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An asymptotically exact solution is presented for the two-impurity Kondo model for a finite
region of the parameter space surrounding the critical point. This region is located in the most
interesting intermediate regime where the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is
comparable to the Kondo temperature. After several exact simplifications involving reduction to
one dimension and Abelian bosonization, the critical point is explicitly identified, making clear its
physical origin. By using controlled low-energy projection, an effective Hamiltonian is derived for
the 6nite region in the phase diagram around the critical point. The completeness of the effective
Hamiltonian. is rigorously proved from general symmetry considerations. The effective Hamiltonian
is solved exactly not only at the critical point but also for the surrounding Fermi-liquid phase.
Analytic crossover functions from the critical to Fermi-liquid behavior are derived for the specific
heat and staggered susceptibility. It is shown that applying a uniform magnetic field has negligible
effect on the physical behavior inside our solution region. A detailed comparison is made with
the numerical renormalization-group and conformal-field-theory results. The excellent agreement is
exploited to argue for the universality of the critical point, which in turn implies universal behavior
everywhere inside our solution region.

I. INTRODUCTION

For a vast number of materials with strong e1ectron
correlation, the low-energy excitations involve both itin-
erant electrons and well-localized magnetic moments re-
siding periodically on the lattice sites. This is the case
of heavy fermion compounds, and to certain extent
it is also the case of high-temperature superconducting
cuprates. In such systems, two efI'ects have crucial infIu-
ence on the low-energy properties and they compete with
each other. They are the Kondo efFect and Ruderman-
Kittel-Kasuya- Yosida (RKKY) interaction, which rep-
resent two difI'erent tendencies of the system to quench
the local moments either with conduction electrons or by
themselves. The simplest model capturing both effects is
the two-impurity Kondo model. It is also believed that
possible new physics that may occur in lattice due to the
competition between the two effects should be essentially
contained in the two-impurity problem.

A si.mple way to see how the competition arises in the
two-impurity Kondo model is to look at the problem from
the scaling point of view. For all practical purposes, the
bare Kondo coupling constant J and. the bare RKKY in-
teraction K are much smaller than the Fermi energy ~~.
Thus, if we form two dimensionless coupling constants
with the help of the conduction electron density of states
at the Fermi level p~( 1/e~), p~ J and p~K, they are
always in the weak coupling regime. However, as soon as
we start the scaling procedure to eliminate high-energy
conduction electron states near the top and bottom of the
conduction band, both dimensionless coupling constants
grow under renormalization and they mutually renormal-

ize each other. Simple dimensional counting shows that
p~ J has dimension one and is marginally relevant, while
p~A has dimension zero and is relevant. For these two
relevant interactions we can define two energy scales, the
Kondo temperature T~ and RKKY temperature TREK~,
such that they correspond to the values of the decreasing
conduction bandwidth at which the renormalized dimen-
sionless coupling constants p~ J and p~K reach unity
respectively. In either T~ &) TRKK~ or T~ (& TRKK~
limit, the problem is simple because we can perturb one
of the two interactions. The most difFicult situation cor-
responds to T~ TRKK~. This is also the situation of
most practical interest.

Due to the broad. interest in the competition be-
tween the Kondo effect and RKKY interaction, exten-
sive investigations have been carried out in the last
decade. ' As a result, a convincing phase diagram
has emerged, ' if not yet universally accepted with-
out reservation. This phase diagram is shown in Fig. 1.
The model exhibits Fermi-liquid behavior everywhere ex-
cept at a special point on the particle-hole symmetric
axis. At this point, the ratio between the fully renormal-
ized efFective RKKY interaction and the Kondo temper-
ature is numerically estimated. to be 2.2. The effective
RKKY interaction is actually the RKKY temperature
whose meaning we have specified in the last paragraph.
Although the precise numerical value of the ratio may de-
pend on the individual's convention of defining the cou-
pling constants, the important point is that this critical
point is located at T~ TRKK~.

Although several asymptotically exact results have
been available on the critical point in certain limits,
the precise physical origin of this critical point had not
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FIG. 1. The phase diagram of the two-impurity Kondo
model. V is the energy scale characterizing particle-hole sym-
metry breaking strength. K is the fully renormalized RKKY
interaction. T~ is the Kondo temperature. Except at the
critical point marked by the black dot, the low-energy behav-
ior is of Fermi-liquid type everywhere. The area inside the
dashed circle is the region where our solution applies. The
radius of the solution region is a fraction of T~.

been unveiled completely until recently. By an explicit
identification of two many-body states whose level cross-
ing being the origin of the critical point, we have rigor-
ously shown how the constraints set by the discrete sym-
metries of the model ensure the non-Fermi-liquid behav-
ior at the critical point. We have also presented an eÃec-
tive Hamiltonian for the finite solution region as marked
in Fig. 1, and listed the low-temperature properties of
the critical point. In this paper, we present a detailed
derivation of the effective Hamiltonian, and for the erst
time a full analytic solution for the whole solution region
in Fig. 1.

Having admitted the existence of the critical point, we

can already present a &amework for the solution of the
two-impurity Kondo model inside the solution region in
Fig. 1 by only invoking general scaling ideas. It is then
the task of Sec. IV to fill in concrete results. Since the
Kondo effect always takes place in our solution region,
the basic energy scale must be the Kondo temperature
T~, which is much smaller than the Fermi energy. On
the scale of TK, the system has already lost its mem-

ory of microscopic details existing on the energy scale
of the Fermi energy. The above-mentioned T~KK~ is of
the same order as T~, and therefore does not consti-
tute a new energy scale by itself. However, the com-
petition induces the second energy scale T . Inside our
solution region, T &( T~, and T, vanishes at the criti-
cal point. For any physical quantity, its dependence on
the bare parameters of the two-impurity Kondo Hamil-
tonian should be absorbed into these two energy scales.
For instance, we can write the specific heat in the form
C(T) = f (T/T~, T,/T~), where f(x, y) is some univer-
sal two-variable function. The role of T~ is simply to set
an energy unit for the problem. The second energy scale
T, determines the crossover &om the non-Fermi-liquid
behavior governed by the critical point at T )) T to
the Fermi-liquid behavior governed by the stable Fermi-
liquid fixed point at T && T . If we recall how the appear-

TABLE I. Definition of frequently used parameters and
symbols.

Symbol
V~

Definition (eq. no. )
Fermi velocity

Definition
Symbol (eq. no. )

gi (46), (49)

K, Ki
s '
h„,h,

JZ)i
vn

J+, K

gp

Density of states

Kondo coupling constants

RKKY interaction

(17)

(18)

(38)

(45) (48)

+b

(47) (»)
(45), (51)

{46), (52)

(68)

(80)

(86)

(88)

(89)

(90)

ance of the Kondo temperature TIc(« e~) in the one-
impurity Kondo problem leads to the drastic enhance-
ment of various physical quantities such as the density of
states, we can expect additional enhancement &om the
appearance of T,(« TIc). The translation of this effect
to the lattice problem will be a new mechanism for the
heavy electron mass.

Moving far away from the critical point in the phase
diagram of Fig. 1, the accuracy of our solution deterio-
rates. However, the low-energy exponents for all physical
quantities should not change since after all the system is
still governed by a Fermi-liquid fixed point as inside the
solution region of Fig. 1. What need to be improved
are the constant prefactors. Generally, a physical quan-
tity calculated for a Fermi-liquid Gxed point contains sev-
eral contributions with the same exponent. Among them,
only a few are associated with the energy scale T, while
the others are associated with T~. What we calculate
in this paper are those contributions associated with the
energy scale T . This is enough near the critical point
because they are enhanced inside our solution region. As
one moves away from the critical point, T, increases and
eventually reaches the same order as T~. Therefore, the
other contributions associated with the energy scale T~
become increasingly signi6cant. Certainly, one can al-
ways 6t the prefactors for every physical quantity if well-
established numerical results or experimental data are
available. But it is the merit of the theory to establish
the relations between these prefactors in the same spirit
as Nozieres's Fermi-liquid theory of Kondo effect. A

complete solution of the two-impurity Kondo model for

the whole parameter space is beyond the scope of this

paper.
The layout of the paper is as follows. In Sec. II,

we present the preliminary transformations on the two-

impurity Kondo model including the reduction to one

dimension and bosonization. In Sec. III, we identify
the critical point and derive the effective Hamiltonian.
Then, we rigorously prove the completeness of the ef-
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fective Hamiltonian. In Sec. IV, we solve the e8'ec-
tive Hamiltonian and calculate the low-energy thermo-
dynamics. In Sec. V, we compare our results with those
derived &om the numerical renormalization-group and
conformal-Geld-theory approaches. The excellent agree-
ment strongly supports the universality of the critical
point. We conclude our paper in Sec. VI with a sum-
mary and some speculations on the lattice problem. To
alleviate cross reference, some &equently used parame-
ters and symbols are collected in Table I.

II. REDUCTION TO ONE DIMENSION
AND BOSONIZATION

In this section, we shall start &om the most gen-
eral two-impurity Kondo model and perform various ex-
act transformations to reduce it to a simplified form,
(36)+(37)+(39),suitable for identifying the critical point
and uncovering the underlying physics.

The general Hamiltonian for the anisotropic two-
impurity Kondo model has the following form:

k ~ I ~ k ~ ~

~
~~

I ~
I

Ie ~2?~ ~ I I

k ~ k I I ~ e
~ ~

2
1

~ ~ i I

k ~ k I 2
I

-'(k —k') R,~t A@ ~A + —
~ (k—k') R.qt

(2vr)s ~ - 2
A=a, y, z

) ~ gAgA

A=a, y, z

where vPk
——

(@k&,@k&) are the conduction electron creation operators with dispersion e&, o with A = z, y, z are the
Pauli matrices, Si and S2 are the two impurity-spin-1/2 operators located at +R/2. J with A = x, y, z are the bare
Kondo coupling constants. Kg with A = x, y, z are the bare RKKY interaction constants. It has been shown that
the Hamiltonian (1) can be reduced to an equivalent one-dimensional (1D) problem. ii'is Introducing 1D fermionic
operators,

k 1 2 (k. R) i
@i,2(k) = ~ N (k)

d'& cos
~ 2 I

+ N (k)

with the notations d k = k dk d 0 and

N, (k) = 1+ sin(kB)

we can completely rewrite the Kondo interactions in terms of these new operators,

HK „d = ) q (J~(k, k') 4((k)a" gP~(k') + 4q(k)v"gPg(k') S~
A=a, y, z

+J"(k, k') vPit(k)o"@i(k') —. @2t(k)rr"@2(k') 8" + J"(k, k') pit(k)o "@2(k')

y@t(k)a"@,(L') 8" —J~(k, k') g((k)a @ (k') —@t(k)a 4 (k') S"). (4)

In the last expression, we have introduced the shorthand
notation

S~ ——Si + S2, A = x, y, z.A A

k')b, we can verify

(q!.(k), q,'..(k')) = 2~v(k —k') S, ,'S.. (10)

The momentum-dependent coupling constants are, for
A =x, y, z,

The free conduction electron Hamiltonian can also be
written in terms of these 1D fermions, plus completely
decoupled extra degrees of &eedom,

J+(k, k') = [N, (k)N, (k') + N (k)N (k')],

J'kk'J"(k,k') = [N, (k)N, (k') —N (k)N (k')],

J"(k, k') = [N. (k)N. (k') + N. (k)N. (k')],
J~kk'

J,"„(k,k') = [N, (k)N (k') —N (k)N. (k')].

From the commutation relation j@k,@k ) = h (k—

f 4'i(k)A(k) + 4'2(k)A(k)
p 271

+ 0 ~ ~

Thus, only 1D fermions defined in (2) are relevant to the
two-impurity Kondo problem.

So far, the reduction has been exact. In the next
step, we linearize the dispersion eA, at k = A:~,
v~(k —k~), and expand the momentum-dependent cou-
pling constants around k = k~. We only need to retain
the leading terms of the expansion since others contain



8290 JUNWU GAN

some power of k —k~, which have high scaling dimension
and are irrelevant at low energy. From J;",(kF, kF) = 0,
we see that the J;„interaction only contains irrelevant
terms. Denoting k —k~ by k again and with implicit
understanding of an ultraviolet cuto8', we can introduce
the Fourier transforms

The fermion operators satisfy the standard commutation
relation,

&*(&) = —e' vP, (k), i = 1, 2.
dk

27r
(i2)

After linearization, the full two-impurity Kondo Hamil-
tonian can be cast in the following form:

H =HP+H1, (14)

Ho = -zvF )
i=1,2

dxdt(x)d @,(z) + ) K&S, S2 + h.„d(.+ —) f chci(T)o'd, (x) + h. d*,
A=a, y, z

) (d+ d'i(o)~'C'~(o) + C'(o)~'A(o) d+
A=+, y, z

+ d 4((0)a C&(0) —d'z(0)e d2(0) 5 + d" d'((0)w d'&(0)+ d'z(0)a d'&(0) ~+) . (16)

The coupling constants are, for A = x, y, z,

sill(kFR) ) g P slii kFR )J+ ——vrJ pF, J =vrJ pF !J

=zrJ pF 1 —
!kFR '
k kFR )

with pF = kF2/(2zr2vF), denoting the conduction electron
density of states per spin at the Fermi energy. Note that
we have included both uniform and staggered magnetic
fields h„and h, in (1S), with the Bohr magneton and
gyromagnetic ratio set equal to one.

At this stage, the 3D two-impurity Kondo model has
been successfully reduced to an equivalent 1D problem,
up to some terms irrelevant at low energy. However,
we must remove two accidental features of (14) result-
ing &om linearization. They are the particle-hole sym-
metry and a special relation between J+(kF, kF) and
J (kF, kF): that the RKKY interaction generated from
them is always ferromagnetic . These accidental fea-
tures will be spoiled by the corrections generated from
the irrelevant terms neglected during the linearization.
That an irrelevant interaction can renormalize the cou-
pling constant of a relevant interaction is a well-known
fact. An example can also be found in Sec. IV: the
last term in expression (83) is the induced correction to
the dimension 1/2 relevant operator by the dimension
3/2 leading irrelevant operator in the effective Hamilto-
nian (44). Usually, the accidental features at the lowest
order will not survive if there is no hidden symmetry en-
suring them. The accidental relation between J+(kF, kF)
and J"(kF, kF), with A = 2:, y, z, is removed by treat-
ing these coupling constants as independent parameters.
This is also physically meaningful since these interactions
are completely independent and presumably play difer-
ent roles at low energy. Particle-hole symmetry breaking,

although weak, is always present for a general conduction
band. The general particle-hole symmetry breaking term
that can be added to the 1D Hamiltonian (14) has the
following form

(i8)H, = v @,'(o)@,(o) + y,'(o)q, (o)

where V is the energy scale characterizing the symme-
try breaking strength. The operator (18) is marginal.
Adding it to the 1D Hamiltonian (14) after dropping ir-
relevant interactions during the linearization may seem
unusual, it is actually the natural thing to do. The rea-
son is again the generation of (18) from the irrelevant in-
teractions in the absence of the particle-hole symmetry.
Usually, all possible operators allowed by the symmetry
will be generated by irrelevant interactions, and we only
need to include relatively more relevant operators. In this
case, the lowest dimension operator breaking particle-
hole symmetry is (18). In Sec. III and Appendix B, we
shall see a similar example where the marginal opera-
tor (18) generates a relevant operator (47) when pro-
jecting to a subspace relevant for the solution region in
Fig. 1.

In the rest of this paper, we shall retain the rotational
symmetry around the z axis by setting K~ = Ky = K~
and J, = J,". = J; for i = m, +. Apart &om the con-
tinuous U(l) rotational symmetry, the Harniltonian (14)
possesses several discrete symmetries which will be very
useful for our analysis. The transformation rules are,
omit ting una8'ected operators,
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parity:
particle-hole:

vr rotation around the x axis:

Sz ~s& for A=a, y, z,
t

@;,~ q;, , s," ~ -s,", s; ~ -s;.

@; (x) = ' e* '-(*), i = 1, 2, o. =g, g,
/2m. a (2o)

where o. is the lattice spacing and

(21)

The Bose fields satisfy the standard commutation rela-
tion,

The particle-hole symmetry exists when V = D.

The next step is to reduce the Hamiltonian (14)+(18)
to a simple form suitable for identifying the critical point.
The reduction involves bosonizing the Hamiltonian which
only contains 1D left-moving fermions. ' ' There are
four species of fermions, so we need to introduce four
Bose fields,

1

The phase factors P; are introduced to take care of the
anticommutation relations between different species of
fermions. Our choices are

(23)
~ J' &~[K.@I'.( )@I-( )+40'&(*)+.t(*)] (24)

By substituting (20) into (14) and using the relation
Qt (x)g; (x) = (9 CI; (x)/(2vr), the two-impurity Kondo
Hamiltonian is expressed in terms of the four Bose fields

(x). Then we make linear transformations to four
new Bose fields corresponding to charge, spin, flavor, and
spin-flavor degrees of freedom,

(t" = (0'it + 0'ig + 0'» + &~a) /»
& = (&~t —&~~+ &2~ —&2~)/2

(t'f = ((t'»+ P,Z
—P2Z —P,&)/2,

(t' f = ((t' t —(t' S
—~2t + (t'2S)/2.

[&.-(*) Ils - (&')] = ' ~ss ~- ~(~ —&'). (22) The Hamiltonian now acquires the following form:

OO OO

) d*EII', (*)+[a.(t, (*)]')+ ) It.„s,"s,"+ t „s++ —*o.e.(~) + h,.s,
A=c, s,f,s f A=a, y, z

V~ + (9 4, (0)s+ + (9 Ci, f (0)s' —i e' cos@,f (0) sin@f (0)S+ +

(26)

x cos@,f (0) cos 4, (0)s+ —sin C, (0)S+" — sin Ci, f (0) sin@', (0)S + cos 4, (0)s"

2J~
e' sin @f(0) sin@, (0)S+ + cos4, (0)S+

7t 0!

.2V,„gH2 —— i e' sin@,f(0)—cos 4'f(0),

(27)

(28)

where the phase factor 0 is

OO

~[@1/(~)@4(~)+ @2/(~)@»(~)] =

The charge Bose field (ti, (2:) is decoupled from the interaction (27). It will be omitted from now on, and so will be
0 4, in the integrand of the phase 0. Both cos O, (0) and sin 4', (0) factors in (27) can be eliminated by rotating the
impurity spins around the z axis by an angle CI, (0),

UHpU

UHiU

(j+ ccs0s, s(0)S+ —Z sins0, s(0)S" —J s'" sinos(0)S+] j.

H —+UHU with U=e '+

) f dn(iis(n)+(S ( S)]s)n+ ) IIsS, Ss +(s.S*
A=s, f,sf A=a, y, z

+h„—o) CI, (2:) —vp(9 O, (0)S+ + (S+),
~ ~

z z
~ 2�-

J+�)

4, (0)s+ + (9 4,f(0)s' —i e' cos CI,f(0) sin4f(0)s+
2 K K 7t 0!

2J+ (sz )2

(3o)

(31)

(32)
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The particle-hale symmetry breaking term H2 is not affected by the above rotation. We note that both J+ and K,
acquired corrections under the rotation, and 6 S+ is canceled out in (31). Since the spin Bose Beld P, (x) only enters
(32) in the form 8 C', (0), it can be integrated out analytically if needed.

The bosonized Hamiltonian (31)+(32)+(28) can be refermionized by introducing three new species of left-moving
fermions,

@ f(x) = i4, y(~}
7

( )
iw j ding~~(x)g, y(x) 1 'c ~(~)

)
27( 0,'

Again, a phase factor is included in the definition of the fermion operator gf (x) to take care of the anticommutation
relations between three different species of fermions. Because the interactions in (32) contain only 8 4, (0) which
implies that @, only appears in the product gt(0)g, (0), we do not need to specify the phase for g, (x). The complete
Hamiltonian can be rewritten as

Ho ———ii)~ )
i=S,f,Sf

dxy,' (x)a.@;-(x)+ K,S;S;+K ) S,'S,'+ h.
„

A=+, y

dxQt(x)Q, (x) + h,.S',

Hg —— J+ t0, 0 —,0 t0 8++J tf0 f0 fO, f0 S

y J* [@ f [0) y g g[0)j[@f(0) —@y[O)]S' ) + (J+ [@ f [0) + @.~[0)]8+

+* 'W. g(o) —4.', [o)] "-+* -'5'r(o) —&r'( )] +) (37)

To search for the critical point, we need only con-
sider the particle-hole symmetric case, V = 0. At Brst
glance the Hamiltonian (36)+(37) still looks too com-
plicated to provide any intuition. On the other hand,
from the conformal field theory results it is known that
the critical point exists in a restricted Hamiltonian with
J = J = 0, and around the critical point both J' and
J interactions are irrelevant. Thus, our task is greatly
reduced by searching the critical point in this restricted
Hamiltonian. An important step is to verify the irrele-
vance of the J, J interactions after we find the critical
point.

We have noted before that only the product Qt (0)g, (0)
appears in (37). This is because only 8 4', (0) appears in
(32) and both cos C', (0) and sin@, (0) have been elim-
inated by the canonical transformation (30). Thus, the

J+ term containing the Bose field P, (x) can be integrated
out analytically. Although oj C, (0) couples to an oper-
ator S+ in (31) and (32), the integration can be done
formally in the bosonic path integral formalism, yielding
the following two terms to the action:

where

J+ ——1+ —2~, K, = K, — (J+ —~) .
7l 0!

(38)

The particle-hole symmetry breaking term becomes

II, = V ~.f(0) —~.'~(0) ~z(0)+@~(0) . (39)

How do the new fermion operators transform under the
discrete symmetries of (19)? We can keep track of the
transformation rules during the bosonization and subse-
quent fermionization to derive, omitting unaffected oper-
ators,

Alternatively, one can directly verify (40) from (36), (37),
and (39). 2 P+( +) d [S ( )]2+

parity:

graf

++ Q y) lpf M Qf) Si ++ S2
for A = x, y, z,

particle-hole: gy ++ —@&, (40)

n rotation, x axis: Q,f ++ g, &, @, ~ g„gy++ vtry, —
S" m —S" S m —S

III. EFFECTIVE HAMILTONIAN
NEAR THE CRITICAL POINT

In this section, we shall identify the critical point
from (36)+(37) and then derive an effective Hamilto-
nian around the critical point from the full interaction
Hamiltonian (36)+(37)+(39) using second-order projec-
tion. Finally, we shall prove the completeness of the ef-
fective Hamiltonian.

) iv„iS+(—v„)S+(v„),
(J+)'

n

with v„=2n7r/P. (41)

The first term is a correction to the RKKY interaction,
so it is absorbed into K . The second term has higher
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H, g ——QHQ

+QH(l —Q)
Ep —QHQ —(1 —Q) H(1 —Q)

(42)x(1 —Q)HQ,

scaling dimension and is expected to be less important.
The point we want to make here is that the J+ interac-
tion does not affect the critical point and can be ignored
during the search for the critical point.

When J = J = 0 and neglecting J+, the remain-
ing Kondo interactions only contain three local impu-
rity spin operators, S+, S", and S', which only act on
three (out of four) local impurity spin states. The im-

purity spin state (~ tt) —
~

$$))/~2 is decoupled from
the Kondo interactions. Together with the RKKY in-
teractions, we derive an energy level scheme for the im-
purity spin states in Fig. 2. We have to keep in mind
that these so-called local impurity spin states are actu-
ally many-body states because of the canonical trans-
formation (30). The critical point corresponds to the
special case when the two lowest levels become degener-
ate. Specifically, the z component of the RKKY interac-
tion, i.e. , the —K, (S' ) /2 term in (36), raises the energy

of the states
~ f$) and

~ $t) by an amount —K, /2 (as-
suming —K, ) 0) with respect to the other two states

~ tt) +
~
$$). These two states,

~ t$) and
( $g), are further

split symmetrically by the transverse part of the RKKY
interaction, K~(S&+S2 + Sz S2+)/2. When —K, = K~,
(I &&) —

I &t))/~2 and ([ tt) +
~

$$))/~2 become de-

generate and form a doublet. Because there is almost no
Kondo interaction in the state (~ tg) —

~
$$))/~2 when

J = J = 0 and neglecting J+, the super6cial degen-
eracy between this state and the doublet is lifted by the
Kondo interactions in the doublet which lower the energy
of the doublet by a finite amount T~, equal to the ground
state energy gain at the critical point. Turning on J+,J, and J will not change the energy level scheme as

long as v~J+ & T~, v~J ( T~ and v~J ( T~.
Now, we have identi6ed the critical point. To describe

the low-energy physics, it is sufBcient to project the full

interaction Hamiltonian (36)+(37)+(39) onto the lowest

energy doublet. When all coupling constants, possibly
except J, are much smaller than one, the projection
can be done accurately. Let Q be the projection operator
onto the doublet, the effective Hamiltonian to the second
order is

I ))) + I )i)

A
I

I

i~, V2
'

I

I

I

IE —0---

I
I

I
I

I
f

I
I

I

I~ (
'I

'I

I

I

I

TK
I

V

h
I

I

I

I

I
I

I

Kg
I

I

I
I

I

I

I

V

I )/) —
I )i)

It)) —
I gg) It/)+ Ii))

FIG. 2. The energy level scheme of the four impurity spin
states. The up and down spin states refer to the eigenstates
of the operators Sz and S2. At —K, = K~, the two levels

(~ g$) —
~

$g))/V 2 and (( gg) + ) $$))/~2 become degener-

ate, forming a doublet. The superficial degeneracy between
the doublet and (~ gg) —

~ $$))/v 2 is lifted by the Kondo
interaction term J

where Eo is ground state energy. The doublet can be
described by local fermion operators d and dt such that
(~ tg) +

~
$$))/~2 and (~ g$) —

~ $g))/y 2 correspond
to dtd = 0 and dtd = 1 states, respectively. From
Fig. 3, it is not difficult to verify QS" Q = i(d —dt),

QS+Q = QS+Q = QS+Q = 0. These relations are used
in the erst-order projection. In the second order, nonva-
nishing terms may contain Q(S')2Q = dtd, Q(S+) Q =
Q(S') Q = ddt, QS S'Q = d, and QS'S Q = d

Since the extended fermions commute with the impurity
spin operators, we need to install anticommutation rela-
tions between the local fermion operators d, dt and the
extended fermion operators gg(x) with A = s, f, sf. This
is accomplished by a simple transformation,

vga(x) = gp(x) e', A = s, f, sf
The commutation relations between d and g~(x) are
converted to anticommutation relations between d and
@p(x). The effective Hamiltonian will be represented in

terms of d and @g(x). But we shall omit the tilde signs
on @p(x) in the following. With the help of the above-
mentioned results, it is straightforward to evaluate (42).
The details are captured in Appendix B. The results are

jef —Hfp + IIpert + ~phby (44)

dxgt(x)B g;(x) + virgo vtr. f(G) —@.f(0) (d+ dt)Hfp — tv+ )
i=f,sf

+~-I- @ y(0)+@.'~(0) &~(0) —@f(0) +~ ~ & f(0)+4.'g(0) (d —d') ( 5)

Hpert
/'K, + K~

)
—K*

~

d d —ivy g~ (d —d )0 g, g(x) —g, (x)x s sf

p» = V[gf (0) + @f(0)](d —d ), (47)
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two energy scales T~ and T, we only need to fit the
two energy scales in case we do not know how to de-
termine these coeKcients in terms of the parameters in
the original Hamiltonian (1). In fact, this is the virtue
of our solution. Otherwise, the strict constraint imposed
by requiring a valid perturbative projection as detailed in
Appendix 8 would render our solution of little practical
value.

The spin degrees of freedom are completely decoupled
and their Hamiltonian is, parallel to (44),

It)) —If)) It)) + If))
t

dd =0

FIG. 3. The four impurity-spin states and the impurity
spin operators connecting them, S~ ——S~ +Sz for A = x, y, z.

where K* is the critical value of (K, + K~)/2. We
have separa, ted the Hamiltonian into the Gxed point part,
perturbation part, and particle-hole symmetry breaking
part. We note that (45) in the absence of the external
magnetic fields h arid h, has the same form as that of
the two-channel Kondo model. To the second order, the
coefBcients in H,g a,re given by

JJ vp J+~J
gp = — 1+

4m. n(Kg + TK)J~
v~2 J+~J

8(K~ + Tlc) (2vra) ~

V= v~J+ J' V

2(K~ + TIc) (2mn) ~

vF J' J+
S~TK '

v~ J+~

(K~ + TJr)/2vra

(49)

(5o)

(52)

The projection induces corrections to the RKKY in-
teractions, so the critical value K* is slightly shifted
&om v~(J+ —m)/(vrn), as determined by the condition
—K, = K~ in (B4). The energy T~ in the above ex-
pressions is the ground state energy gain in (45) from
the hybridization term with coefBcient v~gp. From the
study of the two-channel Kondo problem, we know (as it
will also be calculated later)

«(J )'
Tg 2vpgp

As it is well known that the ground state energy is
not universal, it depends on the conduction band cut-
off scheme. s Thus, the energy gain T~ given by (53) is
only determined up to a numerical factor of the order of
unity. As we'shall rigorously prove the completeness of
the effective Hamiltonian (44) in the following, the va-
lidity of (44) will be extended far beyond the validity
of the expressions for the coefficients (48)—(53). Since
all these coeKcients will eventually be lumped into the

+h„dx t x, x

(54)

Since this piece of Hamiltonian does not contain any in-
teresting physics, we shall not discuss it hereafter.

The effective Hamiltonian (44) is the central result of
this paper. The rest of this section is to prove the com-
pleteness of (44) from general symmetry considerations.
For a certain region of the parameter space, the projec-
tion is controllable in a sense that high-order corrections
to the coefticients of H g are too small to alter its crit-
ical behavior. However, the projection is not done ex-
actly. One may ask how do we know that there are no
other operators which could arise &om high orders in the
projection and spoil the critical behavior determined by
(44)? Fortunately, it turns out that all other operators
up to dimension 3/2 inclusive can be eliminated by the
three discrete symmetries of (40). We recall that the
marginal dimension for a quantum impurity problem is
one. To proceed, we 6rst determine how the operators
d and dt transform under parity and the rotation by an
angle m around x axis. The particle-hole transformation
does not involve the impurity spins, so will not affect d
and dt. Since the two states of the doublet have different
parity and dt, d connect them, we conclude that under
parity, dt —+ —dt and d ~ —d. This could also be seen
from QS' S+Q = dt and QS+S' Q = d. From these
relations, we also see that under the vr rotation around
x axis, dt ~ —dt and d —+ —d. Combining these re-
sults with (40), we derive all "elementary operators" and
their transformation rules in the projected Hilbert space
comprised of the local doublet and the extended fermions
gp(x) with A = s, f, sf They are .listed in Table II.

Some explanations are necessary at this point. First,
it is well known that 1D extended fermion opera-
tors have scaling dimension 1/2. This can be eas-
ily seen &om the free fermion action S(g, @t)
J' dw I dxgt(x, v)(B —iv~0 )g(z, w). Second, we

have noted before that g, and gt can only appear in the
product gt g, . Therefore, the spin degrees of freedom do
not bring in the dimension-1/2 operators Q, and vPt as
additional building blocks in Table II. Third, usual lo-
cal fermion operators have scaling dimension zero. As
can be seen from the &ee fermion action S(d, dt)

Jo dwdt(w)B~d(w), we need not change d and dt under
a rescaling of the imaginary time 7.. This would imply
that both combinations d + dt have scaling dimension
zero. However, the dimension of the operator combina-
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TABLE II. The building blocks for constructing operators in the e8'ective Hamiltonian around
the critical point.

Operator

0 f(o) —4". (o)

0 X(0) + @.', (0)

0x(0) + 4g(0)

@~(0) —&,'(0)

d+ dt

d —dt

0"(0)0 (o) —0 (0)4.'(0)

Dimension

1/2

1/2

1/2

1/2

1/2

0

Parity Particle hole vr x axis

TABLE III. All dimension. -l/2 operators. The first one is
the relevant operator. The second one can couple to the stag-
gered magnetic field. The third one could become the second
relevant operator if the particle-hole symmetry is broken. As
explained in the text, [@,f (0) —gt&(0)](d —dt) does not exist

This is because [@,f (0) —vj, f (0)] could hybridize with either

d+ dt or d —dt, but not both. [Q,f(0) —@,&(0)](d+ dt) has
dimension one and is included in Table IV.

Operator

(d+ d')(d d')—
X f(o) + 4.'g(0)](d —d')

[yg(0) + i/~(0)](d —d )

[0f(o) —@,'(0)](d —d')

Parity Particle hole vr x axis

tion d + dt is raised to 1/2 by the hybridization term in
(45) with coefficient virgo. This follows immediately from
the requirement of preserving scale invariance of this hy-
bridization term under a rescaling of x and v. Lastly, be-
cause both d and dt are odd under parity and m rotation
around the x axis, only @,y(0) —@,&(0) could hybridize
with them to give rise to a term in the efFective Hamil-
tonian that is even under all discrete symmetries, as can
be seen &om Table II. Of the two linear independent
combinations of d and dt, @,y(0) —@ &(0) could only hy-
bridize with one. From the hermiticity requirement, the
hybridizing combination could be either d+ dt or d —dt.
Thus, once [g,y(0) —@,&(0)](d+dt) is generated in (45),
[i/ia f (0) g y (0)](d —dt) is forbidden. This guarantees
that the dimension of d —dt will remain zero, as usual
local operators.

To construct operators for the efFective Hamiltonian
in the projected Hilbert space, we only need to multiply
together the building blocks in Table II and keep prod-
ucts of even number of fermionic operators. We list all
dimension-1/2 operators in Table III, all dimension 1 op-
erators in Table IV, and all dimension 3/2 operators in
Table V.

Let us first consider the particle-hole symmetric case.
Any operator that could appear in the effective Hamil-

tonian must be even under all three discrete symmetry
operations (40). We can explicitly verify that all al-
lowed operators up to dimension 3/2 that could appear in
the effective Hamiltonian have been included in (45) and
(46). In order to couple to the uniform magnetic field,
an operator has to be even under parity and particle-hole
transformations but odd under vr rotation around the x
axis. From Tables III and IV, we also verify that the only
allowed operator up to dimension I inclusive is the one
appearing in (45). As for the operators that could couple
to the staggered magnetic field, they must be even under
particle-hole transformation but odd under parity trans-
formation and a rotation around the x axis. Apart from
the dimension-1/2 operator that couples to the staggered
field in (45), two more dimension-1 operators are allowed
by the symmetries. They are the third and fourth opera-
tors in Table IV. Thus, including marginal operators we
could have the following additional staggered field cou-
pling terms added to (44):

H,', s
——n'. h, g, f(0) + Q, y(0) Q, f(0) —@,y(0)

+in". h. @.~(0) + @.'f(o) (d+ dt), (55)

where o.', and o.", are two dimensionless parameters. de-
pending on the original coupling constants of (14). Nev-
ertheless, the contributions to the staggered susceptibil-
ity from (55) are negligible as we shall see in Appendix D.

A subtle point arises here. We have used the argument
that g,y(0) —vP, f(0) could hybridize with either one of
d + dt but not both to rule out possible hybridization
between vg, y(0) —@,&(0) and d —dt in (45). Since we

already have [g,f (0) + vP, & (0)](d —dt) in (45), why could
we not make the same argument to eliminate [@,y(0) +
vgt&(0)](d + dt) in (55)? The reason is as follows. For an
arbitrary hybridization, we can rewrite it in the following
way:

' @~f(0) —&.y(o) [~("—") + tP(d+ dt)]

= iso.z + P @ y(0) —Q (0) (de'+ —dt e '&)



8296 JUNWU GAN

TABLE IV. All dimension-1 operators. The 6rst one is the hybridization term. The second one
can couple to the uniform magnetic field h,„.The third and fourth operators could couple to the
staggered field h . The Gfth and ninth are the marginal particle-hole symmetry breaking operators.

Operator

[@ «(o) —4.', (0)](d + d')

l4 «(o) + 4.'«(o)] X «(o) —4«(o)]

[tl', «(0) —Q, «(0)][g,«(0) + g «(0)]

[@.«(0) + @,'«(0)](d + d')

[0 «(0) —@.'«(0)] [@«(0)+ @«"(0)]

X «(o) —0.'«(0)] X «(o) —4«(0)]

[@ «(o) + @.', ( )Ik«(o) + @'(o)]

[q«(O) + @«(0)][g«(O) —g«(0)]

[q«(0) + y'«(0)](d + d')

[ «(0) @ (0)](d+ d )

0'(0)4.(o) —0 (o)0'(0)

Parity Particle hole x axis

where n, P are two arbitrary real constants, and p =
tan (P/n). The imaginary number i in the last formula
is needed to meet the hermiticity requirement. Redefin-
ing the operators d and d~ to absorb the phase p, we
reduce the hybridizing combination to either d —dt or

d + dt. In other words, we can always choose a proper
definition for d and dt so that only one of d+dt hybridizes
with @,«(0) —g,&(0). But we can only perform phase

absorption once. A redefinition of d and dt to absorb a

TABLE V. All dimension-3j2 operators. The first one is the only allowed leading irrelevant
operator in the presence of particle-hole symmetry.

Operator

8 [Q,«(0) —g, (0)](d —d )

~*X «(o) + 0'.«(0)](d —d')

*I@«(o)+ @«(0)](d —d')

~*W «(o) —&«(0)](d —d')

[y.'(0)4.(0) —4.(0)4.'(0)]X.«(0) —4.'«(O)](d —d')

X.'(0)&.(0) —& (0)@.'(0)][& «(0) + &.'«(0)](d —d')

[it'(0)4.(0) —0 (0)0'(0)]X«(o) + @«(0)](d—d')

[4.(0)4.(0) —&.(0)4."(0)][@«(0)—&«'(0)](d —"')
W.'(0)O. (o) —O. (0)O."(0)](d+d')(d —d')

[ P «(0) —Q «(0)] [g,«(0) + Q, «(0)][@«(0)+ g«(0)] (d —d )

«(o) —@.'«(0)] [@.«(0) + y'«(0)] [y«(O) —@«(0)](d —dt )

[0 «(0) 0 «(0)][/ «(0) + Q «(0)](d + dt)(d —dt)

[&.«(0) + 0'«(0)] X «(0) + +«'(0)] [4«(0) —0«'(0)](d —d )

[g.«(0) + Q.«(0)] [@«(0)+ Q«(0)](d + d )(d —d )

IV«(0) + V«(0)][V«(0) —~«(0)](d+ d') «- dt)

[&,«(0) —&'«(0)] X «(0) + 0«'(0)] [y«(0) —0«'(0)] (d —d )

I~'«(o) —@.'«(0)] W «(0) + @«(0)](d+ d')(d —d')

l@ «(o) —@.'«(0)] [@«(0)—0«(0)](d + d')(d —d')

l4 «(0) + V.'«(0)][0«(0) —0«(0)](d+ d')(d —d')

Parity Particle hole vr x axis
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second phase to eliminate [@,y(0) + Q,y(0)](d+ d ) from
the staggered field coupling terms in (45)+(55) is not
possible without spoiling the simple hybridization form
of the fixed point Hamiltonian (45).

When the particle-hole symmetry is broken, another
relevant operator becomes allowed, as can be seen &om
Table III. This is the dimension-1/2 operator in (47).
There are two more dimension-1 operators breaking only
particle-hole symmetry. From Table IV, they are

Hamiltonian ensures that the physical results calculated
&om it are asymptotically exact in the low-energy limit.
It is worth pointing out that up to dimension 3/2 the
number of allowed operators around the critical point
and their dimensions are in complete agreement with the
conformal theory results.

IV. LOW-ENERGY THERMODY'NAMICS

= V @ y(o) —&.' (o) @y(o)+@'(o)

+ia„V Qy(0) + @yt(0) (d+ dt), (56)

where o.
„

is a dimensionless coefIicient depending on the
original coupling constants of (14). The first term in (56)
is the original particle-hole symmetry breaking term (39),
surviving the first-order projection. The second term is a
generated one &om high orders and cannot be eliminated
by a simple phase absorption in d and dt for the same
reason as in the last paragraph.

Summarizing this section, (44)+(55)+(56) constitutes
the most general effective Hamiltonian for the solution
region in Fig. 1, even allowing particle-hole symmetry
breaking. What are omitted up to dimension 3/2 only
include the following.

(1) A dimension-1 operator [@,y(0) + tP y(0)][I'Py(0)

+@y(0)],which could couple to the staggered field h, but
breaks the particle-hole symmetry. Thus, the coefFicient
of this operator must be proportional to the particle-hole
symmetry breaking potential V. Near the critical point,
we expect this coefFicient to be significantly suppressed.
This term should be even less important than those in
(55).

(2) Two dimension-3/2 operators breaking only
particle-hole symmetry, as can be seen &om Table V.
They could appear as additional irrelevant operators in
the effective Hamiltonian. Again, we expect they are sig-
nificantly suppressed near the critical point.

(3) Several dimension-3/2 operators which could cou-
ple to the uniform or staggered magnetic fields. Their
contributions to the susceptibilities vanish according to
high powers of temperature as T —+ 0.

The above proof of the completeness of the effective
I

Z= V y, y, y, y, dd 8

p — dh sy x a sy X + y x w y x + dad

(57)

where H, yr is the effective Hamiltoiiian given by (44). By
making linear transformations to new Grassmann vari-
ables,

(@ y+ @ y) b y
= — (& y

—@ y) (»)
2

' ' ' '
2

1 Z

ay = (~y+ 6) by = — (@y —6)
2 2

a = (d+d), b= — (d —d), (61)

Gsy =

(60)

we write the total Lagrangian in (57) as

In this section, we shall calculate low-energy thermo-
dynamic properties of the effective Hamiltonian (44) for
the solution region of Fig. 1. The marginal operators (56)
will be considered in Appendix C where we shall show
that their effect is to slightly renormalize the Kondo and
crossover temperatures. The contribution to the stag-
gered susceptibility from the marginal operators (55) will
be considered in Appendix D and shown to be negligible.
The way we adopt to carry out calculations is to repre-
sent the partition function as a path integral in which
every fermion operator becomes a Grassmann variable.
Then we perform linear transformations on the Grass-
mann variables to bring the action to a diagonal form.

The partition function in the path integral formalism
can be written as

Z=dp+Hg

l:i(a.y, b)

l:z(b,y, a, b)

l:s(ay, b)

84(by, a,y)

l:i(a,y, b) + 22(b, y, a, b) + l:q(ay, b) + l:4(by, a,y) + l-i, (a, b),
1
2

dz a,y(7, z)(0 —iv~0 )a,y(r, z) + 2in, h, a,y(r, 0)b(r),

OO

2
dz b, y(r, z)(0 —iv~8 )b,y(r, z) + 2iv~ [go b, y(r, 0)a(r) + gib(r)B b, y(r, 0)],

OO

—OO

dz ay (r, z) (8 —i v~ 0 )ay (r, z) + 2i Vay (r, 0)b (r),~ ~

OO

—OO

dz by (r, z) (0~ —iv~0~) by (r, z) + 2i n„h„a,y (r, 0)by (r) 0),
~

~

~

1
2
—[a(r)8 a(r) + b(r)8 b(r)] + i bK a(r)b(r),

(62)

(64)

(65)

(66)

(67)

where
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1
hK = K* ——(K, + Ki).

2
(68)

Introducing the Fourier transform,

a, y(r, x) = —) —a,y(u, k) e ' " +'", (d = (2n+ 1)7r/)9,
P 2' (69)

and similar ones for the other Grassmann variables, we can write the actions corresponding to the Lagrangians (63)—
(67) as

dk 1
Sq(a, y, b) = ) ———(iw —v~k)a, y( w, —k)a, y—(w, k) + 2in, h, a,y(c!J k)b( el) )27r 2

dk 1
S2(b,y, a, b) = ) — (—ice—„—v~k)b. y( (u„, —k)b—gy((u„,k)

n
—givv [gva( —w )

—igv b b( —w„)]bi(v, b,) ),
dk 1

S3(ay, b) = ) ———(i(b)„—vzk)ay (—(b), —k) ay ((b)„,k) + 2iVay (—(b)„, k) b—((g)„)
7r

n —OO

dk 1
S4 (by, a, y ) = ) ———(ia)„—v~ k) b y (—a)„,—k) by (u„,k) + 2icb.„h„a,y (—ai„,—k) by (u„,k)

OO

(a, b) = ) (
— "

[a(—tv„)a(tv„)+ i(—tv„)b(tv„)[+,big a( tv„)b(v„))

(7o)

(71)

(72)

(74)

The uniform magnetic field term in (73) is an exactly
marginal operator. This is most easily seen by setting
h, = 0 in (70) and combining it with (73). From the real
Grassmann variables a, y and by, we can make a linear
transformation to

1 1
(a y + iby) ~ = (a y iby).

The Grassmann variables Q and g correspond to the
usual fermion annihilation and creation operators. When
h, = 0, (70)+(73) is completely decoupled from the rest
of the action responsible for the critical behavior. More-
over, the h„term in (73) is simply a potential scattering
term in terms of the fermion operators corresponding to
@ and@,

2io, ,h,a,y(a)„,k) = a,y((u„,k) —.
' ' b(u)„),

Ndn —VF A;
(76)

b, ((yu„,k) = b, y(u)„,k)
2ZVF

[gpa(~„)+ igqkb((b)„)j, (77)
'EG)n —VF Al

2iV
ay((b), k) = ay(a), k) —. b((b) ).

Zhln VF A:
(78)

Upon inserting the results for the following integrals,

inside the solution region of Fig. 1. From now on, we
shall set h„=0 and drop (73) from further discussion.

We can diagonalize (70) to (72) simply by shifting the
Grassmann variables corresponding to the extended de-
grees of &eedom,

Sg(a, y, b) + S4(by, a,,y)

P OO

d7. dxg(x)(B —iv~8 )g(x)

f dk 1

~ 2X ZCdn —VFk

f dk k

2& Z&n —VFk

i sgnu
2VF

1 (v~A
V~ ( 7l 2 ) ' (8o)

+2m„h„@(0)@(0).

Thus, not only the uniform susceptibility is well behaved
but also applying a uniform external magnetic Geld has
negligible e8'ect on the physical behavior of the system

I

f dk k2

~ 27t X42n —VFk

i „(dvp[(A

v~s ( vr 2 ) ' (81)

where A is the ultraviolet cutoff, the actions (70) to (72)
become

i(c.h, )'
Sz(a, y, b) = —) —(i(d —v&k) a, y( w, k) a,—y(~, k—) — ' ' ) sgn~„b( ()„)b(cub„),—

VF
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dk
82(b, g, a, b) = —) —(i~„—vt;k)b, g( ~—„,—k)b, g((u„,k)

QQ

ig', . /' 2v~A ')—iv~g,') sgn~„a(—~„)a(~„)+') ~„~~~„~—
~

b( —~„)b(~„)
vy ( vr r

4i
+2igogi ) ~ur ~a( —u )b((u ) ——vzgogiA ) a(—u )b((u ),

n n

dk iV
83(af, b) = —) —(iw —vzk)ay( Ig/„,——k)a j(u„,k) — ) sgnI2/„b( —u )b(I2/ ) ~4' vy

(83)

(84)

The last term in (83) is a correction to the relevant operator 8K term of (74) and can be absorbed into the critical
value of the RKKY interaction K*. Collecting the local terms containing Grassmann variables a, b from (82) to (84)
and combining them with (74), we obtain the effective local action,

( ~~„~+ 2vpg o
A..= -i ):fa( —~-), b(-~-)1 bK+ 2

n&0

(bK + 29OP& l~-I)
~tv„~/Zv+ 2 (n.*Iv, + V —g,' )v/vg / I b(tv ) /

The factor Zp is deBned by

+ (~(dg2
~
+ 2vygo)

2I 2 + V2 (87)

where —T ln2 is the entropy term of the two lowest de-
generate levels in Fig. 3. Defining several convenience
notations,

(v2
TK ——2vygo + 2'

1
ZQ 1+ 4gizA/m

'

and can be interpreted as the wave function renormal-
ization factor for the Grassmann variable b (or Majorana
fermion). The A)2 term in the matrix element of (85)
can be safely neglected since it is highly irrelevant and
satisfies gi's„/vy « ~u„~ for the whole energy range of
practical interest. All interesting thermodynamics is con-
tained in (85). From (85) we obtain the free energy shift
due to the impurity spins,

T(T, Iv. ) = T In 2 —T )
In

I—(6' + 2g g, ) ))'vtv
n&O

I" (T, 6,) = T ln 2 — — tanh
~

d~ (P~)
o 2' (2r

, ( ~Tax tan-'
E Ig/ —T~ Ta —cx b, r

(92)

This nice looking expression gives us the complete
crossover functions for the specific heat and staggered
susceptibility.

The roles of the parameters in (91) can be read off. TIr is
the fundamental energy scale of the problem and should
be identified as the Kondo temperature. We note that
Ta 2vpgo, as can be seen from (88). T, vanishes ap-
proaching the critical point, and satisfies T &( TK inside
the solution region of Fig. 1. The same T defines the
crossover energy scale above which the behavior of the
system is controlled by the critical point. Below T, it is
controlled by the Fermi-liquid Bxed point. Accompany-
ing the staggered magnetic field is an involved coefFicient
o., because h,, couples to an unconserved operator, unlike
the uniform magnetic Beld. Because of this factor, it is
not possible to define a universal %'ilson ratio from the
staggered susceptibility.

For all practical purposes, the h, term in the numer-
ator inside tan in (91) can be dropped since it only
shifts TIr to TI2 + n, h, /Ta. After some rearrangeinent,
we Bnally obtain

Zg 4g2V2+ (bK)

TK

n, = 29oag QZb,

we can recast the &ee energy in a very simple form,

(89)

(90)

A. Specific heat

Setting 6, = 0 in (92) and performing some minor
manipulation, we obtain

I"(T, h, ) = —T ln 2 + de) 1

2~ e~ +1
u) [Ta + n2b2/(2v~ge2)]

x tan '
3 T T -2h2 91

O'e s

F(T) —E(0) = —Tln2+ T dx 1

p Jt e +1
~PTKx tan

/3 TcTz r
(93)

Two limiting behaviors follow immediately. At T
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T « T~)

dx 1 t'ir

II ir e~+ 1 g2
T T'

l 2

F(T) —F(0) = T—ln 2 + T

JUNWU GA.N

(94)
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We see a residual entropy (ln 2)/2, reduced from the orig-
inal ln2. At T « T « T~)

F(T) —F(O) = —Tln2+ T dx 1 t' x ii
)r e +1 I, /3T)

(95)

The limiting behaviors of the specific heat are obvious
from (94) and (95),
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FIG. 5. The crossover function for the en py, q.entro E . 93),
for various values of Tc/Tyc.

The general crossover function for the s ecific heat isP
obtained from (93),

C(T) = 2T2 P4
T

x Ta —Tc(x —/3 T Tsc)(3x +/3 TcTa)

I(
' —O'T-TK)'+ ( /3')']'

(97)

This crossover function is plotted g.
~ ~

d in Fi . 4. We also
plot the crossover function for the entropy (93) in Fig. 5,
which may be more instructive.

B. Staggered susceptibility

From (92), the staggered susceptibility is given by

x.(T, T.) =— a2
F(T, It, )862

des (P(u i
tanh

/

0 7l i 2 j
(dTg

(T,T~ —u)')' + (~TIr )'
The limiting behaviors are found to be

(98)

lnTl T )) Tc)
( )»T., T«T, .

The crossover behavior for the function (98 is plotted in
Fig. 6.
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FIG. 4. The crossover function for the pthe s ecific heat, Eq.
. T is the Kondo tempera-(97) for various values of Tc/T~.)

ture and T is the crossover temperature.

FIG. 6. The crossover function for the staggsta ered suscepti-
T normalized to itsD' i 4 E (98 g for various values o T~,i i y, q.

value at Tir/2
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C. Impurity spin correlation {Sq ~ Sq) QS+Q = Q(++) Q+ Q(S+) Q+ Q(S+) Q = 2ddt.

(100)

Projecting the operator (S+) onto the doublet, we
Gnd

Thus, the calculation of the impurity spin correlation is
reduced to evaluating {ddt). From (85), we have

{ddt) ——= i{ha) = T) bK + 2gogiicd~ i

(hIc+ 2gngx~/ru /) y (~/w„~/+Tz) (/w„//zs+ 2v /v~)
(Io1)

The impurity spin correlation is

Z, ) SZ + 2gg~~„~
4 & „~.'+ T.TJc + l~-ITJc

At the critical point, bK = T = 0, and as T -+ 0,

1 dc' 2gpgi{Si S2) = ——+ Zb
4 p 7l (d + T~
1 2gpgy Zg v~ A+ ln
4 m T~

(Io3)

&(~~) P „~„'+~~ ~Tz + T.T~{s,. s, ) = —')

o vr (2)
(d T~

X
(T,T~ —(u2)2+ (cuT~)2' (1o4)

Comparing the last expression with (98), we find

0
{Si S2) = const x y, (T, T,). (105)

In particular, they should have the same limiting behav-
iors as given by (99). Since

p
(Si . S2) ~ d&{T(si S2)(7) (Si S2)(0)),

0

(Io6)

the result (105) should not be too surprising.

V. COMPARISON WITH OTHER RESULTS
AND UNIVERSALITY

There are two kinds of asymptotically exact limiting
results with which we can compare our solution. These

The leading irrelevant operator induces a small nonuni-
versal correction to the impurity spin correlation. Al-
though the fixed point itself has an extra symmetry be-
tween the two states of the doublet, d ++ dt, which im-
plies {Si. S2) = —1/4, it is broken by the leading irrele-
vant operator, as can be seen from (46).

We can also calculate the slope of the impurity spin
correlation with respect to the RKKY interaction. From
(102), we find

I

are the conformal-field-theory results at T )) T and the
numerical renormalization-group results at T = 0. First
of all, we would like to emphasize that all our results are
also asymptotically e~act up to some numerical coefB-
cients go, gi, and V in (44) even if we do not know how
to express them in terms of the parameters of the original
Hamiltonian (1). Or eventually the possible uncertainty
boils down to the two basic energy scales T~ and T .

In order to make a comparison, we first need to deter-
mine whether or not the critical point we have studied
is the same one, and whether or not the spin anisotropy
we have introduced in (1) is irrelevant. The answer to
both questions is a convincing yes, if not rigorous. A de-
tailed comparison of the finite size spectrum of the criti-
cal point between the conformal-field-theory and numer-
ical renormalization-group approaches has been made.
ExceHent agreement has been found which implies the
same critical point in those two approaches. Thus, we
shall take the agreement between our results and that
obtained &om either one of those two approaches as a
positive evidence. The conformal-Geld theory tells us
that there is only one non-Fermi-liquid fixed point, i.e.,
conformally invariant boundary condition. This is sup-
ported by the failure of finding other critical points in
our approach by considering other impurity spin states
as the lowest degenerate levels rather than the doublet
in Fig. 2. The strongest evidence for the universality
of the critical point is the exact same operator content
around the critical point we find in our approach and
in the conformal-Beld-theory approach. In other words,
we have the same number of operators with the same
symmetry and same dimension. Specifically, there is
one dimension-1/2 relevant operator and one dimension-
3/2 leading irrelevant operator in the presence of the
particle-hole symmetry, as can be seen &om (45) and
(46). Breaking the particle-hole symmetry introduces
another dimension-1/2 relevant operator, as can be seen
from (47). Furthermore, the dimension-3/2 leading ir-
relevant operator in the conformal-Geld theory is a de-
scendent of the relevant operator. In our approach, we
consistently Gnd that the leading irrelevant operator con-
tains the spatial derivative 0 . This is the crucial diKer-
ence from the two-channel Kondo problem, resulting in
diferent low-temperature behavior of the speciGc heat
[see (96) and Ref. 24]. While in both cases there is a
dimension-3/2 leading irrelevant operator, only the one
at the critical point of the two-impurity Kondo prob-
lem contains t9 . As to the spin anisotropy, it is found
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in the conformal-field-theory approach that a small spin
anisotropic perturbation around the critical point is ir-
relevant. Although this does not prove the irrelevance
of the spin anisotropy introduced in our approach be-
cause the introduced anisotropy is not small, it does in-
deed point to the right direction. It is worthwhile re-
calling that the spin anisotropy is irrelevant for all kinds
of one-impurity Kondo problem, including the exactly
screened and overscreened cases. These early ex-
periences in related Kondo problems give us considerable
confidence in the universality of the critical point.

Since the behavior of the system above T and the way
the system Bows to the stable Fermi-liquid fixed point be-
low T are all governed by the critical point, the universal-
ity of the critical point also implies the universal behavior
everywhere inside the solution region of Fig. 1, as well as
all crossover functions. In particular, the crossover func-
tions we have derived for the specific heat and staggered
susceptibility are expected to be universal. For a compar-
ison of the results derived &om different approaches, the
only freedom left is to match the two basic energy scales
T~ and T . For the staggered susceptibility, or any other
response function of a nonconserved operator, there may
also be an undetermined overall constant prefactor.

At the critical point T = 0, or more generally in the
limit T )) T, the critical properties of all thermody-
namic quantities as a function of temperature that we
have calculated in the last section completely agree with
the conformal-field-theory results, as expected on the
grounds of the same operator content. These include the
residual entropy (ln2)/2, linear temperature dependent
specific heat, lnT singularity in the staggered suscepti-
bility, constant uniform susceptibility, and ln T singular-
ity in the correlation function of the composite operator
Si . S2, as can be seen from (104) and (106). The com-
plete agreement of the critical behavior further ensures
us the universality of the critical point.

As to compare with the numerical renormalization-
group results at T = 0, we first note that the empirical
observation of an additional hidden symmetry between
the singlet and triplet impurity spin states at the criti-
cal point becomes crystal clear after our identification of
the critical point, as can be seen &om Fig. 2. So is its
consequence about the value of the impurity spin corre-
lation at the critical point, (Si S2) = —1/4. However,
this hidden symmetry is broken by the leading irrelevant
operator as we have noted before. In consistency with
the numerical renormalization-group result, we also find
that the linear coefBcient of the specific heat diverges
quadratically in bK on the particle-hole symmetric axis,
as can be seen from (96). Our result (105), that the slope
of the impurity spin correlation with respect to the vari-
ation of RKKY interaction is logarithmically divergent,
is broadly consistelit with the numerical renormalization-
group result which also found it singular.

The only disagreement with the reported numerical
renormalization-group results is the behavior of the stag-
gered susceptibility at T = 0. While y, (T = O, T,)
1/T, has been claimed, we only find y, (T = 0, T, )
(1/T~) ln T„ascan be seen from (99). Note that the
other limiting behavior of (99), y, (T, T,) ln T at

T )) T, is not disputed. Even if one takes a cautious
view about the numerically fitted critical exponent 2 for
the staggered susceptibility, i.e. , y, (hK), the origi-
nal numerical divergence seems to us much stronger than
a logarithmic singularity. The reason for this discrepancy
is unknown at this moment. But at least the easy expla-
nation of differently adopted definitions for the staggered
susceptibility is unlikely. In this paper, we only couple
the staggered field h, to S in (15). One could also
couple h, to [@i(0)0'@i(0)—@2(0)o'$2(0)]/2 in (15), or
even to I dx[@it(x)o'vji(x) —@t2(x)0'@2(x)]/2. In any
case, the contributions to the staggered susceptibility af-
ter subtracting out the &ee Fermi sea contribution should
only come &om the local operators which are odd under
parity and m rotation around the x axis. Since we only
have one such relevant operator, as can be seen &om
Table III, we do not expect qualitative change of the be-
havior of the staggered susceptibility as a result of differ-
ent definitions. A careful reexamination in the numerical
renormalization-group approach should be very helpful
to clarify this point.

VI. CONCLUSION

We have presented an asymptotically exact solution for
the two-impurity Kondo model for a finite region of the
parameter space surrounding the critical point, as shown
in Fig. 1. We have also derived the analytic crossover
functions for the specific heat and staggered susceptibil-
ity. This solution is made possible by an explicit iden-
tification of the critical point. As we have explained in
Sec. III, the condition for the criticality is the degener-
acy between the two lowest impurity spin states, (~ f$)
—

~ $f))/~2 and (~ gt) +
~ $$))/~2, in the dynamical ref-

erence frame. Using the canonical transformation (30),
we can rewrite them in the static reference &arne: one is
the RKKY singlet (~ g$) —

~ $t))/~2 while the other one
is a Kondo screened singlet e' + '~ l(~ gt) +

~
$$))/~2.

By varying RKKY interaction across the critical point,
these two levels cross each other. However, level cross-
ing does not necessarily imply a non-Fermi-liquid critical
point. That it is so in this case is a consequence of the
fact that in the presence of the particle-hole symmetry
only half of the degrees of freedom of the doublet can be
compensated by the extended degrees of &eedom associ-
ated with the conduction electrons. Out of four species of
spinless fermions or eight species of Majorana fermions
associated with all conduction electron degrees of free-
dom, only one Majorana fermion, g, g

—Q,&, is allowed
by the symmetry to compensate the local degrees of the
freedom of the doublet. This is the same physics responsi-
ble for the non-Fermi-hquid behavior of the two-channel
one-impurity Kondo model. 4 However, the doublet at
the critical point of the two-impurity problem has dif-
ferent symmetry &om the simple impurity spin up and
down states of the two-channel problem. Therefore, the
operator contents around the fixed points (one unsta-
ble, the other stable) are difFerent. The nearly complete
agreement of our results with those derived from the nu-
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merical renormalization-group or conformal-field-theory
approaches, except one limiting behavior of the staggered
susceptibility, convincingly establishes the universality of
the critical point. Thus, the crossover functions we have
derived in Sec. IV are also expected to be universal. The
calculation of dynamical correlation functions such as the
conduction electron Green's function is currently under
way.

What have we learned about the lattice problem &om
the study of the two-impurity Kondo model'? An. obvi-
ous lesson is learned from the striking difference between
the uniform and staggered susceptibilities. This differ-
ence is solely due to the competition between RKKY in-
teraction and the Kondo effect. A direct and primitive
translation to the Kondo lattice problem would be the
strong momentum g dependence of the spin susceptibil-
ity y" (w, g). As a result of the competition, we should
expect drastically different enhancement at different mo-
mentum transfer g. Prom this perspective, the picture
of a periodic array of coherent Kondo scattering centers
for the heavy fermion compounds is surely oversimplified.
Nonperturbatively incorporating RKKY interaction into
the Kondo effect in the lattice is an outstanding problem
on which the impact of the insight from the two-impurity
Kondo model has to be fully realized.

~*@ ( ) = dp
2

"' 0.(p)
*"*—4'. (p)

0 2'
(A5)

e
—i&~+ fo ~p~ '~'(0'*(p)+4'. (p)) lv'2~p

and define two A-dependent functions,

f, (~) = U(~)H(') U-'(~),
f2(A) = U(A)B 4, (x)U (A).

(A7)

(As)

(A9)

We note that U(A = 1) = U. Using the commutation
relation (A6), it is straightforward to verify

d2

qq, f~(&) = (S+)'
d

dA
fg(A)—lg p ———vpB C, (0)S+,

(A10)

(All)

The commutation relation for the Fourier components is

(A6)

Next, let us introduce a generalized transformation op-
erator

U(P)
—iAs+ 4', (P)
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d OO—f2(A) = —2 dpe P cos(px) S'.

dA 0
+ (A12)
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From (A10) and (All), we obtain

UHp' U = Hp' —vpB 4', (0)S++ (S+) . (A13)

From (A12), we obtain

APPENDIX A: DERIVATION OF (31) AND (32) UB 4, (x)U = 8 4, (x) —2 dpe P cos(px) S+.
0

Under the transformation UHU, only two terms in
Hp are afFected. They are h„/(2')f dx8 4, (x) and This implies

(A14)

H~' =" dx II.' x + O. . x ' . (Al) UB 4, (0)U = c) 4, (0) ——S+, (A15)

As for Hi, the transformation affects the term con-
taining 8 O, (0)S+ apart &om eliminating cos4, (0) and
sin@, (0). Using the mode expansion,

U dxB 4, x U = dxO C, x —2vrS+. A16

Substituting (A13), (A15), and (A16) into UHU ~, we
obtain the results (31) and (32).

(A2)

& (x) = dJ ipse + yt( )
—ipse n~p~/2—

2~V2lp

II, (x) = —ip, (p)e'p*+ipt(p)e *"*dpp
-- 2~ V'2lpl

~~—~IJ I/~
7

we can write

(A3)

(A4)

APPENDIX 8: DERIVATION
OF THE EFFECTIVE HAMILTONIAN

IN THE SECOND-ORDER PROJECTION

In this appendix, we shall derive the coefIicients g0,
gq, V, n„,and n, in the efFective Hamiltonian (44) from
the second-order projection (42). The Hamiltonian to be
projected is (36) + (37) + (39).

The first-order contributions to the effective Hamilto-
nian are
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QIIQ = —fa f f dT ) ffi(T)S A(T)
A=s, f, s f

v J~
+i 0.y (0) —4".g (0) qS" Q

27I o.

+0 f dT@f(x)@.(2:) + II2

In terms of the local fermion operators d and dt, we have
QS" q = i(d —dt). Performing the transformation (43)
to install the ant icommutation relations between the ex-
tended and local fermion operators, the hybridization
term between the extended and local fermion operators
in (B1) becomes

v J~
x (0) —@.'y (0) (d + d')

2 f7i Of

In the second order of the projection (42), the local
impurity spin state is virtually excited &om one of the
doublet to either (~ fg) —

~
$$))/~2 or (~ t$) +

~
$g))/~2,

then returns back to the doublet. From Fig. 3, the mix-
ing terms between the doublet and the excited states are
those in (36) + (37) which contain S+ and S+ . If the lo-

—K = Ki + (B3)

where the omitted extra terms stand for the above-
mentioned renormalizations. The relevant term in the
effective Hamiltonian around the critical point is, like
the mass term in the usual critical phenomenon,

K*
/

dtd

with K* = (J+ —p) +.. . (B4)

The more important contributions come from the situ-
ations when the local impurity spins start &om one state
but return to the other state of the doublet . From

Fig�

. 3,
we see that these contributions must come &om the pro-
jection of the product of S+ and S

cal impurity spins leave and return to the same state of
the doublet, the generated contributions to the effective
Hamiltonian have the form of either dt d or ddt . These
are simply the renormalizations to the RKKY interac-
tion, shifting its critical value determined by

Q (
'

@.'f (0)@.I (0) —@.I (0)@.'f (0) S*-

I
X

—(K~ + TK) + iv~ f: dx&.'y (x)~*&.X (x) —& @ X (0) —@.'y (0) A (0) + &y (0)

v J~ v J~
x IPf(0) + df,,f(0) S Q+ Q

+ @,f(0) + @,f(0) S )27l o 27l' o,

X

(K~ + TK—) + ivy f dxg,
& (x)B~@,y (x) —V )(ifsy (0) —@,~ (0) @y(0) + @~(0)

x tf o,f 0 —,f 0 tf 0 S (B5)

Besides the energy gap K~ + TK between the doublet and the local excited state ( ~ t$) +
~ $g) )/ ~2, we have also kept

the intraband terms in the intermediate denominator which will be expanded as

(
OO —1

(Kf + Tff) +fvf f dTd' f(T)S d f(T) V @ f(0) —d f(0) @f(0) +d'f(0)

1
K~ + T~ d*0.' ( )~*4" ( )+, 0.f (0) —4.' (o) & (0) + @'(0) (B6)+ K —oo KJ + K

Substituting (B6) into (B5), we obtain three contributions to the effective Hamiltonian.
The first contribution is

.f 0 + f 0 0 .f 0 .f 0 0 S+S
2(K~ + TK) +27rof

+ d' f(0)@,f(0) —@,f(0)ff.f(0) @,f(0)+@,f(0) QS'S Q). (BI)
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Using the fact QS' S+Q = dt and QS+S' Q = d, and carrying out the transformation (43), we simplify (B7) to„,@.f(0) —&.'~(0) (d+d'). (B8)

In deriving (B8), we have used the relation

(Bg)

Note that (B8) is a renormalization to (B2).
The second contribution to the efFective Hamiltonian from (B5) is

OO

i — +
@,f(0) + i/', y(0) dxg, y(x)0 g,g(x)

2(K~ g Tlc)' 2am

x g.'~(0)g.z(0) —@.&(0)@.'f(0) QS+S Q+ g.'~(o)@.~(o) —g.~(o)~.'f(o)
OO

x (z@fg(x)() @ g( ) 2.@.g(0) + @.y(0) QS*S+QI . (B1o)

Commuting all fermion operators evaluated at x = 0 to one side and simplifying the products using anticommutation
relations, we find that (Blo) contains a term

),/,
'~- @ f(0) —@.'f(0) ( — '). (811)

This is the leading irrelevant operator and has dimension 3/2. Note that the combination of local fermion operators
appearing in (Bll) is d —dt, not d + dt. This is a vital difference.

The third contribution to the efFective Hamiltonian from (B5) is

( @ r(o) + 4".g(") @ i(O) —@.'g(o) A(o) + Og(D)
2(Kg + T~)2 2~n

x Q,y(0)g, y(0) —Q, f (0)@,f(0) QS+S' Q+ @,)r(0)@,y(0) —@,y(0)g, y(0)

X Q f(0) —@,y(0) .Qf (0) + @y(0) @.f(0) + @.g(0) ()8+5*Q) . (B12)

This contribution can be reduced to

, K +T ',
2 .&, @X(0)+&~(0) (d —d'). (B13)

Again, we note that it is d —dt appearing in (B13). This is the second relevant operator which is present only when
the particle-hole symmetry is broken, i.e. , when V g 0.

The staggered magnetic field coupling term comes from

0(&.+ ) (
' @.I(ii)+@.', (o) ~ )0+0( ' @i(o)+4.', (0) ) ~ ~ (h ~-*)()

(B14)

This term is simplified to

he J~
@ f (0) + @.' (o) (d —d').

(K~+ TIr)y'2vra-

To obtain the uniform magnetic field coupling term, we restore the Bose field P, (x) through @J'(z)@,(z)
(9 4, (z)/(2vr) in (36) and (37). Then we integrate out P, (z) exactly. This is carried out as follows. First, we notice
that the terms in (31) and (32) containing P, can be rewritten as, upon inserting 8 4, (x) = ~jr [(9 P, (x) —II, (x)],
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Vp

2

JZ
d. II. + ~. .. '+ "- a.e. .+ '+~. a.e. .S.-

7T'Vy 7r

OO

dx II, (x)—

up to an additive constant. By introducing

6„+ &.P.(x)+
2 )l'vy

J
+ 6( )8 C.( )8*), (816)

we can recast (B16) in the form

&.(x) = &.(x) +
2

JZ
II'. ~ + a. . ~ + +8 ~ a.C. ~ S, — " + S b ~

7r '7t Vy

(B17)

(B18)

where II, (x) and )9 C', (x) are correspondingly defined as, in consistency with (21) and the relation II, = o)&()()„

11.(*) = 11.( )—
2 7("Uy

0 C.(x) = o) C.(x) +
V~

(B19)

(B20)

Since the uniform field h„only appears in the last term of (B18), we only need to project it onto the lowest doublet
in the next step. The contribution is

Q( Q, t(0)+@.y(0) Qg(0) —@y(n) 8++el J~Q. (n)rb. (0)s~)

x,&p + f 0 f {) — 0 $' +&+J tp (B21)

With a little algebra, one can show that (B21) contains

&.f (o) + @.', (o) &x(o) —@f'(o)

he J'
@t(O)@.(O). (B22)

Combining the results (B2), (B8), (B11),(B13), (B15),
(B22) together and omitting the tilde signs on g's, we
obtain the efFective Hamiltonian (45), (46), and (47)
should be kept in mind that the obtained expressions,
(48)—(52), for the numerical coeKcients of the efFective
Hamiltonian should not be taken too literally in general
cases where the second-order projection may not be su%-
cient. However, the validity of the efFective Hamiltonian
and the relations between the operators in the efFective
Hamiltonian and those in the original one (1) will not
be afFected. The purpose of this appendix is to illus-
trate how each term in the efFective Hamiltonian arises
from the projection rather than accurately determining
the coeS.cients of the efFective Hamiltonian. A practi-
cal way to determine them probably is to 6t numerical
results or experimental data.

APPENDIX C: EFFECT OF THE MARGINAL
OPERATORS (56)

S(b,y, ag, a, b) = 82 (b.f, a, b) + Ss (af, b)

+8&bb (b, f, af, a), (c2)
where 82(b, y, a, b) and Ss(ay, b) are given by (71) and
(72), respectively. More specifically, we need to find new
linear transformations other than (77) and (78) such that

In this appendix, we shall show that the only efFect of
including the marginal particle-hole symmetry breaking
operators (56) is to slightly renormalize the two basics
energy scales T~ and T .

The marginal operators (56) correspond to the follow-
ing terms in the action:

dk8 bb(b f af a):2iv ) —af (LL1 IC)
27'

dk'
x n a(—(u„)— b, g( —(u„,k')

(C1)

Setting 6, = 0, our task now is to diagonalize
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the hybridizing terms in (C2) are canceled out. The de-
sired transformations are (,(~„,k) = 2v~ iVsgn~„— 2Vgi A

z(d„—VFk vF + V ( vr

6 f(~ k) 6 f(~ k) + ~i(~ k) a(~ )

+(2((d„,k) 6((d„), (C3) + Vgl
Vp

(c6)

af ((d, k) = af ((d, k) + (q ((d, k) a((d )

+(4((d„,k) 6((d„), (c4)
(4((d„,k) =—

2iV
(C7)

Cx~ —gp sgn(d~

i(d„—VFk 1+ V2/VFz

2i v —2vgiA/vr + vgil(d~l/VF
Z(dn Vy'A: 1+ V2/vF2

where the four transformation coeKcients are given by (C8)

2zvF g() + sgn(d„n„V/vF
i(d„—VF k 1+ V2/vF

(C5)
The ultraviolet cutoH' A enters the transformation coefB-
cients through the integrals (80) and (81). In terms of the
shifted Grassmann variables, the action (C2) becomes

dk 1
cS(b f af ) = —) ——(i(d —vFk) af (—(d, k)af—((d, k) + biif ( (d k)6 f ((d k)

7l
n

+2iV ai(w, k)bi( —w, k',)) + Sa (a, 5).2' (C9)

The last term inside the curly bracket is a potential scat-
tering term for the extended fermions. The generated
local terms are

& b((d„)= 2

1 + V2/V2

I VV 2vFglA+
&VF

(C10)

&...(,6) = -z): "[~-(l~-l)a(-~-)a(~-)
n

+~bb(l~- I)6(—~-)6(~-)l

+M a(w )a( w )b(w )„)i, —
„„

n„V(- 2VglA Vgl+sgn(d„" V— + (dn
VF ( zr VF r

(C13)

with

~-(l~-I) =
2.2vF,

I(
cz„Vi

1+.V2/V2 ( vF r

2 1 &- 2Vg&A i
~bb(l~-I) =,+ V, /. ,

2g2A ( V2) 2giVV
+l~-I '

I
1 —

2 I
+

vFr vF

2

Cd

Vy

6((d ) = 6((d ) + a((d ),
V —2VglA/vr

(c14)

(C12) we can compactly write the efFective local action as, upon
neglecting ~2 terms in the matrix elements,

(Cl]) To obtain the total efFective local action, we add the
generated terms (C10) to (74). Introducing a new local
Grassmann variable,

Sra = —i ) (a(—w„),b( —w„))
n)0

f (d~/Z~ + 2VFgp
X

hK + 2gpgiM —rj(d

K + 2gpgy~ —g~n G 41

~/gb+2V /F ) & (-)r6
(C15)

The renormalized parameters are

gp

Ql+ V2/V2

gx

Ql + V2/vF2

(C16)

(C17)

V —2VglA/zrVl
gl + V2/v2

bK=bK- 2VFgp / VV 2glA )

1+ V2 vF2 ( vF2 zr

(c18)

(c19)
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1
Z (C20)

1 2—= 1+
Zg 1 + Vz/v&~

o.„V
77

V —2Vgi A/vr

(C21)

2(2gi A/vr + gi VV/v~~)
] + V&/v~

= 1+ ~„V 'I'
r 4g, Aq

I
I+

(V —2VgiA/7r) E '7r j
2giA f V l 2giVV

1 —
z +

7r ( vp ] vp

dk
S,t~s ——2ih, ) —a, y (—(u„,k)

27r
n

dk'-
x n', b, y(io„,k')

2~ '

+ (n."+ n'. g, sgn~„)a(~„)
2cr'. giA ci'.gi~~n~ &

b
vr vp

(D2)

(C22)

The efFective action (C15) has essentially the saine form
as (85) except for a wave function renormalization factor
Z and a new type term, g~, in the off-diagonal matrix
elements. However, this new type term is irrelevant since
it can only generate a (rim ) term in physical quantities
such as free energy. At this point, it is clear that includ-
ing the marginal particle-hole symmetry breaking terms
with the coefBcients V and o. V only slightly renormal-
izes the coefficients in the efFective Hamiltonian (44), so
will only renormalize the two energy scales, the Kondo
temperature T~ and the crossover temperature T .

APPENDIX D: CONTRIBUTION
OF THE MARGINAL OPERATORS (55)

TO THE STAGGERED SUSCEPTIBILITY

The staggered susceptibility is obtained by calculating
the second-order perturbation of S,t g,

1
X. = —

~h,
— ( ~ - ~ -)Oh~ 2

where the average is weighted by an action consisting
of the &ee and decoupled extended Grassmann variables
a,y, b, f, and the effective local action (85). The first
term in (D2) is a potential scattering term and does not
mix with the other terms of S,t I in the second-order
perturbation. It thus gives a Rnite contribution to the
staggered susceptibility and can be treated separately.
Carrying out the calculation for (D3), we find that the
singular part of the staggered susceptibility is

2 ( 2n', l 1
~
n, + 'giA

~

—) isgn(u (b(—(u )b(ur )).v~(' 7r ) P

In this appendix, we show that the contributions to the
staggered susceptibility from the marginal operators (55)
are negligible.

The marginal operators (55) have the following corre-
sponding terms in the action:

dk
8,', = 2ih, ) —a,t(—~„,k)2~ '

n

f
dk'

x n', b, f(~„,k') + n", a((u„)
2~ '

Combining the last expression with the staggered Geld
coupling term in (70) and inserting the transforma-
tion (77), we can write the complete staggered field cou-
pling terms in the following form:

The propagator is given by, from (85),

(D4)

(b(—tu )b(w )) = i sgnw— , (D5)
Zs(~~ ~+&z)

where we have taken 2v~go T~ in the numerator of
(D5) for simplicity. The singularity of the staggered
susceptibility comes &om the fact that at the critical
point, T, = 0, (b(—u )b(io )) I/(iw ) which gives rise
to a logarithmic singularity in the Matsubara &equency
summation in (D4). From (D4), we see that the only
effect of the marginal operators (55) is to shift o., to
n, + 2n', giA/7r. Actually, one should be able to see this
result from (D2) without doing calculation.
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