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In analogy to the quantum dimer model on the square lattice introduced by Rokhsar and Kivel-

son, we identify the low-energy Hilbert space of the spin-- kagome Heisenberg antiferromagnet with

the set of dimerized states (nearest-neighbor singlets) and derive an effective Hamiltonian which

describes resonance and includes Buctuations into next-nearest-neighbor singlets. Complete diago-
nalization of this effective Hamiltonian for systems as large as 36 spins makes possible the study of
the low-energy thermodynamics of this quantum antiferromagnet and strongly supports the double

peak feature in the heat capacity.

I. INTRODUCTION

The quantum dimer model (QDM) was introduced by
Rokhsar and Kivelson for the S =

&
square lattice

Heisenberg antiferromagnet (HAF) as an alternative de-
scription of a possible non-Neel state. There are two
essential ingredients of simplification in this approach:
First of all, the low-energy Hilbert space is identified
with a set of dimerized (nearest-neighbor singlet) states.
Rokhsar and Kivelson have argued that it is reason-
able to truncate the full Hilbert space in this fashion,
provided that spin-spin correlation functions are short
ranged and a gap exists in the spin excitations which sep-
arates the low-lying excitations in the spin singlet sector
f'rom higher spin excitations. Second, an efFective Hamil-
tonian within this restricted Hilbert space is made local
by taking into account the resonance of the dimerized
states to the lowest order, i.e., resonance over the short-
est even-sided loops on the lattice. This simplification is
somewhat drastic in the sense that the nonorthogonality
of the dimerized states will induce resonances over ar-
bitrarily large loops, albeit with exponentially decaying
amplitudes.

As suggested by cluster studies and others, the
quantum S =

2 kagome Heisenberg antiferromagnet
(HAF) presumably has exponentially decaying spin-
spin correlation functions2 and a gap of about one-
fourth of the exchange coupling constant for spin triplet
excitations. These features therefore make the QDM
particularly suitable for the kagome HAF. Furthermore,
compared with the square lattice HAF, the kagom~ struc-
ture, with its shortest even-sided loop being a hexagon,
provides a smaller expansion parameter which may help
to reduce the efFect of the nonlocality of the efFective
Hamiltonian.

A recent high-order high-temperature expansion study

on the S =
2 kagome HAF -by Elstner and Young

shows unambiguously that the heat capacity has further
structure at lower temperature in addition to a high-
temperature peak. This puts the double-peak feature
of the heat capacity first speculated by Easer on firm
ground. The detailed picture of the low-temperature heat
capacity together with the nature of the low-temperature
phase is, however, not easily accessible from the high-
temperature expansion study. By identifying the low-

energy Hilbert space of the spin-& kagome Heisenberg
antiferromagnet with the set of dimerized states (nearest-
neighbor singlets), we can derive an effective Hamiltonian.
for the low-energy singlet sector that can be diagonalized
for systems as large as 36 spins. The studies of the low-

energy thermodynamics from the present approach there-
fore complement the high-temperature expansion study.

Remarkably enough, the highly degenerate mean field
solutions of the fermionic SU(N) generalization for the
kagome HAF are composed of the same set of dimerized
states. Fluctuation corrections at order 1/N correspond-
ing to a Buctuating "benzene cluster" are responsible for
freezing the singlet pairs into a pattern having a maxi-
mum number of such clusters. For the physically rele-
vant SU(2) case, it is important to investigate the stabil-
ity of this "spin-solid" phase against higher-order correc-
tions. This also motivates the present QDM calculations
for the kagome HAF.

In view of several approximations involved, we organize
this paper as follows: In Sec. II, some terminology is in-
troduced to characterize the manifold of the dimerized
states in terms of a loop gas representation and a pseu-
dospin representation. We specify the reduced Hilbert
space to be used throughout this paper. An efFective
Hamiltonian within this reduced Hilbert space is brie8y
outlined in Sec. III, since detailed derivations can be
found in Ref. 9. In this section, we also suggest a scheme
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to classify the order of both overlap and Hamiltonian ma-
trix elements in terms of a small expansion parameter ~.
In Sec. IV, this efFective Hamiltonian is truncated to
the lowest nontrivial resonance order O(e) by setting all
the matrix elements of higher order in both overlap and
Hamiltonian matrices to zero. This truncated Hamil-
tonian is numerically diagonalized for a 36-spin cluster,
and the results are presented in this section. Since the
Hilbert space is reduced, and the Hamiltonian truncated,
we discuss the possible refinement on the basis by in-
cluding next-nearest-neighbor singlets and the effect of
higher-order resonance in Secs. V and VI, respectively.
Finally, we summerize the present QDM calculations for
the S =

z kagome HAF in Sec. VII.

II. DIMERIZED STATES

The full Hilbert space is truncated to a set of dimerized
states (ID)}which can be expressed as a tensor product
of nearest-neighbor spin singlet pairs [ij] between sites i
and j:

Since [ij] is antisymmetric upon interchanging sites i and
j, a direction must be specified for each singlet pair. The
simplest choice is to orient the singlet pairs clockwise
around the triangles. An arrow is assigned for each sin-
glet pair to indicate this phase convention.

To see why a dimerized state fails to be the ground
state of the kagome HAF, we can rewrite the Hamiltonian
in a more transparent form by adding a constant to the
conventional definition as follows:

of one particular defect cluster, the smallest three-defect
cluster (see Fig. 1), for example, would be the result of
an attractive defect-defect interaction. To detect such
clusters, we can measure the number of hexagons hav-
ing three attached defects which will be called "perfect
hexagons. "

One way to describe the dimerized states is the transi-
tion graph representation constructed by superimposing
two dimerized states IDi) and ID2) on the same lattice as
done in Fig. 1. A transition graph represents an assem-
bly of closed, nonintersecting loops (also called resonance
loops).

Within this loop gas representation, it is rather natural
to specify the order of the resonance loops by the number
of hexagons enclosed, because the overlap matrix element
for the smallest resonance loop, i.e., the hexagon, can be
treated as a small expansion parameter (see next section) .
To the lowest order, there are eight topologically distinct
resonance loops as displayed in Fig. 2.

This loop gas representation also reveals the topolog-
ical relationship among the dimerized states. In a finite
system with periodic boundary conditions, the transi-
tion graph formed by two dimerizations is characterized
by two winding numbers (n, n„) around the two-torus.
Moreover, two resonance loops winding around the torus
along the same direction, giving n = 2, can be continu-
ously deformed to a removable loop (n = 0) by a series
of local transformations of the singlet pairs. Topologi-
cally, the set of dimerized states decomposes into four
equivalent sectors denoted by (n, n„) = (0, 0), (0, 1),
(1,0), and (1, 1), respectively. For a 36-spin cluster, for
example, we decompose all 8192 dimerized states into
four sectors, each of which has a dimension of 2048. In
the thermodynamic limit, these sectors are disconnected
because the corresponding overlap and Hamiltonian ma-
trix elements become zero. As a further approximation
for finite clusters, we confine ourselves to the further re-
duced Hilbert space which consists of all the states in
the single sector (n, n„) = (0, 0) with respect to the ref-
erence state IDi) shown in Fig. 1. All the numerical
results reported throughout this paper are obtained in

Here we have used (ij) and (ijk) to denote a bond and
a triangle, respectively, on the kagome structure in the
above equations. Since the projection operator Ps onto
the highest total spin state of three mutually coupled
spins on a triangle is positive semidefinite, the lowest en-
ergy (zero) is achieved on a triangle which has a singlet
pair, because the total spin in that triangle can no longer
reach its possible maximum of 2 in the presence of the
singlet pair. Unfortunately, this local minimum configu-
ration cannot be fulfilled simultaneously on all triangles
on the kagome lattice. Therefore, a triangle without a
singlet pair has a positive energy and is called a defect tri-
angle (or simply a defect). A dimerized state with a finite
number of defects is no longer an eigenstate of the Hamil-
tonian. It was also shown for the kagome lattice that the
total number of defects in a fully dimerized state is actu-
ally independent of dimerization. The distribution of de-
fects or the defect-defect interaction has to be calculated
to probe the ground state ordering. A preponderance

ID 1& ID2& Transition Graph

FIG. 1. Two difFerent dinierized states ~Di) and ~Dq) on
a 36-spin cluster for the A:agome structure with periodic
boundary conditions, along with their corresponding transi-
tion graph. Defects are indicated by o; perfect hexagons are
marked by *.
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to the overlap matrix element, the spins in the loop for
both dimerized states are completely fixed up to a global
spin Hip; therefore a factor of 2 comes &om this &eedom
along with a normalization constant —&om each sin-

glet pair in the loop. A small parameter, namely, the
overlap matrix element for the smallest resonance loop,
e = 2( ~) =

4 can be introduced. Therefore, a reso-
nance loop enclosing m hexagons will be of order O(e ).

Similarly the Hamiltonian matrix elements can also be
computed easily as
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FIC. 2. All eight topologically distinct resonance loops of
lowest order. The arrows on the singlet pairs indicate the sign
convention, and f„, g„, and h„are used in Eq. (6) and Kq.

this further reduced Hilbert space of dimension 2048.
For the kagome structure, it was shown that the en-

tropy of dimer coverings is equal to (N/3) ln2 where N
denotes the total number of sites. s Since N/3 = M is just
the number of hexagons, this suggests that it is possible
to represent the dimerized states by a set of Ising-like
variables (0' = +1) defined on hexagons as

3 1= ) —d~~ + — ODq, Dq

(' )

where d;~ equals 1 (—1) if sites i and j belong to the same
loop and separated by an even (odd) number of singlet
pairs, and 0 otherwise.

In terms of pseudospin representations, a straight-
forward calculation shows, by directly examining the
lowest-order resonance loops, that

OD. ,~. = ~~. ,~. +((D~ll). &.*f IID2))+O(")

II~.,~. = »~~~. ,~. + &&&D~ll ) .~:f-(N~ —g-) IID2))

IID)) = Ilail " ~M Do))
+O(e2) (6)

where Do is a reference dimerized state, and the dou-
ble ket symbol is introduced to difFerentiate this pseu-
dospin representation Rom the conventional representa-
tion given in Eq. (1). The equivalence between this pseu-
dospin representation and the loop gas representation can
be seen easily by identifying the outcome of a single pseu-
dospin Hip at a given hexagon with the appearance of the
corresponding lowest-order resonance loop at the same
hexagon (see Fig. 2 for all eight topologically distinct
lowest order resonance loops). Clearly, the equivalence
holds only if the same reference dimerized state is used
for both representations. Apart from clearly identifying
the degrees of &eedom in the reduced Hilbert space, the
pseudospin representation in Eq. (3) uses a manifestly
orthogonal basis.

III. MATRIX ELEMENTS AND EFFECTIVE
HAMILTONIAN

where we have used Ng to indicate the number of defects,
each of which has a defect energy 4 = 3/4; also the sum
is over all the hexagons (labeled by r), and f and g„are
listed in Fig. 2 for each resonance loop of order e.

Furthermore, within the orthogonal basis (IID)) j,
which can be viewed as a linear transformation of the
nonorthogonal basis (ID)), an effective Hamiltonian is
given by

a. = o-'/'ao-'/'
= »g —4) O.„*h„+O(e )

The physical interpretation of this efFective Hamiltonian
is evident: The first term corresponds to a potential en-
ergy measuring the total number of defects in the system,
whereas the second term, a kinetic energy, describes the
resonance efFect with the tunneling amplitudes specified
by(h„-=f g)

The overlap matrix element between two dimerized
states IDq) and ID2) can be evaluated by the following
formula:

(11' (11'"
OD, D (D1ID2) = 2

IE» E» (4)

where L; denotes the length of the ith resonance loop be-
tween IDq) and ID2). This result comes about because
for each loop, in order to have a nonzero contribution

IV. GROUND STATE AND EXCITATIONS

For the set of nonorthogonal basis states (ID)), the
energy spectrum ((E„))can be obtained by solving the
generalized eigenvalue equation

Hl@„) = E„oivj„)

where H and 0 are the energy and overlap matrices com-
puted in Eqs. (4) and (5). Equivalently, we can also work
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in the orthogonal basis ~~D)) to diagonalize the eff'ective
Hamiltonian H,g and obtain the same spectrum.

The introduction of this small expansion parameter e
in the previous section enables us to study the resonance
efFect order by order. In this section, only the lowest-
order resonances are taken into account. To this end, we
truncate both overlap and Hamiltonian matrices to the
first resonance order O(e) by keeping the terms explic-
itly given in Eq. (6) and Eq. (7) and setting all others
to zero. The efFect of higher-order resonances is to be
studied in Sec. VI. Even to the lowest nontrivial order
O(e), the above eigenvalue problem is far from being an-
alytically solvable because of all the competing energy
scales (h ) associated with low-lying excitations in the
spin singlet sector. We are therefore forced to resort to
cluster studies. Here we numerically diagonalize Eq. (8)
for the 36-spin cluster displayed in Fig. 1. The dimension
of the Hamiltonian for this cluster is 2048. The energy
spectrum is plotted in Fig. 3. A gap in the spectrum is
clearly visible. To elucidate the nature of this gap, we
also compute the average number of perfect hexagons,
N6&, in the corresponding eigenstates and plot the re-
sults in Fig. 4. First of all, the discontinuous jump in
N6& correlates precisely with the appearance of the gap
which is very suggestive of a condensation of some sort.
Second, it should be noted that the 36-spin cluster per-
mits only zero, one, or two such perfect hexagons for each
of its dimerized states. The expectation values of N6„ for
the low-lying excitations below the gap are all very close
to the maximum allowed value. Prom the above two ob-
servations in this cluster study to the lowest nontrivial
order, we then speculate that a gap opens up in the exci-
tation spectrum corresponding to a crystallization of spin
singlet pairs into a phase with the maximum number of
perfect hexagons. Since each perfect hexagon represents
three tightly bound defects, then, to this order of ap-
proximation, the defect-defect interaction appears to be
attractive.

Since the full spectrum is obtained, the heat capac-
ity is readily computed and is shown in Fig. 5. It has
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0 20 40 60 80 100
100 Lowest Eigenstates

FIG. 4. The average number of perfect hexagons N6„cor-
responding to the energy eigenstates of Fig. 3.

an exponentially decaying low-temperature behavior due
to the gap. The peak position in the heat capacity at
about 0.1 compares well with the location of the low-
temperature peak of the heat capacity obtained for a
12-spin cluster; the magnitude at the peak position is,
however, only about 50'Fo of that of the 12-spin cluster.

In terms of the conventional Hamiltonian [i.e. , without
the additive constant in Eq. (2)], the ground state energy
per spin Eo ———0.4089 is about 7% higher than the exact
numerical result —0.4383 obtained by Leung and Elser
for the 36-spin cluster, indicating the inadequacy of the
basis of the dimerized states in building a good trial wave
function. This deficiency will be corrected in the next
section where next-nearest-neighbor singlet pairs around
defects are incorporated.
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V. DEFECT FLUCTUATIONS AND REFINED
BASIS

When the Hamiltonian acts on a state containing
defects, the resulting state has an admixture of next-
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FIG. 3. The energy eigenvalues for the 100 lowest eigen-
states, for the basis of nearest-neighbor singlet wave functions.
The energy has been converted to the conventional de6nition.

FIG. 5. Heat capacity obtained in basis of nearest-neighbor
dimerized states.
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nearest-neighbor singlet bonds in the vicinity of each de-
fect. A good variational wave function must include such
Buctuations in each of the dimerized states of the super-
position. Incorporating these features, a class of reined
basis states (~D )), with one variational parameter n
was proposed in Ref. 9 as

~ M

—0.430—

Eigenvalue gpectr um

L.
defects —(ijA:)

(1+ nH;;g)iD)

where the Ng factors in the product commute since de-
fects never occur on neighboring triangles, and the vari-
ational parameter o, determines the amount of next-
nearest-neighbor singlets involved. For a single defect,
the energy expectation of this new wave function turns
out to be

M
Q

-0.4S5-
(D

I I I I I I I I I I I

0 20 40 60 8'0 i00

1QO Lowest Eigenstates
3+9 +45
4 4 16
1+ ~~a. + 9o.2 (IO) FIG. 7. The energy spectrum for the 100 lowest eigenstates

for n = —0.5. The energy has been converted to the conven-
tional de6nition.

The minimum, 4 = 2, is achieved for o; = —
3 and rep-

resents a significant improvement over the "bare" defect
energy &0 ——4.—3

The overlap and Hamiltonian matrix elements are now
polynomials of n, but we can still use the small expansion
parameter e to specify the order of each matrix element.
With the prescription given by Eq. (4) and Eq. (5), the
computation of these matrix elements is straightforward,
though tedious. Explicit formulas for both the overlap
and energy matrix elements to the lowest nontrivial order
O(e) can be found in Ref. 9. In this section, we still study

the efFect of the lowest-order resonance as in the previous
section by setting all matrix elements of order O(e ) and
higher to zero. EfFects due to higher-order resonances are
investigated in. Sec. VI. A numerical diagonalization is
carried out for the same 36-spin cluster within the new
basis. The ground state energy E0 as a function of the
variational parameter o. is plotted in Fig. 6.

The optimal ground state energy E0 ———0.4380 is

obtained for o. = —0.5, which shows a remarkable im-
provement over —0.4089 found for the basis of dimerized
states, and compares surprisingly well with the exact re-
sult —0.4383. Moreover, the significant shift in o., &om
—0.333 for a single defect, or a set of noninteracting de-
fects, to the present —0.5, implies that a strong defect-
defect interaction captured by this new variational wave
function plays an important role in lowering the energy.

The energy spectrum of the erst 100 lowest eigen-
states and their corresponding average number of per-
fect hexagons for the basis with the optimal o. = —0.5
are plotted in Fig. 7 and Fig. 8, respectively. Compared
with the basis of dimerized states (n = 0.0) in Fig. 3,
the magnitude of the gap has doubled, indicating an en-
chancement of the condensation described in the previ-
ous section. The defect-defect interaction appears to be
attractive as in the previous section.
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FIG. 6. The ground state energy Eo per spin as a func-
tion of the variational parameter o;. The energy has been
converted to the conventional de6nition.
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FIG. 8. The average number of perfect hexagons N6„cor-

responding to the energy eigenstates of Fig. 7.
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VI. HIGHER-ORDER RESONANCE 041 i i i i

l

' ' ' '
I

As discussed above in Sec. I, longer resonance loops
induced by the nonorthogonality of the dimerized states
are unavoidable. Therefore, the set of tunneling ampli-
tudes (6 ) in Eq. (7), associated with the lowest-order
resonance loops, ought to be treated as phenomenologi-
cal parameters at best —anticipating the renormalization
from longer resonance loops. However, it is virtually im-
possible to explore such an eight-dimensional parameter
space with all the competing energy scales. Instead, we
take a more direct approach to numerically compute the
overlap and Hamiltonian matrix elements to all orders of
resonance for the 36-spin cluster.

All the translational and rotational symmetries of the
36-spin cluster have been used to make the numerical
computation feasible. The reduced Hilbert space with
dimension=2048 is further decomposed as

I'(2048) = 21I' (1) 211' (1) 13I' (1) Q 13I' (1)
e30I' (2) Q 221" (2) 51I' (3) 35I' (3)
351' (3) 51I' (3) 85I' (6) 85I' (6)
e31I' (2) e 31I' (2) Q 54I' (4), (11)

where the multiplicities and dimensions of the irreducible
respesentions I'; (i = 1, 2, . . . , 15) are given with the di-
mensions indicated in parentheses. This decomposition
clearly shows that the dimension of the largest matrix
encountered in diagonalization is 85.

For the basis of dimerized states (~D)) discussed in
Sec. III, we study the eKect of resonance order by or-
der. For example, resonance to the nth order is taken
into account by keeping all the matrix elements up to
order O(e ) in both the overlap and Hamiltonian ma-
trices and setting the rest to zero. For this sequence
of truncations, we tabulate in Table I the corresponding
ground state energy and the average number of perfect
hexagons in the ground state. Clearly, the number of per-
fect hexagons drops &om about 1.9 at the lowest order of
resonance to a vanishingly small value when the fourth-
order resonance loops and beyond are taken into account.
The disappearance of the perfect hexagons in the ground
state when higher-order resonance loops are included in-
dicates that the nature of the defect-defect interaction
has been reversed from being attractive (maximum num-

—0.42

-0.43

—0.44

0 45 I I I I I I I

—0.6 —0.4 —0.2 0.0

bers of perfect hexagons) to being repulsive (no perfect
hexagons). Thus the condensed phase obtained at lowest-
order calculation becomes unstable against higher-order
resonance effects.

A similar calculation was performed for the basis
(~D )) introduced in Sec. IV. All the results reported
hereafter are obtained by including all resonance loops.
The ground state energy as a function of the variational
parameter n is shown in Fig. 9 along with the energy
in Eq. (10) for a set of noninteracting defects. The
minimum energy, E0 ———0.4345 per spin, is achieved
for o. = —0.329 which is very close to the optimal value
A 3 for a single defect, suggesting that the energy
lowering comes &om individual defects rather than defect
clusters in contrast to the conclusion of the lowest-order
calculations. This would be expected if defects are well

—0.426

Eigenvalue gpectrurn
—0.428—

FIG. 9. (a) Ground state energy Ro per spin as a function
of n when all orders of resonance are included. The minimum
is located at cr = —0.329. Curve (b) corresponds to the energy
in Eq. (10) of noninteracting defects.

TABLE I. Ground state energy Eo and average number of
perfect hexagons in the ground state for each order of reso-
nance for n = 0.

—0.430—

Order
0
1
2
3

5
6

&0/spin
-0.37500
-0.39681
-0.40258
-0.40385
-0.40530
-0.40653
-0.40713

(&sn)
0,1,2

1.90013
1.67114
1.52118
0.06787
0.05712
0.05844

—0.434—

+~6 I I I I I I I j i l I I I I I I I I I I I I I I0 A
~ ~~

0 20 40 60 80 ioo

100 LoweSt EigenStates (cx= —Q.329)

Number of prefect hexagons allowed for a fully dimerized
state of the 36-spin cluster in Fig. 1.

FIG. 10. The energy spectrum for the 100 lowest eigen-
states for n = —0.329 with all orders of resonance included.
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p. 1p—

case (see Fig. 5). This peak is well separated from the
high temperature peak obtained by other means, for in-
stance, the decoupled-cell Monte Carlo simulation and
the high-temperature expansion, and thus strongly sup-
ports the double-peak feature in the heat capacity.

VII. CONCLUSION

P.05 —;

I I I I I I I I I I I I I I I l I I I I I I I IP AA
M LJ

P.P O. i 0.8 0.3 P.4

T (~=—O.sz9)
O.5

FIG. 11. Heat capacity per spin obtained for n = —0.329
with all orders of resonance included.

separated &om one another as a result of repulsive defect-
defect interactions. Therefore, higher-order resonances
appear to work against the formation of the hexago-
nal defect clusters. However, a crossover phenomenon
occurs at about n = —0.5, as clearly seen in Fig. 9,
where the defects exhibit an attractive interaction when
a larger amount of next-nearest-neighbor singlets are in-
corporated in the basis. This interesting finding is quite
consistent with the results obtained by the low-order cal-
culation where the energy minimum is achieved in the
attractive defect-defect interaction regime.

The energy spectrum of the first 100 lowest eigenstates
and its corresponding heat capacity are plotted in Fig. 10
and Fig. 11,respectively, for o. = —0.329. One interesting
observation, besides the downward shift in temperature
of the peak location to about 0.025J, is the magnitude of
the peak value which is almost double that of the o. = 0

Apart from the computational convenience inherent in
discarding a large part of the Hilbert space, restriction
to the short-ranged. singlet pairs for the kagomi HAF is
particularly well justified. A variational wave function,
for example, composed of the nearest-neighbor singlet
pairs and a relatively small amount of the next-nearest-
neighbor singlet pairs has a rather favorable upper bound
for the ground state energy, i.e., Eo ———0.4345 per spin
for the 36 spin cluster when all the resonances are in-
cluded. This is only 1%% higher than the exact energy
Eo ———0.4383

The picture of the ground state at lowest order of res-
onance was considerably altered by the higher-order res-
onances. The appearance or disappearance of the per-
fect hexagons in the ground state, or equivalently the
attractive or repulsive defect-defect interactions, for in-
stance, appear to fall into two distinct regimes depend-
ing on the variational parameter o., i.e., the amount of
next-nearest-neighbor singlets included. It is not clear at
present whether these features are due to finite-size ef-
fects. In a small system, higher-resonance loops can eas-
ily take advantage of the periodic boundary conditions,
giving unphysically large contributions to the overlap and
Hamiltonian matrix elements.

Despite the uncertainty on the precise nature of the
ground states when all orders of resonance are included,
it is safe to say that the ground state will be a highly
correlated spin liquid, if the translational symmetry is
restored by the resonance. Moreover, the excitation en-
ergy scales in the singlet sector will be very small.
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