle, Hil-
horst, and Moore recently performed an analytic study
of the random +J AY spin glass (in its Villaini2 for-
mulation) on the one-dimensional ladder lattice (see also
Morris et at. ) Their conclusion is that the chiral corre-
lation length (, and spin correlation length (, diverge for
T $ 0 with the same exponent v, = v, (of which they de-
termine the value 1.8999...). The purpose of this work is
to extend the methods of Ref. 6 to d = 2 and to confront
our results with those of Refs. 3 and 5.

Our starting point in Sec. II is the Villain formu-
lation of the XY model with random +J interactions.
This formulation has the advantage that the chiral vari-
ables can easily be defined and can be decoupled from
the spin waves. We transform the XY Hamiltonian to
a Coulomb gas Hamiltonian with charges q that play
the role of the chiral variables. The transformation has
been known for a while, including the fact ' that
the charges take half-integer values on the frustrated pla-
quettes and integer values on the others. Here we take
exactly into account all finite-size effects, essential for
the finite-size scaling analysis that follows. Our result
for the Coulomb gas partition function in the case of pe-
riodic (P) and antiperiodic (AP) boundary conditions,
and for an arbitrary realization of the disorder, is given
by Eqs. (2.38). In both cases the efFective Hamiltonian

&8 = &c. (1 4)

There is a second regime, with a strongly anisotropic
spatial distribution of the frustrated plaquettes, in which
the model has a low-temperature phase with long-range
chiral correlation and, very plausibly, power law decay
of spin correlations. This is behavior analogous to that
of fully frustrated two-dimensional XY models, ' on
which there exists a large literature.

The result (1.4) in the first regime is different from
the scenario proposed by Kawamura and Tanemura
and by Ray and Moore. The basic mechanism responsi-
ble for (1.4) is that the ground state can accommodate
to a changeover &om P to AP boundary conditions by
means of the formation of a chiral domain wall, which is
energetically lower lying than the continuous spin-wave
deformation that naturally comes to mind. On the basis
of this example alone we cannot rule out the possibility
that our conclusion, Eq. (1.4), is valid only within the
restricted class of disorder realizations.

In order to treat the case of general disorder, we con-
struct in Sec. VI a heuristic theory based on the same
mechanism. It involves the lowest-lying excitations of
the standard Coulomb Hamiltonian which are assumed
to be collective charges reversals. We find that

v, & v, .

This is compatible with (1.4) but contradicts the results
of Refs. 2, 3, 5 where the opposite inequality holds. Fur-
thermore, we show that if Eq. (1.5) would hold as a strict
inequality, one cannot extract the exponent v from LE
and AE . To find v, an appropriate quantity would
then be the energy difference between the two ground
states of the Coulomb Hamiltonian with periodic and
reflecting boundary conditions, without any additional

contains, in addition to the Couloxnb interaction, a cou-
pling term between the total electric dipole moment and
the boundary conditions. This additional term was given
without derivation by Fisher, Tokuyasu, and Young who
studied the gauge glass model. A derivation was given
very recently by Vallat and Beck. They use a differ-
ent approach &om ours, the one presented here being
an extension of the standard transformation method
between the XY model and Coulomb gas. In Secs. III
and IV we go further and discuss how these equations
are modified in the case of reHecting (B) boundary con-
ditions. In the limit T ~ 0 the equations reduce to
expressions for the ground-state energy, including all its
finite-size corrections, provided the ground state itself is
known or can be plausibly guessed.

Since the ground-state problem for an arbitrary re-
alization of the disorder cannot be solved, we treat in
Sec. V a more restricted two-parameter subset of realiza-
tions, in which the frustrated plaquettes are placed in a
random rectangular array with infinite-range correlation
along the y direction. (Disorder of the unidirectionally
infinite-ranged type was also the first one considered for
the random bond Ising model. o) We find a regime of
main interest in parameter space in which the XY spin
glass has a zero-temperature transition with
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terms.
Our conclusion is that there is no evidence that chiral

order extends on a longer length scale than spin order.

II. PARTITION FUNCTION
WITH PERIODIC BOUNDARY CONDITIONS

A. Villain XY model with + J interactions

—PJV(y; —y;) y - —P~(y, —y; —2~~)' (2.1)

Here J ) 0 sets the energy scale. The relation (2.1)
implies that the Villain interaction V(P) depends on PJ;
when P becomes large, only one term on the right-hand
side (RHS) of (2.1) will dominate, V(P) will tend to

V(P) = P for ~P~ & vr, P = oo, (2.2)

We consider an XY model on a Gnite square lattice,
periodic in both directions, with sites i = (m, n), where
m = 1, . . . , M and n = 1, . . . , ¹ Each site i is occupied
by a two-component unit vector or "spin" S; whose angle
P; with a reference axis takes values in (—a, 7r]. In the fer-
romagnetic Villain model two spins P; and Pz linked by
a nearest-neighbor bond (i,j) have the Boltzmann weight

B. Transformation to a Coulomb gas
d. Prom XY epin glace to a eolid-on-eolid model

The transformation &om an XY model to a solid-on-
solid (SOS) model is well known 4' and has been ex-
tended to various types of random XY models. Here we
carefully study the finite-size effects that determine the
ground-state energy differences under different boundary
conditions. In (2.5) we wish to carry out the integrations
on the MN variables p;. To that end we arbitrarily se-
lect a lattice site io and transform to the new variables
of integration,

Po = 'Pip) (2.7a)

v'g = v'i v'j. (2.7b)

These are 2MN + 1 in number, and there exist MN + 1
relations between them. In order to formulate these, let
r, s, . . . be the position vectors of the plaquette centers.
We adopt the convention that in (i,j) the site j is to the
right of i (for a horizontal bond) or above i (for a ver-
tical bond), which naturally extends across the periodic
boundaries. We de6ne furthermore a sum on the bonds
(i, i') surrounding a plaquette r by the diagram of Fig. 1
together with the formula

and we may interpret P as the inverse temperature
1/kgyT. For all P, the sum on n in (2.1) guarantees the
periodicity property V(p) = V(y + 2vr) and the sym-
metry property V(p) = V(—&p). The antiferromagnetic
villain model has V(P; —

Pz
—vr) instead of V(P; —Pz).

Here we wish to consider an XY spin glass with ran-
domly ferro- or antiferromagnetic Villain interactions,
that is, with the Hamiltonian

'R = J) V(Q; —
P~

—xu),
(iJ)

(2.3)

where the sum runs over all nearest-neighbor bonds of
the periodic lattice, and the sr~ are quenched random
variables such that

V ii' = f12 + '@23 +43 $14. (2.8)

The caret on the summation sign is a reminder of the
sign convention in the RHS of (2.8). The variables p.„. of
(2.7b) then satisfy the relations

r) p;p = 0 mod 2z for all r. (2.9a)

These are MN relations of which only MN —1 are in-
dependent. The two remaining relations correspond to
loops around the torus and are

M

) rp" = ) rp( „,) ( +i „,) = 0 mod2a, (2.9b)

Q 1
sr~ = with probability

7r 2
(2.4)

N

) pu
——) y(~, „) (~, ~+i) = 0 mod 2a, (2.9c)

The expression for the canonical partition function of this
XY spin glass then is

ZM, N = O'Ijpi
7l ~

1

where ii = (mi, ni) is another arbitrarily selected lattice
site. Upon introducing the variables of integration (2.7)

+43

2x ) exp —PJ) (y; —
&p~

—m.„—2am„")

(jul ( (iJ)
(2.5) pz4 Q

in which the nz may be seen as additional dynamical
variables, and the argument of the exponential as a new
effective Hamiltonian. We shall henceforth write

vu = nu/(2m), (2.6)

which is integer (half-integer) when the interaction be-
tween p; and yz is ferromagnetic (antiferromagnetic).

FIG. 1. Diagram indicating the sign convention in the pla-
quette sum of Eq. (2.8). The indices 1, . . . , 4 are shorthand
fOr lI y

~ ~ ~ ) 14o
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in Eq. (2.5) we must represent the conditions (2.9) by b

functions and find
b functions may be represented by a Fourier sum with the
aid of

p& Inod 2K
I'J)

x8 (p~ IDod 2K 8 pg IDod 2Ã

x exp —PJ) ((p„—xu)
&0)

(2.1O)

in which ro is an arbitrarily selected plaquette, and where
a trivial factor 2' comes &om the integration on po. The

b (x mod 2vr) = ) 8(x —2vr E) = (2') ) e'
E=—oa e=—~

(2.ii)

which requires the introduction of a set (n, ) of summa-
tion variables for the plaquettes, and of two summation
variables n and n„ for the loops around the torus. One
finds

zM, m =(2z)™) ') ) f ay,- exp )~n, ) p,-
) n~ ny (gJ) r

x exp in ) &au + in„) rp„" exp —PJ ) (y„" —vr„")

(~J)
(2.i2)

where the prime on the summation sign indicates the restriction to n, = 0. The integrations on the yz can now be
performed.

Let the geometric relation between the pair of lattice sites (i,j) and the pair of plaquette centers (r, s) be as in Fig.
2. It is furthermore useful to define

1 if (i, j) is part of the loop (2.9b) [the loop (2.9c)],
otherwise. (2.i3)

Henceforth we shall generally write vr„ instead of vr„" when (i,j) and (r, s) are related as in Fig. 2. With this notation
the result of the p„ integrations in (2.12) is

ZM, ~=(2PJ)™)) ) exp i) ~,s n, —n, + ) r„n
n~ ny (~ )

xexp —(4PJ) ) n, —n, + ) w„n
(r,s) ( ~=~,y )

(2.i4)

Equation (2.14) represents the partition function of a
solid-on-solid model (or "column model" ) with Gaussian
interaction, in which, due to the randomness in the orig-
inal XV model, some terms occur with negative sign.
In the nonrandom case with all m„= 0, we recover the

I

partition function of the well-known discrete Gaussian
model, summed on diBerent step boundary conditions
represented by the variables n . and n„.

2. Prom the SOS model to Coulomb gas

The transformation &om a SOS model to a Coulomb
gas is also well known. We have to apply it here to the
random SOS model of Eq. (2.14), taking properly into
account again all finite-size effects. For a function f(n)
of an integer variable n one has

OO oo). &( ) = ). f ~. *""&(.)
tL:—OC) q= —oo

(2.15)

FIG. 2. Geometric relation between the pair of lattice
sites (i, j) and the pair of plaquette centers (r, s).

Applying this identity to the sum on the fn, ) in (2.14)
we get
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1

Z „=(2)IJ)™fdI) ) )
n ny (q ). r

x exp 22ri) q, v, + 22riAio

dvr

'7t 30

2
Il

&20

0 Xpy

+2 ) burrs Vr —Vs + ) 7 'A~

(r,s)
2-

7004

—(4PJ) ) 2, —v, + ) r„n, (2.16)
(r,s) ( ~ j

in which v0 = vr, and the integral on A takes care of the
condition n„= 0 in (2.14). The integrations on the v,
are Gaussian. The most convenient way to carry them
out requires some preliminaries. We introduce the co-
ordinate representation r = (x, y) with x = 1, . . . , M
and y = 1, . . . , N, and the periodicity condition that
(x+M, y) and (x, y+ N) also denote the plaquette center
r. For horizontal and vertical pairs (r, s) we shall have,
by convention, s = (x + 1, y) and s = (x, y + 1), respec-
tively. For each plaquette center r we define a frustration
variable p, by

FIG. 3. Diagram indicating the sign convention in the
definition (2.17) of the frustration variable p, . The indices
0, 1, . . . , 4 are shorthand for the plaquette centers r, rz, . . . , r4.

to vertical (or horizontal) bonds (recall that a horizontal
pair (i,j) corresponds to a vertical pair (r, s) and vice
versa). At this point it is useful to fix the positions of
the two loops around the torus by the specific choice

~,*, = by iv for (r, s) = ((x, y), (x, y + 1)),
(2.19)

2~ I r ~jj' ~01 '7t 20 '7t30 + '7t 04' (2.17) for (r, s) = ((x, y), (x + 1,y)).

rl. = )
(r s)

(2.1S)

where the subscript n = x (or n = y) denotes restriction
I

where the notation is as in Eq. (2.S), together with Fig.
3.

Let furthermore
v,' = v, +M xny+N yn, (2.20)

where as before r runs through (x, y) with x = 1, . . . , M
and y = 1, . . . , N. After rearranging terms in the expo-
nential one finds for the partition function (2.16)

We pass in Eq. (2.16) from the v, to new variables of
integration v,' defi.ned by

1

zM ar = (2)IJ) , f d& ) ) exp —2mIA(n + n„) + i(M Il„n„ + pI II n )
2 n niI

-(4P1)-' (N 'Mn.'+ M '-N~„')-

with

x ) exp 27ri) q (M xnan—+N yn ) x Z~
(~.)

(2.21a)

M, N
r

dv' exp 27ri ) v,'(q, +p, + Ab, „)—(4pJ) i ) (&' —&')2
r (r,s)

(2.2lb)

We shall abbreviate

Qr 'qr + pr + ~br, rII ~ (2.22)

and analogously defined Qk, where

k = (Iz A:y) = 22r(M r, N Ky) (2.24a)

The integrals on the v,' in Eq. (2.21b) are now easily
carried out with the aid of the Fourier variables 0 1 M 1 vy 0 1 N 1 (2.24b)

v„' = (MN) s ) e '"'v' (2.23) It is useful to make the specific choice ro ——(M, N). Tak-
ing proper care of the integration on vo, which is excep-
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tional and gives a factor h(Qo), one finds &om (2.21b)

ZM, N
——(MN) s ) q, + A CM N

2k . 2kyl
Ai, =4~ sin —+sin

2 2) (2.26)

+M,N—
k+0

(47I p J/Ag) ~ (2.27)

with

x exp —4vr PJ ) Az ~Qi, ~

k+0
(2.25)

Upon inserting (2.25) in (2.21a) one may carry out the A

integration with the result

ZM, N = (2pJ)™(MN)&CM, N ) ) exp i (M II„n„+N II n ) —(4pJ) (N Mn + M Nn„)

x) 'exp 27ri) (—M 'xny+N 'yn )
—pic ((q, +p, j) (2.28)

Here the prime restricts the summation to neutral
"charge" configurations (q, ), i.e. , satisfying

N M

~y ~(M, y), (l,y) r ~m ~(x,N), (x, l) r (2 34)

) q, =o,

and 'R~ is the Coulomb Hamiltonian,

(2.29)
and P is the electric dipole moment,

P = (P* P.) = ).r(q. + p.). (2.35)

R~ ((q, + p, )) = 8~ J) ) UM N(r —r')
r r'

"(q. +&.)(q +J. ) (2.30)

UM, N(r) =
e-'k

2MN Ai,k+0
(2.31)

where UM N is the Coulomb potential on a periodic lat-
tice,

The Anal result for ZM ~ then becomes

(2.36)

where

ZM N = (2PJ)™(MN)~ CM N

x ) '8N~M N 'P„—~~/(2~) OM~N

x M P —7ry/(2m ) e

This function has the periodicity properties 8 (u) = (4vrPJa)& ) exp 4m PJa(q —u—)

UM, N(r) = UM, N (r + Mei) —UM, N (r + Ne2),

(2.32)

11„—2~) *q,
~

= 2~M 'P. +~„, —-(2.33a)

where ei = (1,0) and e2 = (0, 1).
The last step needed is to transform the sums on n

and n„ in (2.28) according to Eq. (2.15), by introducing
the continuous variables v~ and v» and new summation
variables q~ and q„. The integrations on v and v„are
again Gaussian and easily carried out. The result can be
slightly rewritten with the aid of the relations

(2.37)

has the periodicity property 0 (u) = 8 (u + 1), and the
prime refers to the charge neutrality condition (2.29).

C. Summary

In view of the relatively technical character of the
above transformation, and for easy later reference, we
summarize here the result. The partition function ZM ~
[see Eq. (2.5)] of the +J Villain XY model [Eqs. (2.3)
and (2.4)] can be expressed as the partition function of
a system of Coulomb charges jq, j on the dual lattice,

N II —27r ) yq, = 2mN P„+m, —(2.33b)

ZM, N =2~(2PJ) + (MN)'CM, N

r )

q~, qz
———oo (q )

(2.38a)

where vr„and m are sums along loops around the torus, where
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&(q, q„, (q, )) =47r'JNM ' qy+N ') y(q, +p, ) + (27r) ') ~(~ ~) (~ i)

N

+47r JN M q + M ) z(q + p ) + (2z) ) z(M, y) (i,y)

+8 J) ).&, ( — )( ~ + .)( "+ ") .
r g'

(2.38b)

The Coulomb potential UM ~ and the constant CM ~
are given by (2.31) and (2.27), respectively, together with
(2.26) and (2.24). The q, run through all integer values
subject to the charge neutrality condition (2.29). The
sums on r and r' run through (x, y) with x = 1, . . . , M
and y = 1, . . . , N. Each nearest-neighbor bond (r, s) on
the charge lattice is dual to a nearest neighbor bond (i,j)
of the original spin lattice, and the disorder variables m,
that appear in (2.38) are equal to the corresponding vr„".

The &ustration variables p, are defined in terms of the
7r„by the diagram of Fig. 3; they are half-integer for
a &ustrated plaquette, and integer for an un&ustrated
plaquette. Even though the first two terms in (2.38b)
seem to favor a definite coordinate representation of the
lattice, one may verify with the aid of some algebra that
ZM ~ is invariant under translation of the origin, as of
course it should be.

The transformation &om the ferromagnetic two-
dimensional (2D) XY model to the Coulomb gas Hamil-
tonian 'R~, including the charge neutrality condition, has
been known for a while. Similarly the replacement of
the charges q, by q, + p, in the random case has been
known since Villain and was treated in a more general
context in Ref. 17. Equation (2.38) show how on a Pnite
lattice the charge configurations receive a supplementary
weight, represented by the first two terms in (2.38b),
which depend on the electric dipole moment, in agree-
ment with Refs. 18, 19. Whereas this weight plays no
role for a bulk system in the thermodynamic limit, it is
essential for finite-size scaling considerations, and there-
fore [see Eqs. (1.2) and (1.3)] for the determination of
the low-temperature behavior of the correlation lengths.
This fact will be exploited in the example of Sec. V and
in the general heuristic theory of Sec. VI.

the origin of the finite-size efFect of interest.
The following example, although trivial, shows how

ground-state energy difFerences are extracted &om the
final equations of Sec. II. We compare the ground states
of an XY ferromagnet with periodic and antiperiodic
boundary conditions. The energy difFerence AE P is
that of a spin wave of wavelength 2M, which can be
written down immediately:

2

~E"'=NMJ
~q2M) M (3.1)

To see how the same result can be obtained &om Eq.
(2.36) we use that for both types of boundary conditions
all p, vanish, and in the ground state all q, as well, and
furthermore that the periodic boundary conditions have

= 0 and the antiperiodic ones m = 2. This gives

AE = —lim —ln8~)~
~

—~,pmao P (2) (3.2)

which in view of (2.37) exactly coincides with (3.1).
The 8 functions in Eq. (2.36) or, equivalently, the first

two terms in Eq. (2.38b) can be traced back mathemati-
cally to the global constraint on the spin variable difFer-
ences p~. This example shows that they represent the
energy of a continuous spin-wave deformation forced into
the system by the boundary conditons. We shall extend
this interpretation to the case of general disorder, and
speak of a global spin nave.

Ground-state energy difFerences between P and Ap
boundary conditions for more complicated situations can
also be obtained from (2.36) or (2.38), at least in those
cases where the ground state of the charge system is
known or can be plausibly guessed. A nontrivial example
is discussed in Sec. V.

III. ANTIPERIODIC BOUNDARY CONDITIONS

In view of the remark preceding Eq. (2.3), it is very
simple to change the periodic boundary conditions in
the system discussed above into antiperiodic boundary
conditions (we shall always take these along the seam
joining the Mth and the first column). It amounts to
changing 7rz into sr~ + 7r on the antiferromagnetic seam.
This just means drawing another member of the class
of random systems under consideration. In particular,
frustrated (unfrustrated) plaquettes remain frustrated
(unfrustrated). The corresponding antiperiodic parti-
tion function ZM+P~ differs from Eq. (2.36) only in that
m. /(2') is replaced by vr /(2m) + 2i. This diB'erence is at

IV. REFLECTING BOUNDARY CONDITIONS

= J) "s V (p; —y„—~„")
(~J)

+J) "' V (p; + rp; —7ru) .
(~J)

(4 1)

Reflecting boundary conditions are introduced into the
XY Hamiltonian by letting the spins S~i ~

in the first
lattice column interact with the images of the S~M ~

in
the last column under reflection about an axis in spin
space. The counterpart of the periodic Hamiltonian (2.3)
ls
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Its partition function will be denoted by ZM ~, the up-
per index R indicating, here and henceforth, reflecting
boundary conditions. The subscript "reg" in (4.1) refers
to the regular terms and the subscript "exc" to the ex-
ceptional ones, modified by the reflecting boundary con-
ditions.

A. Transformation to a Coulomb gas

The conversion of the Hamiltonian (4.1) into a
Coulomb gas Hamiltonian proceeds via the same succes-
sion of transformations as in the case of periodic bound-
ary conditions. However, several differences occur, and
we shall indicate the main modifications below.

(i) When transforming to the variables of Eq. (2.7), it

is convenient to choose io ——(1, 1). The expressions for
rp; + pz in the exceptional terms in (4.1) then become

(p(M ~) + (p(~ ~)
——(p(M ~) (~ ~) —2 y(z g z) (z g) + 2pp

e=2

(n = 1, 2, . . . , N) . (4.2)

(ii) The integration on po can be carried out only af-
ter the introduction of the plaquette and loop variables
{n,), n, , and np, and leads to the result 2vrb 0. The
integrations on the y(~„) (q „) and y(j q) (q ) are ex-
ceptional.

(iii) The discrete Gaussian partition function, obtained
as an intermediate result, now becomes

ZM N
——(2PJ)™) ) exp i ) "sn„(n, —n, ) —(4P1) ) "s (n, —n, )

( ) (~ s)

x exp i ) ""'7r,.( n, —n—.+np) —(4pJ) ' ) '"'(~, —~, —u„)'
(~ ) (~ s)

(4.3)

k = (k, kp) = 2~~ M
~

~ + — ~, N v.„~,(, r
2) )

(4.4)

with K and K„as in (2.24b); this set of wave vectors will
be referred to by the upper index R on summation and
product signs. We define in particular

R
h

k
(4~p J/Ag) ' . (4.5)

(vi) The variable q, —b Mar„/m, which appears in the
Coulomb Hamiltonian, may be renamed q, by a shift of
the variables q(M y).

The final result is

in which, as before, r = (x, y) with x = 1, . . . , M and
y = 1, . . . , N, and the exceptional terms are the horizon-
tal bonds linking the Mth to the first column; we have
chosen w,", = 1 if (r, s) is exceptional (and hence v,", = 0 if
(r, s) is regular); and the prime restricts the summation
to configurations {n,) with n~M Nl = 0. The exceptional
terms show Chat between the columns M and 1, in addi-
tion to the step boundary condition represented by the
variable ny, a reflection is imposed with respect Co the
zero level of the column heights.

(iv) Upon continuing the succession of transforma-
tions, one finds that the integral on v„gives 2b(2q& +

q, + A). After integration over A this becomes
2b(2q„—g, q„0) where b(a, b) = b q, and after sum-
mation on q„one gets 2b(g, q mod 2, 0); i.e. , the sum
of the charges q, should be even.

(v) The relevant wave vectors are now

where the subscript "par" refers to the parity condition

) q, +sr„/vr mod 2 = 0 (4.7)

and where

&c ({q.+ p.)) =8~'J ) .):UM, N(r —r')
r g'

(qr + pr) (qr' + pr') (4.8)

with r and r' in the range (x, y), z = 1, . . . , M, y
1, . . . , N, and with

ik r

(') = 2M+)-
k

(4 9)

This function has the (anti)periodicity properties

UM, N(r) UM, N (r + ~e2) UM, N ( M &) '

(4.1o)

Hence two charges at a fixed finite distance on oppo-
site sides of the reflecting boundary interact with each
other's charge-conjugated image: Reflecting boundary
conditions for the XY spins lead to charge-conjugating
boundary conditions for the Coulomb charges.

We now comment on this result and compare it to
its counterpart for P and AP boundary conditions, Eq.
(2.36). The fact that in the partition function (4.6) no
charge neutrality is imposed becomes understandable if
one writes the interaction U as

ZR 2(2p J) MN~R ) par —P—'R~
' (..}

(4.6)
UM N(r) = U2M, N(r) —U2M N(r +. Mex), (4»)
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&~ ((Vp + P,&) = 4~' J):):U2M, X(P —P')
P P

x (&p + &r ) (&r + &p') (4.12)

where p and p' run through the 2M x N lattice and
it is understood that corresponding sites carry opposite
charges. The extra prefactor 2 that (4.12) has with re-
spect to (4.8) indicates that the energy density has been
smeared out over twice the volume. The self-interaction
present in (4.8) has become the interaction energy be-
tween a charge and its image in (4.12).

V. EXAMPLE

A. Speci6c expressions for the disorder:
Ground state and ground-state energy

with P boundary conditions

As an example we consider an M x N lattice containing
a rectangular array of M' x N' frustrated plaquettes, con-
sisting of the points r, b = (x, yb) with a = 1, 2, . . . , M'
and b = 1, 2, . . . , N', where yb = bN/N' = bE„with I.„
an even integer, and the xp are drawn randomly and in-
dependently with a density M'/M = 1/I. . The density
of frustrated plaquettes is therefore 1/E E„. (Note that
drawing the frustrated plaquettes randomly is not the
same thing as drawing the negative bonds randomly;
the latter procedure creates pairs of frustrated plaque-
ttes, leading to a Coulomb gas with quenched dipoles
rather than quenched charges. ) We let Q, denote the
ground-state value of q, + p, . The arguments of this
section rest on the hypothesis that we can find the true
ground state. For M' and N' even we may safely as-
sume that the ground state has the checkerboard array
of charges

Qo ~ ( 1)a+b1
(5.1)

and zero charges on all the other plaquettes. The ground
state value of 'R~ therefore is, from (5.1) and (2.30),

+C ((Q )) —2'7r J) ) +M, N (ra, b r ',b' )
a, b a', b'

& ( 1)a+a +b+b (5.2)

Upon using the explicit form of the lattice Coulomb po-
tential, Eqs. (2.31) and (2.26), we can rewrite (5.2) as a
sum of interaction energies between the charge-carrying
lattice columns,

Rc((Q,')) =7r'J/„'N) (—1) + ) V (x —x'),
a,a'

which is easily checked. It is as though we have a double
system, of size 2M x N and with periodic boundary con-
ditions, in which every charge at a site r of the original
system is paired up with an image charge, equal but of
opposite sign, at the corresponding site r + Meq. Us-
ing Eq. (4.11) and obvious symmetry properties one can
make this explicit by writing the Hamiltonian (4.8) as

where v runs through the values + 2, + 2, . . . , +(zE„—2),
and in which, with c~ = cos

2m very )

~ik
V.(*)= —)M 4 —2cosk —2c

- —1/2
(2 —0„) —1

2

x(2 —c„—[(2 —c ) —1]'~ )~ ', (5.4)

the last step involving the limit M ~ oo at finite ~x~.
This expression takes the much simpler form

V„(x) - (2~~v~) 'E„exp( —2vr~vx~E„') (5.5)

in the limit 8,E„~ oo with /. /I.„fixed and x of order 8
In this limit, also, the sum on v in (5.3) can be evaluated
exactly and one finds

'Rc((Q,')) = 7rJ/„'N—) (—1) +

a,a'

x ln tanh(m ~x —x ~l„'). (5.6)

B. Comparison of P, R, and AP
boundary conditions

We now wish to consider the ground state energies and
their di8'erences for the three diferent boundary condi-
tions P, AP, and B.

Periodic boundary conditions

For the frustrated plaquettes located on the array de-
fined in the beginning of this section, we can always
choose the negative bonds such that sr~ = m'& ——0.
Since the ground state (Q, ) has P = P„= 0 [see Eq.
(2.35)], the first two terms in (2.38b) are minimized by
q = q„= 0 and so do not contribute to the ground-state
energy, which is therefore entirely given by (5.6).

One possible type of excitations from the ground state
are those consisting of reversing all charges Q, in one
column a. The excitation energy is of the order of

This shows that the interaction energy is negative be-
tween two neighboring columns (a and a + 1), that it
diverges logarithmically at small distances ~x —x ~, as
expected, and tends to zero as exp( —~~x —x ~E„) for
large ~x —x ~, so that it is short ranged.

One remark is in place. The limit E,E„—+ oo corre-
sponds to a dilute array of frustrated plaquettes. These
must be joined pairwise by long ladders of negative
bonds —for which there is no physical reason. The analy-
sis that follows will use Eq. (5.6); however, qualitatively
similar results can be obtained from Eqs. (5.3) and (5.4),
where 8 and E„are arbitrary, the key point being that
the large distance behavior of the column-column inter-
action is still determined by the v = +z terms in Eq.
(5.3). We shall come back to the case of general E and
E„ in the discussion in Sec. VI.

(5.3) AE($ )
—= 2' J/.„N lntanh(m. ( l,„), (5 7)
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where ( is the distance between x and the closer one
of x i and x +~. Because of its exponential decay with
~x —z [, the interaction between a and more distant
columns does not change this estimate.

g. Re+ecting boundary conditions

We first of all have to find the a priori unknown ground
state. To this end we consider again the checkerboard
configuration of charges of Eq. (5.1) and calculate its
energy 'RP((Q, )) under refiecting boundary conditions,
starting from Eqs. (4.8) and (4.9). The result is again
Eq. (5.6), but with charge-conjugating boundary condi-
tions, the interaction terms between columns a and a'
on different sides of the reflecting boundary have an ex-
tra minus sign. Since the number M' of columns was
supposed even, this means that there is somewhere a
mismatch consisting of two neighboring columns a and
a+ 1 that are identically instead of oppositely charged.
The energy cost is AE((), with ( the distance between
these columns, and can be minimized by shifting the mis-
match to the largest interneighbor distance. The typical
maximum distance that can be found is

I ln
~

—
~
+ O(l) (M m oo),

&~*)
(5.8)

and therefore the ground-state energy difference LE
between reflecting and periodic boundary conditions is
of the order of AE(( „),which leads to

We can now link the finite-size scaling of the ground
state to the low-temperature behavior of the correla-
tion length as indicated in the Introduction. Since the
mechanism leading to Eq. (5.9) is the reversal of large
domains of chiral variables, one deduces that in the
case vrE /E„& 1, there is in the thermodynamic limit
M N —+ oo no chiral order at any finite temperature
T, and that for T $ 0 the chiral correlation length (,
diverges with an exponent v, = 1/(1 —vrE /Iz) In the.
case vrI /I. „& 1 (which corresponds to relatively strong
spatial anisotropy), one deduces similarly that the sys-
tem has a low-temperature phase with long-range chiral
order. We shall come back to both cases after discussing
AP boundary conditions.

3. A.ntiperiodic boundary conditions

Under AP boundary conditions the energy of a charge
configuration is again given by (2.38b). In this case,
'Rc ((Q, )) is as given by (5.6), but since now vr„= 0 and
vr = vr, the energy of the charge configuration (Q, j has
an extra contribution m2 JNM &om the first two terms
in (2.38b), which is exactly the spin-wave energy encoun-
tered in the discussion of the ferromagnet in Sec. III. One
cannot, however, without further inspection, identify this
contribution as the ground-state energy difference LE
since (Qo) is not necessarily the ground state any more.
The remainder of the discussion depends on the value of

8 /l&. We discuss first the case 7rE /E„& 1. Curiously, in
this case the mechanism to construct a lower-lying state
is the same as it was for B boundary conditions, viz. ,
columnwise charge reversal.

Reversing a single column leaves M P = 0 but
changes N P& &om 0 to 2, which annihilates the effect
of m = m and therefore cancels the spin-wave contribu-
tion vr JNM . The same cancellation can be obtained
by reversing the charges in an odd number of otherwise
arbitrary columns. The energy cost is the excitation en-
ergy of the columns. It can be minimized by choosing an
odd number of consecutive columns a, a + 1, . . . , a', such
that the distances ~x q

—x
~

and ~x +q —2:
~

are as
large as possible. Typically, they will again be of order

ln(M/E ). Hence we arrive for b,ZAP at the estimate

identical to LE . This energy difference is less than the
spin-wave energy m JNM, and therefore the ground
state will adjust to AP boundary conditions by a chiral
excitation, and not by a spin-wave excitation. In view
of Eq. (1.3) and our result for v, found above we now
conclude that v, = v, = 1/(1 —vrE /E„) Hence a.t low
temperature the spin and chiral correlation lengths, (,
and („behave as

T ~l(~ t-It ) —
( g /g & 1) (5.11)

In the thermodynamic limit M N + oo it follows
[see Eqs. (1.2) and (1.3)] that v, = oo, which is most
naturally (although not strictly necessarily) associated
with a low-temperature phase with power law decay of
the spin-spin correlation. In this case the energy DE
is not the result of a domain wall, but smeared out across
the system.

All of the above discussion is for an even number M'
of charge-carrying columns. We now comment on the
differences that intervene when M' is odd. In that case
the value of N P„ in (2.36) is +4 and is changed to

~4 (modulo 1) under replacement of P by AP boundary
conditions. Hence the value of O~y~ does not change
and (since M P = 0 both before and after) we have
LE = 0. The interpretation is that a global spin wave
is "caught" in the system and cannot release its energy.
When we replace P by Bboundary conditions, the global
spin-wave terms disappear &om the Hamiltonian and re-
lease their energy so that LE is negative. The phe-
nomenon of spin-wave energy release was first observed

In the case 0 & vrl /E„& 1 (large spatial anisotropy
and, as seen above, a low-temperature phase with long-
range chiral order), the situation is different. The
minimum excitation energy of the columns is still
(N/E„)(M/l )

t )t~, but this is higher than the spin-
wave contribution which it cancels. Therefore in this
case the ground state (Qo) remains unchanged (and in
the spin representation acquires only an additional global
spin wave), and

(5.12)
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by Kawamura and Tanemura in their Monte Carlo simu-
lations of an XY model with general disorder. It appears
here analytically, but seemingly as a consequence of the
distinction between even and odd M' and hence closely
tied to the present example. But we shall see in the next
section that it also appears in the general case.

having &actal dimension less than 2. Our hypothesis is
that such reversals have excitation energies at least as
high as those of the scale-L droplets.

The ground states Qo + and QD, of 'RP and 'Rc, re-
spectively, must difFer at least by a contour going around
the torus in the y direction, that is, by a scale-N droplet.
For the energy difI'erence between the two ground states
we therefore have

VI. GENERAL CASE ER E ~ N —1/vc (6.1)
On the basis of the experience gained we now at-

tempt a theory, admittedly heuristic, for the general case.
Let, as before, 'R~ denote the standard lattice Coulomb
Hamiltonian (2.30), and 'RP its counterpart (4.8) with
B boundary conditions. Let in this section 'R denote
the Hainiltinian 'R of Eq. (2.38b), and 'R+P its counter-
part with AP boundary conditions. We shall take the
unknown ground state Qo of 'Rc as our reference state
and denote its energy by Eo. Our strategy will be to try
to determine how the ground states of 'R&R and 'R

differ &om Q .
Since the remaining discussion concerns the low-

temperature regime, it is convenient to work with charges
+2 on the &ustrated plaquettes and charges zero on all
other plaquettes. This simplification, which was also
made by Villain, leads to the problem of an Ising model
on a random lattice (namely, the one composed of cen-
ters of the &ustrated plaquettes), with logarithmically
increasing antiferromagnetic interactions and zero mag-
netization. The logarithmic interaction will be screened
in a way that we cannot precisely describe (it has to be if
the energy per charge is to be finite) and it is reasonable
to imagine that there exist some efFective interaction de-
caying as a power law between spatially separated neutral
sets of charges.

Assuming that we know the ground state Qo, the next
relevant question is what the lowest-lying excitations are.
Clearly all excitations can be described. in terms of charge
reversals with respect to the ground state Q or, alter-
natively, in terms of contours on the dual lattice (given
any reasonable planar graph representing the nearest-
neighbor relations on the lattice of charges). In the spirit
of Fisher and Huse we shall consider the lowest-lying
excitations involving the reversal of order L charges
and. localized in an area of linear size 2L around. a pre-
assigned point in space. Such excitations will be called
droplets. Let their excitation energy scale as I
where, since we are below dg, the exponent v is posi-
tive. Due to the long-range forces, the droplets so d.e-
fined need not constitute single domains. (For short-
range forces they should and reduce to the droplets of
Fisher-Huse2~ theory. ) A typical scale-I droplet may
have to be represented by a set of disconnected contours.
We shall assume, nevertheless, that it is compact enough
so that there is always, typically, one main contour en-
closing ~ L charges. This amounts to assuming that a
domain wall can be defined, whatever its width, around
the reversed area. Excitations that would not fall in this
category are, for example, those that consist of many
small-size domains dispersed in the volume I, or &ac-
tal excitations extending throughout the volume I but

EP,AP E P,AP N —&/v, (6.2)

where c and c are positive random constants and the
exponent v, is also positive; it is the spin correlation
length exponent of Eq. (1.2). But since, by hypothesis,
the droplet excitations are the lowest-lying ones that ex-
ist at each given scale, the excitation that leads to (6.2)
is, at best, also a scale-N droplet excitation in which
case v, = v, or is possibly a combination of droplet ex-
citations on smaller scales in which case one might have
v, &v, . Hence

v, (v (6.3)

Upon combining these considerations we arrive at the
conclusion

CHEAP (
AP P) ~—1/v,

QER ~ P N —1/vs N —1/vc

(6.4)

in which c ' & 0 and c may be of either sign with c = 0.
It follows that LE —c N /, which is negative.
This is the phenomenon of the release of spin-wave energy
as one passes &om P to Bboundary conditions. One sees
furthermore that

where c is a (positive or negative) random constant, and
v is as before the exponent of the chirality-chirality cor-
relation function; see Eq. (1.2). This gives a way to
determine this exponent.

We now turn to the boundary conditions P and AP.
Let Qo' (Qo'+P) be the ground state of 'R+ ('R+P) and
let E~+ (Eo+P) be its energy. Since 'R differ &om Rc
by the addition of two quadratic terms, we have neces-
sarily Eo' —Eo & 0. In the ground state Qo these
additional terms take a random positive value of order
1 (at least, if we assume that M P and N P„do
so in the ground state). This value can be reduced by
reversing domains of charges in Q . The ground state
Qo + (Qo +P) is now determined by a compromise be-
tween the minimization of 'R~ and the minimization of
the ad.ditional terms, which drive the total electric dipole
moment to a specific value. Since this is a global bias-
ing force, and since the excitation energies go down with
increasing length scale, we expect that the compromise
leads to a Q '+ (Q ' P) that differs from Q by an ex-
citation on the scale N of the system. This excitation
might not be of the same type as the droplet excitation
discussed above, and therefore we put
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(6.5)

i.e., both energy differences scale with the same power of
¹

We now discuss the two possibilities implied by Eq.
(6.3). If it holds with the equality sign, we are in the
case of a single correlation length for the spin and the
chiral variables, as found in the example studied. This
case needs no further comment. If Eq. (6.3) were to
hold as a strict inequality, then there are two different
exponents v, and v . This would imply a longer corre-
lation length for the spin variables than for the chiral
variables. Moreover, LE is then not the appropriate
quantity to determine v . In fact, in this case v cannot
be found from a comparison of P, AP, and B bound-
ary conditions, but should result from a comparison of
'Rc and 'RP according to Eq. (6.1). Kawamura and
Tanemura extracted the exponent v, &om a numerical
determination of LE and v from a postulated expres-
sion involving both LE and LE . In this work there
is a strict inequality that goes in the sense opposite to
(6.3).

The conclusion is that we find no evidence for chiral
order extending on a longer length scale than spin order.

VII. FURTHER COMMENTS
AND CONCLUSIONS

We have considered the two-dimensional XY spin glass
with +J interactions. In Secs. II—IV general formulas
are presented that exhibit the interplay between chiral
and spin variables in determining domain-wall energies
on finite M x N lattices with various types of boundary
conditions. In Sec. V we have considered, as an example,
a specific type of disorder with infinite-ranged correla-
tions in the y direction. The spatial distribution of the
&ustrated plaquettes depends on two parameters 8 and
8„, whose ratio is an anisotropy parameter. The scaling
properties of the domain-wall energies with system size
lead us to the following conclusions.

(i) 4 Y spin glasses with critical temperature T = 0.
For E, E„-+ oo and for 7rE /E„) 1, the system of Sec. V
has only a T = 0 critical point at which the chiral and
spin correlation lengths diverge with the same exponent
v, = v, = 1/(1 —sr' /E&) We add h. ere without proof
that the phenomenon of a T = 0 transition with v, = v,
holds in the entire region of the Z~l„plane determined
by

4E (I. —1) sin ) 1 (E ) 1 and E„= 1, 2, . . .).
2/y

(7.1)

This phenomenon is analogous to what we found on the
one-dimensional ladder and tube lattices. It is dis-
tinct, however, &om the scenario proposed by Kawamura
and Tanemura ' and by Ray and Moore for the two-
dimensional uncorrelated random +J XY spin glass, ac-
cording to which one would have 0 & v.-' & v, . In
order to rule out the possibility that our conclusions are
restricted to a specific class of correlated. disorder, we
considered in Sec. VI the general case of random dis-
order. The heuristic theory presented yields a different
inequality, namely, 0 & v, & v, . We therefore find no
evidence for chiral order extending on a longer scale than
spin order in two dimensions.

One may now go one step further and speculate that
since we had v, = v for d = 1, the mechanism uncovered
above, which enables the ground state to accommodate
to a change from P to AP boundary conditions by a
low-energy chiral excitation, is general for uncorrelated
random 6J XY model, and that v, = v for all d & dg.

(ii) Random XY models with nonzero critical tem-
perature. This class encompasses the model of Sec. V
when Eq. (7.1) is not satisfied. In this case there
is a low-temperature phase with long-range chiral or-
der and, very probably, power law decay of the spin-
spin correlations. This is the same scenario that is be-
lieved to hold for a fully frustrated two-dimensional XY
model, which is, as a matter of fact, recovered in
the special limit E = E„=1, and which is characterized
by v & 0 = v, . It cannot, therefore, be identified
with the scenario v, & 0 & v, that Kawamura and
Tanemura propose for the three-dimensional random +J
XY model.

Finally we comment on the transition line 4E (E
1) sin (vr/2E&) = 1 between the regions (i) and (ii).
Clearly the distinction between these two types of
ground-state behavior is not due to the density of &us-
trated plaquettes, which is 1/I. E„, but to the nature of
correlations in their spatial arrangement. The different
behaviors can be distinguished by the ground-state re-
sponse to a change between P and AP boundary condi-
tions. In region (ii), the ground state is elastic (it deforms
continuously), whereas in region (ii) it is "brittle" (it re-
sponds by the formation of a chiral domain wall). This
transition appears in this work somewhat as a by-product
of the analysis, but it is interesting in itself and merits a
separate study.
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