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We investigate by Monte Carlo simulations the diffusion of ions in ordered and structurally disordered
lattices, where the Coulomb interaction between the mobile ions is explicitly taken into account. Results
for tracer diffusion, conductivity, the diffusion-induced spin-lattice relaxation rate, and the incoherent
intermediate scattering function are discussed in detail. It is shown that the presence of both disorder
and Coulomb interactions leads to the typical deviations from the standard behavior of the relevant
transport quantities (non-BPP, where BPP indicates Bloembergen, Purcell, and Pound behavior of the
spin-lattice relaxation rate, strong dispersion of the conductivity, nonexponential decay of relaxation
functions, etc.) that are experimentally observed in a wide class of ion-conducting materials.

I. INTRODUCTION

The low-frequency dynamic response of many nonme-
tallic materials is governed by the transport of mobile
ions or other charged mobile defects. The classes of such
materials include traditional ionic glasses, polymeric and
glassy superionic conductors, highly defected crystals, or
even highly viscous liquids such as glass-forming melts.
To get an understanding of the microscopic transport
mechanism in these materials, a large number of experi-
mental techniques has been applied; among them are
tracer  experiments,!  conductivity = measurements
(modulus spectroscopy),?™* nuclear spin-lattice relaxa-
tion, 7 quasielastic neutron scattering,®° internal fric-
tion, and ultrasonic absorption measurements (Brillouin
scattering).'®!! In all these experiments the measured
quantities show characteristic deviations from the stan-
dard behavior that one would expect for a purely random
motion of the mobile ions.

For example, the dynamic conductivity &(w) in ioni-
cally conducting solids exhibits, for fixed temperature T,
a dc plateau at low frequencies (below some crossover fre-
quency 1/7,), and follows an approximate power-law
behavior at larger frequencies, 12

Oy OT,<<1,
0(w)~ (1)

. n
(iw) 7, or,>1.

The dispersive regime (w7, >>1) usually continues up to
phonon frequencies and the exponent n, >0 tends to in-
crease on lowering the temperature. From standard
random-walk theory, one would expect no dispersion to
occur, i.e., n, =0 (see Sec. II B). In both the dc and the
dispersive regimes, & () is thermally activated, where the
activation energy E{ for the dc conductivity is always
larger than the apparent activation energy EJ in the
dispersive regime, E{ >EJ. The crossover frequency
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7, 1, which separates the two regimes, is also thermally
activated with an activation energy E, approximately
equal to EY. This overall behavior is not restricted to
ionically conducting solids but occurs also in disordered
electronic conductors such as amorphous semiconduc-
tors, electronic conducting polymers, and disordered po-
laronic conductors. The widespread occurrence of such
similar low-frequency dielectric behavior in all disordered
solids was pointed out by Jonscher!® and is known as the
‘““universal dielectric response.”

Apart from dielectric measurements, perhaps the most
common experimental technique to probe ionic motion in
disordered media is nuclear magnetic resonance (NMR).
The behavior of the diffusion-induced spin-lattice relaxa-
tion rate 1/T,(w, T), as a function of temperature T and
Larmor frequency o, can be summarized as follows:

I exp(EYMR ko T), T>>T, . (o),
7@, -2 NMR
T] w NMR exp( _E2 /kBT), T<<Tmax(w)’

(2)

with an exponent nyyg =0. In an Arrhenius plot, 1/T,
shows a maximum at 1/7,,(w), where the temperature
T ax(@) decreases with decreasing frequency. Since gen-
erally EYMR > EIMR the curve is asymmetric in shape.
For fixed temperature 7, 1/T,(w,T) is constant at low
frequencies ® <<1/7yr and decreases as o MR ? for
©>>1/7ymr- The NMR correlation time 7yygr is con-
siderably larger than the inverse hopping rate of the
mobile ions.' In contrast to this overall behavior, the
standard Bloembergen-Purcell-Pound (BPP) theory!® pre-
dicts a symmetric maximum of 1/7T; in the Arrhenius
plot with nyyr =0 and a NMR crossover time myyyr of
the order of the inverse hopping rate (see Sec. II D).
Dynamic scattering of neutrons is a much more exten-
sive technique to investigate the ionic transport. In many
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structurally disordered ionic conductors broad quasielas-
tic components in the scattering spectra are observed.
The line shapes of these components often deviate from
simple Lorentzians, which are expected in the simple
random-walk case (see Sec. II C). A similar behavior has
been found in mechanical loss spectroscopy.!®!! The
spectra are usually much broader than simple Debye
spectra, reflecting an inherent nonexponential nature of
the ionic relaxation processes.

From a theoretical point of view, the ionic transport in
solids is a very complex phenomenon and rigorous solu-
tions are not available. For an ordered host lattice a
mode-coupling theory has been developed to study the
effect of long-range Coulomb interactions between the
mobile ions, !® but is has turned out recently that the dis-
order also plays an essential role in describing the experi-
mental situation properly.!”!® A rigorous solution of
this complex problem is impossible to obtain, and various
phenomenological and semimicroscopic approaches have
been successfully applied. Prominent examples are the
coupling scheme proposed by Ngai, ! the jump relaxation
model pioneered by Funke,® and the diffusion-controlled
relaxation model elaborated by Elliott and Owens.?’ At-
tempts have been made to map the dynamics of the
many-body problem onto the dynamics of a single parti-
cle moving in a complex energy landscape.?! =23

For a more microscopic description of the ionic trans-
port one is dependent upon numerical investigations. In
this paper we summarize the results of a detailed Monte
Carlo study of a simple lattice-gas model by which the
effect of both long-range Coulomb interactions between
the mobile ions and structural disorder in the host lattice
is investigated in a systematic way. In contrast to other
methods (e.g., molecular-dynamic simulation), the Monte
Carlo method is not restricted to the short-time regime of
the ion dynamics and can explore the behavior of the
basic quantities for the relevant time and frequency
scales.

The paper extends earlier wor and is organized as
follows. In Sec. II we define the basic quantities that we
will investigate and discuss their standard behavior, as-
suming that each mobile particle performs a simple ran-
dom walk and does not interact with the other mobile
particles. In Sec. III we present the Coulomb lattice-gas
model and explain the simulation technique. In Sec. IV
we discuss the numerical results. Section V finally con-
cludes the paper with a brief summary and discussion.

k17,18

II. BASIC QUANTITIES

In this section we discuss the standard behavior of the
basic quantities of interest. We assume that the mobile
particles do not interfere with each other and perform
simple random walks on a d-dimensional (cubic) lattice
with lattice constant a. The lattice has length L and the
particle density is p=N/L 4 where N is the number of
particles. We assume that the particles perform thermal-
ly activated hops among nearest-neighbor sites of the lat-
tice. The mean residence time 7, between two jumps of a
particle is To=7_exp(Vy/kyT), where 7, is a rattling
time and V), is the structural energy barrier between two
nearest-neighboring lattice sites.
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A. Tracer diffusion

The tracer diffusion coefficient D is related to the long-
time limit of the mean square displacement {72%(¢)) of a
tracer particle, D =lim,_, ., {r*(¢)) /2dt. Experimentally,
D can be obtained from the concentration profile of ra-
dioactive tracers introduced into the material under in-
vestigation.

It is convenient to define a generalized frequency-
dependent tracer diffusion coefficient D (w) by

2
—_ L .. © (.2 iot —et
Dlw)=—27 lim [ “(r¥0)e' ~<dr 3)

which for v —0 approaches D.

If the particles perform simple random walks, subse-
quent jumps of a tracer particle are uncorrelated and the
mean square displacement increases linearly with time ac-
cording to Ficks law, (rXt))=a%/7, vyielding
D(w)=D=a?/2d 1, independent of frequency. If the
particle hops are correlated, {r%(t)) only increases
linearly for very small and very large times, and one can
define a tracer correlation factor f,, as the ratio of the
long-time diffusion coefficient D and the short-time
diffusion coefficient Dgr by f,, =D /Dgr. The deviation
of f,, from unity can be regarded as a measure of the
strength of the correlations. If a particle prefers to jump
back to the site where it came from (backward correla-
tions) f, < 1; if it prefers to jump forward (forward corre-
lations), we have f,. > 1.

B. Dynamic conductivity

The dynamic conductivity &(w) describes the linear
response of the current density to an external electric
field and it is related to the autocorrelation function
(j(2)-j(0)) of the current density in the absence of the
electric field (Kubo formula?*):

d
6lw)=

L . TN, ot —et
dkBTi‘f’lofo (o-jo)Ye ™~ . @
The brackets ( ) denote a thermal average and the
current density is given by the sum over the particle ve-
locities, j(z)=(ep/N)3N_,v,(t), where e is the charge of
the particles. (For noninteracting particles the charge e
means only a formal coupling to the external electric
field.) Separating the velocity autocorrelation function

(vi(£)v;(0)) =(v(2)-v(0))

from the cross-correlation part in the autocorrelation
function of the current density, we can write

2
<j(z)-j(0)>=BL% (v(2)-v(0))

1

N

N

2 <vl(t).vj(0)) . (5)
i#j

In the absence of mutual interactions between the mobile
particles, (v,(z)-v;(0)) =0 for i#j and & () is simply re-
lated to D (w) via the Nernst-Einstein relation
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6(w)= pe? Hlw) ©) tic time T,. The spin-lattice relaxation rate 1/T, de-
@ kT @ pends on both the magnitude of the field H and the tem-

For the simple random-walk case, this
8(w)=peZa?/2dky Tt,independent of w.

For interacting particles the cross correlations do not
vanish and Eq. (6) is no longer valid. We define a gen-

eralized frequency-dependent Haven ratio A r(@) by

yields

2 Plw
—pe” D)
Ay (0) T o(o) (N

which is a measure of the strength of the cross correla-
tions at frequency w. For frequencies w larger than the
hopping rate the cross correlations vanish even if the par-
ticles interact and H r(w) approaches 1. In the limit
0—0, B r(w) approaches the ordinary Haven ratio
Hy=pe’D /kyTo 4.

C. Probability distribution and incoherent neutron scattering

For a more detailed description of the diffusion pro-
cess, one considers the distribution function P(r,t?),
which denotes the probability for an ion to be on a (lat-
tice) site r at time ¢, if it started at ¢t =0 from site 0. The
Fourier transform of P(r,t) is the incoherent structure
factor S;,.(k,»),

=1 —i(kr—w
Sinc(k,0)=>— [ dr [ dt P(r,n)e "

:-1_ . ot
= 21detSmc(k,t)e , (8)

which contributes to the differential cross section ob-
tained in scattering experiments.

For simple random walks on a Bravais lattice, the in-
termediate scattering function S, .(k,?) decays exponen-
tially,

—A(k)lt—|

To

Sinc(k,t)=exp 9)

with A(k)=T34[1— cos(dk)]/v, where the sum runs over
all nearest-neighbor vectors d and v is the number of
nearest neighbors. Accordingly, S;,.(k,») is a simple
Lorentzian with width A(k)/7,.

For t/ry>>r/a, P(r,t) is a Gaussian with width
R()=(r¥1))'7,

d d/Zex
(1) P

P(r,t)=
27R?

(10)

___ar?
2RY1) |

D. Spin-lattice relaxation

In an external static magnetic field H, the alignment of
the nuclear magnetic moments of the mobile ions gives
rise to a total magnetization in the direction of the ap-
plied field. By a radio-frequency pulse perpendicular to
the static field this magnetization can be rotated into the
opposite direction. Fluctuating local magnetic and elec-
tric fields cause the magnetization to relax into the origi-
nal direction parallel to the static field H in a characteris-

perature 7.

In the case of ionic conductors mainly two mechanisms
give rise to the fluctuating local fields:

(i) the magnetic dipole-dipole interaction between the
mobile particles;

(ii) the interaction of the nuclear quadrupolar moment
of one particle with the electric field gradient of another
particle (as long as the ions have nuclear spin larger than
1 and the quadrupole moment of the nucleus does not
vanish).

According to the standard theory,zs'26 1/T, is deter-
mined by the spectral densities J () and J?(w),

71—=C[J“)(co)+J(2)(2w)] , (11)
1

where w=vyH is the Larmor frequency. The spectral
densities are the Fourier transforms of the NMR correla-
tion functions G (9(z),

JY)= [T GPveietdt, q=1,2. (12)

In both cases (i) and (ii) the correlation functions G '?(¢)
can be written as?®

N
G=-L 3 (F*FP0) (13)
N i#j

where
Fi(jq)(t)=q(81'r/15)VZY%[Qij(t)]/r'i'(t)

is the local field between the particles i and j. Y9 are the
spherical harmonics, and (;; and r; are the spherical
coordinates of the vector r;; pointing from particle i to
particle j, with respect to the magnetic field. The con-
stant C in (11) depends on the nuclear properties of the
mobile particles, C = %y“hzl (I +1)in case (i) and

C=3(e2Q/HP(I+1)/[1(2I —1)]?

in case (ii). Here y is the gyromagnetic ratio, I the spin,
and Q the quadrupolar moment of/the nucleus.
—t/T
The ansatz G'9(t)=G'?(0)e ' °, commonly referred
to as the BPP ansatz, leads to
To 41,
1+ 2wy

1
——=CG"(0) +
T, 1+ (w7)?

where we have used G?(0)=4G1(0), valid for an iso-
tropic distribution of the ions.?’ In an Arrhenius plot of
In1/T, versus inverse temperature, the curve is sym-
metric in shape with activation energies equal to ¥V, and
— ¥V, on the high- and low-temperature sides of the 1/T,
maximum, which occurs at wry=1. At the low-
temperature side (w7,>>1),1/T, decreases as w 2
=(yH)~? with increasing field H.

In the Appendix we show that for simple random
walks the asymptotic decay of G'9(t) is algebraic rather
than exponential. However, for Eq. (14) to be approxi-
mately valid it is sufficient that the correlation functions
decay linearly with ¢ for small times and faster than 1/¢

, (14)
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for large times. Since both conditions are satisfied in the
simple random-walk case (for d =3), the deviations from
the exponential decay do not lead to pronounced changes
of the standard behavior of 1/7T;, Eq. (14).

III. MODEL AND NUMERICAL TECHNIQUE

As discussed in the Introduction, in most cases strong
deviations from the standard behavior are experimentally
observed. We will show below that, for a more realistic
description of the ionic transport that goes beyond the
simple random-walk case, one has to take into account at
least (a) the Coulomb interaction between the mobile
charge carriers and (b) the structural disorder of the host
system. The influence of the immobile counterions on the
ionic transport is not studied explicitly.?’” To ensure the
charge neutrality of the whole system we treat the coun-
terions as a smeared, spatially homogeneous charge dis-
tribution.

To model the structural disorder in the host lattice in a
most simple way we assume that only a fraction p of lat-
tice sites is accessible for the mobile ions; the rest of the
sites are blocked. This model is known as the site per-
colation model.?® For p well above the percolation
threshold p (p, ==0.312 for the sc lattice), most of the ac-
cessible sites belong to the “infinite percolation cluster”
(IPC), which connects opposite sides of the lattice. We
disregard the small finite clusters of accessible sites in the
system and consider as our model for structural disorder
only the IPC, where all mobile ions exhibit long-range
mobility. This disordered structure of accessible sites is
reminiscent of a “connective tissue” or a “crumpled
handkerchief,” which has been suggested to model
diffusion paths in ionic glasses.?® Figure 1 shows a two-

FIG. 1. Two-dimensional illustration of the disordered sub-
strate with p =0.65,L =50,p0=0.05, and I'=40. Blocked sites
are black and available sites white. Open circles symbolize the
particles.
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dimensional illustration of the model system.

In the detailed numerical procedure we choose a sim-
ple cubic lattice of length L with lattice constant @ and
use periodic boundary conditions. A fraction 1—p
(p >p,.) of the lattice sites is randomly blocked and the
IPC is determined with the help of the Hoshen-
Kopelmann algorithm.3® Then the sites of the IPC are
randomly occupied by N =pL* mobile ions with charge
e, where p is the ion density. Double occupancy of sites
is forbidden. The strength of the Coulomb interaction
relative to the thermal energy kz7T is conveniently
characterized by the plasma parameter I'=e?/(r;kpT),
where 47r}=p~!. The strength relative to the structural
potential barrier ¥V, is n=e2/(r,V,).

To model the diffusion process we use a standard
Monte Carlo algorithm. In each elementary step of the
simulation, an ion is chosen randomly, and a nearest-
neighbor site is also chosen, to which the ion attempts to
jump. If the neighboring site is blocked or occupied by
another ion, the jump is rejected. If the neighboring site
is vacant, the ion jumps to it with probability w =1, if the
change AE in energy of the ionic subsystem caused by the
jump is negative. If AE > 0, the ion jumps with probabili-
ty w =exp(—AE /kgT). The transition energy AE for a
jump trial of particle i at position r; to a vacant nearest-
neighbor site at position r; +u is given by

1 1
Ir,-+u~rj+Ln| Ir,-—rj+Ln] ?

AE=e22 >,

j#Fi n
(15)

where the inner sum runs over all triples n=(n,n,,ns3)
of whole numbers and refers to the image charges caused
by the periodic boundary conditions. This inner sum is
conditionally convergent and can be calculated by using
Ewald’s method.?! To save computing time the sum is
evaluated before the simulation and stored for all possible
pair vectors r;=r;—r; and jump directions u. After
each elementary step, the time ¢ is incremented by 7,/N,
where 7p=7_exp(V,/kpT) is the mean residence time
between two jumps of an ion in the absence of Coulomb
interactions and structural disorder (see Sec. II).

The elementary simulation step is repeated again and
again, until thermal equilibrium is reached, where the to-
tal energy of the ionic subsystem fluctuates around a con-
stant mean value. After thermalization the quantities of
interest are determined.

To obtain the mean square displacement {r2(t)), all
particle positions r;(0) are stored at time ¢t =0 after
thermalization. At time ¢, the particles are at positions
r;(¢#), and the mean square displacement is calculated
from

N
(r¥1))=(1/N) 3 [r;(1)—1;(0)]*.

i=1

To obtain the NMR correlation functions G'9(z), the
magnetic field H is aligned along the z direction and all
pair vectors r;;(0) are stored at time 7=0 using the
minimum image convention.3! At time ¢ these pair vec-
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tors are r;;(¢) and the G'9(t) are calculated according to
Eq. (13).

The frequency-dependent conductivity is determined
by the current response to a (small) external sinusoidal
electric field E (t)=E sin(wt) aligned in the x direction.
The effect of the field is taken into account by the way the
neighboring site is chosen to which an ion attempts to
jump (see above). In the absence of the electric field, the
six nearest-neighbor sites are equivalent and are chosen
with equal probability +. In the presence of the field, the
sites in the *x direction are chosen with probability
[1+e(t)]/6, where e(t)=eE(t)a/2kyT <<1. The result-
ing current density J(¢) in the x direction is determined
by counting the number N , (¢) and N _(¢) of jumps in the
+x and —x direction in a small time interval
t—At/2<t<t+At/2, where At <<27w/w. The mean
values of N, (¢) and N _(t), averaged over several sam-
ples, determine the mean current density

J(t)=ea[{N_(t))—{(N_())]/L?
and, since J (¢) can be written as
J(t)=o0'(w)Esin(wt)— o' (0)E, cos(wt) ,

the real and imaginary parts ¢’'(w) and o’ (w) of the
frequency-dependent conductivity.

In order to improve the statistics, the results are finally
averaged over typically 100 thermalized configurations.

IV. NUMERICAL RESULTS

Most of our numerical simulations have been per-
formed for a simple cubic lattice of length L =39a, fixed
ion density p=10"2/a%, and fixed n=e2/(r,V,)=5,
which defines our set of standard parameters. To investi-
gate the effect of disorder, we compare results for the or-
dered lattice (p =1) with those for the disordered sub-
strate (p =0.4). The strength of the Coulomb interac-
tions, represented by the plasma parameter I', is varied
by changing the temperature.

Figures 2(a) and 2(b) show the time-dependent diffusion
coefficient D (t)=(r%(t)) /2dt in units of Dy =a?/2d 1, as
a function of ¢ /7, for I'=0, 40, and 80 in (a) the ordered
lattice (p =1) and (b) the disordered system (p =0.4).
For t /7y<<1,{r?(t)) is proportional to the total number
of successful hops, which increases linearly with time and
therefore D(¢t) is constant, D(¢t)=Dgr. For
t/79>1,D(t) decreases with time ¢ and finally ap-
proaches D,. In the ordered system, the decrease of
D (t) is comparatively weak, even at large plasma param-
eters I' (low temperatures), while in the disordered sys-
tem, D (t) decreases over several orders of magnitude for
large I'. This behavior is reflected in the temperature
dependence of the tracer correlation factor
fu(T)=D /Dgr shown in Fig. 2(c). In both the ordered
and the disordered systems, f,, is thermally activated,

ftr(r)=f"(0)exp('—AEf/kBT) N

but the activation energy AE[, being the difference be-
tween the activation energies for the long- and short-time
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diffusion coefficients, is much larger in the disordered sys-
tem (AEf=0.05e2/rs =0.27¥,) than in the ordered one
(AEf=0.01e2/rs =0.06V,). We conclude that, in order
to obtain strong dispersion in the diffusive transport, we
need both Coulomb interactions and structural disorder.
In the following we will concentrate on this relevant case
only and consider the curves shown in Fig. 2(b) in more
detail.

For I'>220, an intermediate time regime f, <t <t,
occurs, where D(t) shows approximate power-law
behavior,

100

1 [5000ccosae. . TUAAAAAAAAAAAAAAAAN
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1
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FIG. 2. Plot of (a) D(t) in the ordered lattice for '=0 (0),
40 (A), and 80 (), (b) D (¢) in the disordered system for T=0
(@), 40 (A), and 80 (#), and (c) the tracer correlation factor as
a function of the plasma parameter I' in the ordered lattice (O1)
and in the disordered system (M). The full lines in (a) and (b)
are least-square fits according to (17).
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D(t)~t P, t,<t<t,. (16)

This time regime can be easily identified by drawing a
straight line through the data points in the log-log plot.
The upper crossover time ¢, and the exponent nj, in-
crease with increasing I' (decreasing temperature), while
the lower crossover time ¢, is approximately independent
of T' and of the order of the inverse hopping rate
a?/6Dgr. The whole time dependence of D(t) can be

well described by the formula
—p
1+--

4

D()=D_+(Dg—D,) : 17

which has been suggested earlier by Funke on the basis of
his jump relaxation model.®

Since the crossover regimes and the power-law regime
are not fully separated except at very large plasma pa-
rameters, the exponent 7, differs from the exponent nj
obtained from the ‘“by hand” procedure. This is shown
in Fig. 3, where #i, and nj are shown as functions of I'.
Both exponents increase with increasing I', but the
dependence of np on I is more pronounced. At large
plasma parameters where ¢, >>t,, the two exponents be-
come the same.

From the Nernst-Einstein relation (6) we expect that
the power-law behavior of D(t) at intermediate time
scales is reflected in a power-law behavior of &(w) at
intermediate-frequency scales, 1/t, <w <1/t,. To deter-
mine &(w) we have studied the current response to an
external electric field E(z)=E sin(wt) as described in
Sec. III. Figure 4 shows, as an example, the current den-
sity J(¢) in units of Jo=e2E,/2kyTaT, as a function of
ot for I'=40 and various frequencies in the three
different frequency regimes (see Fig. 5) (a) the dc regime,
(b) the dispersive regime, and (c) the high-frequency pla-
teau. In both the dc and the high-frequency regimes
J(wt) does not change with frequency and there is no
phase shift between the currents and the electric field. In
the dispersive regime the amplitudes increase with fre-
quency and the currents run ahead of the electric field.

Figure 5 shows the real and imaginary parts o'(w) and
o”(w) of the conductivity &(w) in units of
oo=e%/2kgTat, as a function of wr, for (a) =0, (b)

0.7

0.6

0.5

0.4 1 1 1 1 ]
20 30 40 50 60 70 80

r

FIG. 3. Exponents np(0) and 7, (M) as a function of T for
p =0.4. The full lines are guides for the eye.
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I'=40, and (c) I'=80. For comparison we show also the
real and imaginary parts of & p(w)=pe?D(w)/kyT (full
lines in the figure), which one obtains for the complex
conductivity when neglecting the cross correlations in the
autocorrelation function of the current density in Eq. (5).
The frequency-dependent tracer diffusion coefficient
D(w) is obtained numerically by a Laplace transform of
(r¥(t)) [see Eq. (3)]. Since o”(w)=0, we have plotted
—0"(w) in the figure. For I'=0, é(w) and & ,(w) coin-
cide, since in this case the cross correlations practically
vanish (the effect of the hard-core interaction between the
mobile ions can be neglected since p=0.01/a3 is very
small). For '=40 and 80, &(w) and & p(w) are equal at

units of

FIG. 4. Plot of the current density J(z) in
Jo=e2E,/2ky Tat, as a function of time for ' =40,p =0.4, and
different frequencies in (a) the dc regime for w7,=1.3X107°
(M), 3.2X107° (@), and 5.0X107° (A), (b) the dispersive re-
gime for wT,=1.0X1073 (0), 4.0X 1073 (@), 1.0X 1072 (O0),
4.0X1072 (M), and 1.0X10™! (A), and (c) the high-frequency
plateau for w7o=4(0), 5 (@), 6.3 (), 8.9 (M), and 10 (A).
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high frequencies, but deviate at lower frequencies.
Despite this, the overall behavior is quite similar. Both
o'(w) and o (w) exhibit a dc plateau at low frequencies
®<<1/t, and approach o, =pe?Dg¢r/kyT at high fre-
quencies w>>1/t;. In between they can be approximate-
ly described by

() ~(01))"°, To/t, <<wTy<<Ty/t, , (18)

where n,=np. The crossover time f, can now be
identified with the conductivity relaxation time 7, defined
in Eq. (1). At very high frequencies the conductivity be-
comes constant again. However, at very large frequen-
cies dynamical processes (vibrations of ions and coun-
terions, etc.) not included in the lattice-gas model become
dominant (see also Ref. 32) and the high-frequency pla-
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FIG. 5. Real (O) and imaginary parts ( A) of the conductivi-
ty for (a) I'=0, (b) =40, and (c) I'=80. The full lines are ex-
plained in the text.
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teau is difficult to detect experimentally (an exception is
presented in Ref. 2).

The imaginary parts ¢'(w) and op(w) show a
minimum near w7y~ 10", where the phase shift between
current and electric field is maximal. On the high-
frequency side of the minimum, both curves become
equal and decrease rapidly to zero. At the low-frequency
side both curves show approximate power-law behavior,
o"(@)~0op(@)~(w7y)"°.

Since 7,=t, is the typical time scale for the conduc-
tivity relaxation, it is tempting to try if &(w, T') can be de-
scribed by the scaling ansatz

&(w,T)

92 = flor,) , (19)
50.7) floT,)

where f(x)=1 for x <<1 and f(x)~(ix)n" for x >>1 (the
high-frequency plateau, which is seldom seen in experi-
ments, is not of interest here). Figure 6 shows o'(w) as a
function of w7, for various plasma parameters I'. The
absence of a data collapse in Fig. 6 indicates that 6(w)
obeys no simple scaling behavior. The inset of Fig. 6
demonstrates the absence of scaling also for the related
quantity D'(w). The reason for the absence of scaling is
that the exponent n, (np) increases with decreasing tem-
perature (see Fig. 3), and therefore the temperature
dependence of o cannot be described by changing the fre-
quency scale alone.

For a quantitative analysis of the cross correlations we
have determined the generalized frequency-dependent
Haven ratio A r (@) [see Eq. (7)]. Figure 7 shows the real
and imaginary parts of Hgp(w)=Hy(w)+iHR(w) as
a function of -wry, for I'=0, 40, and 80. For
=0, A r(@)=1, since the cross correlations vanish. For
I’'=40 and 80, Hy(w) runs through a flat minimum near
©Ty~107? and finally approaches the ordinary Haven ra-
tio Hp ~0.8 when @ moves into the dc regime. The
imaginary part Hg(w) vanishes for large and small fre-
quencies where the current is in phase with the applied

T TTTT T T TTTTI T TTTTIm T

A
CLL1Lill IR L1 L1 1]

10”1 101

FIG. 6. Scale plot of o(w)/c(0) versus w7, for p =0.4. The
symbols refer to different plasma parameters I'=10 (0 ), 20 (@),
30 (O), 40 (M), 50 (A), and 60 (A). The inset shows
D (w)/D(0) as a function of w7y, for the same values of T".
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FIG. 7. Real (upper curves) and imaginary part (lower
curves) of the generalized Haven ratio as a function of frequen-
cy. Different symbols refer to different plasma parameters,
I'=0(0),40 (), and 80 (A).

electric field, and goes through a flat maximum near
oTy=~107L It is significant that the Haven ratio depends
only weakly on @ or I'. In contrast, as is demonstrated in
Fig. 8 for =0 and I"' =30, the Haven ratio depends con-
siderably on the amount of disorder in the system, rang-
ing from 1 at p =1 to much higher values (around 0.8) at
the percolation threshold (p =0.312), where the disorder
is at its maximum. The increase of Hy with increasing
disorder can be understood as follows: The blocked sites
hinder the surrounding particles of the tracer particle
from following it, and hence the cross correlations are di-
minished as the number of blocked sites is increased.
Since the cross correlations do not strongly affect the
overall behavior of o(w) one can hope to understand the
origin of the strong conductivity dispersion from the
behavior of the time-dependent tracer diffusion
coefficient. Indeed, to map the complex dynamics of the
many-particle system to an effective dynamics of a one-
particle system, it has been suggested that the mutual in-
teractions between the ions can be described by an
effective distribution ¢(7) of waiting times 7, between
successive jumps of a tracer particle. This continuous-
time random-walk (CTRW) model (see, e.g., Ref. 33) was
proposed by Scher and Lax to describe the dielectric

0.9 —T T T T T L
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FIG. 8. Haven ratio as a function of the disorder parameter p
for =0 and I"'=30.
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response of amorphous semiconductors.

To test if the CTRW model applies here, we have
determined the number N(7,) of waiting times 7 be-
tween two successive jumps of a tracer particle, which lie
in the interval 7,—A7y, <7, <7, +A7,. The waiting-
time distribution (7,) is related to N(r,) by
P(ry,)= AN (1y,)/2A71,, where the prefactor 4 follows
from the normalization condition, f o dru(ry)=1. Fig-
ure 9 shows ¥(1y,) times 7, as a function of 7, /7, for vari-
ous plasma parameters I'. For all values of T,
To¥(1,)=10""1 is approximately constant for 7,/7,<1
and decreases rapidly for 7,,/7,>10. As one would ex-
pect, the decrease is weaker for larger I', but no
significant change of ¥(7) occurs if I is increased.

The one-sided Fourier transform of the waiting-time
distribution () is (within the CTRW model) related to
the frequency-dependent diffusion coefficient ﬁw(cu) by3*
a? iof(w)

6 1—w)
In Fig. 10 we compare Dy (w)/D, [obtained from (20)]
with the correct D'(w)/D, [obtained from (3)] for I" =80.
The two curves are completely different: In contrast to
D'(w), Dy (@) shows only a very little dispersion. The
low-frequency limit of Dy () is the same as the high-
frequency limit of D'(w).

These deviations show clearly the principal difficulties
of the CTRW model (see also Ref. 35). If the initial wait-
ing time 79, that the tracer particle needs for the first
jump is chosen according to the proper stationary distri-
bution,

dolra)= [ “drapiry 7,/ [ Td, [ Tdrag+,)

D (w) shows no dispersion at all, D(w)=Dygr just as in
the simple random-walk case. The larger value of D, at
high frequencies is an artifact of the CTRW model and
results from the fact that the initial time 79, is assumed to
be distributed according to ¢ rather than to the station-
ary distribution.

Since the time inhomogeneities in the tracer motion

b (0)= (20)

100 =
1071
1072
1073

Lo 1074
10°5
1076 |
1077
1078

UBRBLRALIL

LBLLRALLL T TTITHR

FIG. 9. Plot of the distribution function of the waiting time
7, between successive jumps as a function of 7, /7, for different
plasma parameters I'=10 (0 ), 20 (@), 30 (M), 40 (W), 50 (A),
60 (A ), 70 (), and 80 (#).
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FIG. 10. Comparison of the real part of the diffusion
coefficient Dy, (w)/D, [obtained from the approximation (22)]
(0) and the correct D'(w)/D, [obtained from (3)] (@) for
'=80.

cannot be responsible for the dispersion, we now study
spatial correlations in the tracer trajectory. We consider
the mean square displacement {r*(Ny,,)) as a function
of the number of performed hops Ny, which is shown in
Fig. 11 for various plasma parameters I'. At Ny, =1,
(r*(Nyop)) /a*=1 for all T since a tracer particle has
moved the distance a after the first jump. At small plas-
ma parameters, {7%(N hop )) increases monotonically with
Nyop- At larger values of I'(I" 220), a striking alterna-
tion of (ri(N hop)) for even and odd Ny, begins to
emerge for 1<Ny,, <N ;%,)p, which becomes more pro-
nounced at larger I'. The upper crossover number N ﬁ,zo)p
increases with increasing I' and is of the order of the
product of the jump rate 6Dgy /a? and the crossover time
t, =T, Nﬁ,)p26DSTt2 /a’. For even values of Niops
(ri(N, hop) ) shows approximate power-law behavior,

(r(2Npop)) ~(2Npop ), 1< Ny, <NZL 1)

where k =1—np=1—n_, is the exponent expected from
the behavior of (r(z)), if ¢ is simply replaced by the
average time 2Nhopa2/6DST after 2N;,, jumps of the
tracer particle,

102 4
"o 10t
[e)
L
Z
@ 100
10"1 U 11 1L L NN
100 10t 102 103

Nhop

FIG. 11. Mean-square displacement {r*(Ny,,)) as a function
of the number of performed hops Ny, for different plasma pa-
rameters I'.

(r¥(2Npop) ) = (r¥(t =2Npopa®/6Dgr)) .

The striking alternation of (rz(Nhop)) is caused by
strong forward-backward correlations in the tracer
motion, which occur on length scales of the order of the
lattice constant a. Before its first jump the tracer ion
finds itself in a deep energy minimum, which is created by
the surrounding ions. After its first jump the ion is in an
energetically unfavorable situation and has a large ten-
dency to jump back to the original site. Thus

(ri(Npop=2)) <{ri(Nyop, =1))=a?.

Repetition of these forward-backward jumps leads to the
alternating behavior of (r%(Ny,,)). Sometimes it hap-
pens that an energetically unfavorable position is stabi-
lized by jump relaxation processes of the surrounding
ions. This causes {7%(Ny,,)) to increase slightly, but the
increase is much weaker than in the absence of the
forward-backward correlations. The presence of disorder
is important for the forward-backward correlations to
arise because the surrounding ions cannot follow the
tracer ion without making detours, which delays the local
relaxation process considerably. A similar suppression of
the mobility of the surrounding ion cloud can be expected
to occur in ordered lattices by a complex lattice structure
with several sites per unit cell, as, for example, in the
crystalline superionic conductor RbAg,Is. In ordered
Bravais lattices, the surrounding ions can easily stabilize
the position of the tracer ion and the forward-backward
correlations are very small. The forward-backward
correlations dominate the overall behavior on the length
scale of the lattice constant. When (r*(Ny,))'? has
reached a few lattice constants at Ny, >N ﬁfp, the effect
ceases to be dominant and the dispersion becomes consid-
erably weaker.

In order to understand why the even values of Ny, be-
tween 1 and N Lf,)p determine the behavior of {r%(¢)) be-
tween t,~a?/6Dgr and t,~N{2a’/6Dgr, one must be
aware that for a fixed time ¢ the probability that the
tracer ion has performed an even number of jumps is
much larger than the probability that it has performed an
odd number of jumps. After an odd number of jumps the
tracer ion mostly finds itself in an energetically unfavor-
able position and stays there only for a short time (com-
pared to the time spent on a site after an even number of
jumps). Hence the probability that a particle has per-
formed an odd number of jumps at a given time ¢ is small,
and does not contribute to the mean square displacement
at t.

The forward-backward correlations also cause char-
acteristic changes of the distribution function P(r,t)
and its Fourier transforms. Figure 12(a) shows
log,o[P(r,t)/P(0,¢)] as a function of the scaled distance
r/R (t), where R (t)={r*(t))!/? is the root mean square
displacement, in the disordered system for I'=40 and 80
and several times ¢ in the dispersive regime. It is remark-
able that, although R (f) is small in this regime, the
curves collapse, showing that the simple scaling relation
P(r,t)/P(0,t)=f(r/R(t)) holds as in the simple
random-walk case. For I'=40 and 80, the scaling func-
tion f(x) is no longer a Gaussian, but a stretched Gauss-
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FIG. 12. Scale plot of the distribution function

logo[P(r,t)/P(0,t)] versus r/R(2) in the disordered system
(p =0.4) for (a) I'=40 and 80 and (b) I'=0. Different symbols
refer to different times. In (a) for '=40,t/7,=546 (@), 1130
(0), 2340 (M), 4830 (A), and 10000 (A), and for
I'=80,t/70=113 (@), 264 (1), 616 (M), 1440 (A), 3360 (A),
and 7850 (Q); in (b) #/7,=3231 (0), 8000 (@), 19800 (O,
49000 (M), and 121000 (A). The curve for I'=80 in (a) has
been multiplied by a factor of 2.

ian, f(x)=exp(—cx*), with u ~1.2. For =0 in con-
trast, P(r,t) shows the expected scaling behavior with a
Gaussian scaling function only at larger times [Fig.

12(b)]. It is interesting to note that the exponent u
satisfies the relation
u= 2 , (22)
1+7,

which was originally derived to describe the distribution
function of random walks on random fractal structures. 3

In order to discuss the Fourier transform of P(r,t), the
intermediate scattering function, we first remove any
artificial effects of the lattice anisotropy by averaging
Sinc(k, 1) over the angle distribution

Sk, n=(4m) 7! [dOQS,, (k,1) .

For kR (#)<<1 and R(t)<<1 it is easy to verify that

Sinc(k, 1) can be approximated by

k?R%(2)
6

Sinc(k,t)~ exp (23)

Figure 13 shows 1—S . (k,t) for k =27 /10a and T =0,
40, and 80. Quite surprisingly, the simple approximation

1-S(k,t)

10-4 [ T
1071109101 102103104105
/'ro

FIG. 13. Plot of 1—S,,.(k,t) for k =2m/10a and I'=0 (0),
40 (@), and 80 (OJ). The full lines are the approximation (23).

(23) holds in the whole decay regime, showing that the
decay changes from a simple to a stretched exponential
when I' becomes larger (see also Ref. 8).

Next we discuss the NMR correlation functions
G'9(t), g =1,2. We again compare our results for the or-
dered lattice (p =1) and the disordered substrate
(p =0.4). For sufficiently large values of I'(T'>1) the
distribution of the mobile ions is isotropic and therefore
G2(0)=4G'1(0). Numerically we find that for
I'> 10, G?(¢)=4GV(¢) is valid for all times 7, and thus

G2(t)/G20)=6"V() /G V0) .

Since the G'?(t) decay faster than 1/t for very long
times, the asymptotics is irrelevant for 1/7T (see the dis-
cussion above, Sec. II D), and the relevant decay regime
is most conveniently discussed in terms of the functions
1—G'9(¢)/G‘9(0), which are shown in Fig. 1(a) in Ref.
18. Both in the ordered lattice and the disordered sys-
tem, 1— G ‘?(¢)/G'9(0) are proportional to ¢ /7, for small
t /1o values. As in the diffusion constant, an intermediate
time regime can be well identified in the disordered sys-
tem for I" > 20, where

1—GD(1) /G D0)~ (1 /7,)  "NMR

The exponent nyug is- independent of temperature,
nymr =0.73. In the ordered lattice, the decay of the
G'9(¢) is much faster and a corresponding intermediate
time interval is hardly seen. We define 7yyg as the time
where G'?(¢) has decreased to 1/e of its initial value,
G'(rr) /G P(0)=1/e. We found that, due to strong
correlations in the ionic motion, Ty\g is more strong-
ly activated than 7y, 7ymr/7To=eXp(AEgmr/7kpT),
AEymr =Enmr — Vo > 0. The activation energy AE ymr
is smaller in the ordered lattice,

AE yr =0.04e2/r,=(0.049V,) ,
than in the disordered system,
AE g =0.09¢2/r,=(0.099V,) ,

where Typg exceeds 7¢ by more than five orders of mag-
nitude for I'=80. Closer inspection shows that, on time
scales larger than 7, G'?(¢)/G'?(0) is only a function of
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t /Tamr (independent of T'); in particular,
1—G'9(1)/G'(0) ~ (¢ /rpqg) MR

for 75/mamr <<t/Tamr <1 [see Fig. 1(b) in Ref. 18]. Ac-
cordingly, the correlation functions can be written ap-
proximately in Kohlrausch-Williams-Watts (KWW)
form,

G'9(1)=G'2(0) expl — (¢ /ranr) VR,

in the relevant decay regime.
From Eq. (11) we obtain 1/T(w,T) by Fourier trans-
formation. Figure 14 shows 1/T(w,T) as a function of
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FIG. 14. Spin-lattice relaxation rate 1/7, in units of Cr,, as
a function of V,,/kpT for =35 (a) in the ordered lattice and (b)
in the disordered system. For comparison (c) shows the case
n=35 (I’'=0) in the disordered system. Different symbols refer
to different Larmor frequencies: in (a) w7,=3X10"° (@),
9.5X107° (M), and 3X107% (A), in (b) ©7,=3X10"7 (@),
9.5X 1077 (M), and 3X107° (A), and in (c) w7, =3X107¢ (@),
9.5X107¢ (M), and 3X 1075 (A).
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Vo/kgT for n=35 and various Larmor frequencies ® in
(a) the ordered lattice, and (b) the disordered system. For
comparison, we show in (c) also the behavior of 1/T for
uncharged particles (=0, I'=0) diffusing in the disor-
dered system. Since in all cases (a)—(c) the G'?(¢) decay
faster than 1/¢ for large times, 1/7T is independent of w
at the high-temperature side of the maximum. For the
uncharged particles [Fig. 14(c)], 1/T; shows no
significant deviation from the standard BPP behavior.
For charged particles slight deviations occur in the or-
dered lattice [Fig. 14(a)], but the typical non-BPP
behavior according to Eq. (2) does not occur. The devia-
tions predominantly show up in a weak asymmetry of
1/T, near the maximum. In case (b), when both disorder
and Coulomb interactions are present, we obtain the typi-
cal non-BPP behavior: The curves are asymmetric in
shape, the maximum occurs at omyyg=1>>wT7), and

1/T, decreases as 1/T; ~ry(wr,) "™® "~ at low tempera-

tures (w>>1/mymqr). The activation energies are
EYMR=~15y, and EMR=04V, Note that
Eymr=1.45V, for m=5 (see above) and thus

Exvr ~ET™R, We conclude that, similarly to our result
for the conductivity o(w), both structural disorder and
Coulomb interactions are needed to obtain qualitative
agreement with the experimental findings. Again, we
concentrate on this relevant case only.

As a consequence of the scaling behavior of G‘?(t),
1/T(w,T) obeys the simple scaling relation [see Fig. 3(a)
in Ref. 18]

1
—]T' (0, T)= TNMRE (wTNMR) , (24)
1

with g(x)=const for x <<1 and g(x)°<anMR~2 for
x >>1. Equation (24) implies EYMR =E\\» and the re-
lation EYMR =(1—nygr )E V™R proposed by Ngai. !°

Since 1/T(w,T) shows scaling behavior in contrast to
o(w,T), it is clear that in general a simple relation be-
tween the two quantities, as suggested earlier,® does not
exist. The difference between spin-lattice relaxation and
conductivity is best demonstrated by comparison of the
exponents n, and nyyr and the crossover times 7, and
Tnwmr» Which are shown in Fig. 15 as functions of
Vo/kgT. This figure is very similar to Fig. 4 in Ref. 18,
where the data for 7, were calculated from D (w), show-
ing again the minor importance of cross terms in the
current correlation function.

As can be seen from the figure, n, is smaller
than nyyr for Vo/kzT <16 and seems to approach
nymr at lower temperatures. Only at these very low
temperatures do we expect mean-field approaches® yield-
ing n, =nyug to be applicable. From Fig. 15(b) we find
that the conductivity relaxation time 7, is less acti-
vated than the NMR relaxation time Ty\g, and therefore
TNMR/To >>1 at lower temperatures. This is in accor-
dance with very recent experimental results for
(LiCl)y 6(Li,0)0.1(B,03)1.0,>7 glassy Li,AlSi,0¢,%® and
fluorozirconate glasses.® The reason for these differences
is that, although the phenomena observed in both experi-
ments originate from the same ion transport mechanism,
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FIG. 15. (a) The exponents nyyr and n, and (b) the relaxa-
tion times Tnmr/7To and 7,/7q as a function of Vy/kyT in the
disordered system.

they are governed by different correlation functions: In
spin-lattice relaxation (SLR), the correlation functions
are determined by diffusion of ion pairs, while in conduc-
tivity the current correlation function is mainly deter-
mined by the diffusion of single ions.

Figure 15 has been obtained for “weak” disorder,
where p was considerably larger than the percolation
threshold p,=0.312. It is interesting to note that near
the percolation threshold the differences between spin-
lattice relaxation and conductivity become much more
pronounced (see also Ref. 39). Figure 16 shows
G'9(¢)/G'9(0) versus t/r, for p=0.35 0.33, and
0.312 =p,, and (a) T=10 and (b) T’'=20. When ap-
proaching p., the decay of the G'?(z) is drastically
slowed down, even for comparatively small values of the
plasma parameter, and the typical decay time Tymp
seems to diverge. Also the value of ny,g increases con-
siderably. In contrast, the intermediate-time behavior of
(r*(t)) remains nearly unchanged when approaching p,.
The reason for this spectacular behavior of G'?(t) is that
near the percolation threshold large regions of the system
are not available for the ions. These regions are
effectively oppositely charged and attract a fraction of
the mobile ions to their boundaries. Due to the strong
electric fields at the rough edges of the unavailable re-
gions these screening ions have a very small mobility and
a mutual distance that is less than the mean distance be-
tween all ions. Since in SLR short distances are weighted
highly, the fraction of screening ions contributes strongly
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and p =0.312=p, (@), 0.33 (W), and 0.35 (A).

to the SLR correlation functions and dominates their
behavior. In contrast, in the mean square displacement
the mobile ions are the dominant ones, and the formation
of ion complexes with a very small mobility leads only to
a slight reduction of the hopping rate. We suggest that
the drastic slowing down of the decay of the NMR corre-
lation functions should be looked for in highly porous
media where also an anomalous magnetic field depen-
dence of 1/T, at the high-temperature side of its max-
imum might occur.

V. CONCLUSIONS

In the present paper, we have studied a model for ionic
transport in disordered systems, which keeps the essential
physics (Coulombic interaction between the ions and
blocking effects by structural disorder) but is simple
enough to be treated numerically by Monte Carlo simula-
tion techniques. For modeling the structural disorder, we
have employed standard site percolation. We discussed
several ionic transport quantities, such as the mean
square displacement, the frequency-dependent conduc-
tivity, and the spin-lattice relaxation rate, and have
shown that both ingredients (structural disorder and
Coulomb interactions) are needed to find the typical
dispersion behavior widely observed in experiments. It is
remarkable that the simple model also shows the delicate
differences between conductivity relaxation and spin-
lattice relaxation found in recent experiments.
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While the model describes well the dispersive transport
behavior, it does not aim to explain all transport
anomalies occurring in glasses or solid electrolytes, such
as the mixed-alkali effect or the drastic increase of the dc
conductivity with the ionic content found in ionic glasses
(see, e.g., Ref. 40). For a description of these effects, the
couplings of the mobile ions to the underlying structural
network (including the background charges that here
have been considered as homogeneously distributed) must
be considered explicitly,*' ™3 which was beyond the
scope of the present work.
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APPENDIX

The NMR correlation functions G'?(¢) defined in Eq.
(13) can be expressed by the conditional probability
W (r',t|r,0) to find two marked particles at distance r’ at
time ¢, if they had the distance r at time O:

GPn)=p[ _ drdrg(r)W(r,r,0)

XF'9*(¢ ) F'9(r) , (A1)

where g(r) is the static pair correlation function. For
particles without interaction, W (r’,f|r,0) can be written
as the product of the probability P(x,?) that one of the
two particles has moved a distance x during time ¢ and
the probability P(r'—r+x,t¢) that the other particle has
moved a distance (r' —r+x), averaged over all vectors X,

W(r',tlr,0)= [dxP(r'—1+x,0)P(x,1) . (A2)

To determine the asymptotic time dependence of G ?(¢),
we use the fact that P(r,t) can be written as?®

P(r,t)~R(t)"%(r/R (1)), (A3)

where R (t)=(r2(z))!/? is the root mean square displace-
ment. After the convenient substitution (r,r’,x)
—(R ()r, R (t)r',R (1)x) we obtain from Egs. (Al) and
(A2)

G 9(t)~pR (1) "¢ (z) , (A4)
where
(q) 1= 'o(R '
£9n) fmlza/Rmdrdrg( ()0)hy(r'—1)
XF9*(r')F'9(r) (A5)
and h, is the convolution of 4 with itself,
hy(r'—0)= [dxh(r'—r—x)h(x) . (A6)

In an ordered lattice g(R (¢)r)=1 for r Za /R (t) and
R(t)=(a%t/2d7y)"/%. Assuming that h,(r'—r) has a
simple quadratic maximum for small |r'—r|,
h,(r'—r1)=c,+c,(r'—r)? it is easy to show that in d =3
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) ~T, —T,R (1) 1=, —c,t 712,

In d =2, we have £V(¢) ~const and £?(¢)~R (¢)>~t. In
the special case where the applied field H is perpendicular
to the substrate, §“)EO.

Accordingly, G'V(z) and G'?(¢) have the following
asymptotic time dependence,

t72, d=3,
G~ t7!, d=2, B0,
0, d=2, B;=0,
(A7)
17372, d=3,
G¥()~{t7? d=2, BF0,
t7%, d=2, B=0,

where B is the magnetic field component parallel to the
substrate in the two-dimensional case.

The power-law decay of G'9(t) at large times is
demonstrated in Fig. 17(a) for d =3, where we show the
result for G'9(t)/G'9(0) of our numerical simulation.
The corresponding exponential decay of the BPP ansatz
is also shown for comparison. Although the correct

10" ]

1072 1

__ 107} 1

S 40 ]
g 10

10°°} o

10-5- (a)L ' » I.o.‘!
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FIG. 17. (a) NMR correlation functions G'(¢) (@) and

G'?(t) (M) for a simple random walk (7=0,T'=0) in a sc lattice
as a function of ¢ /7, and (b) the spin-lattice relaxation rate 1/T;
as a function of V,/kpT. The full lines in (a) and (b) show the
results of the BPP ansatz. The dotted lines in (a) are guides for
the eye.
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curves and those of the BPP ansatz differ strongly for
t /To>>1, the spin-lattice relaxation rate is approximately
the same in both cases [see Fig. 17(b)]. This is due to the
fact that in both cases the correlation functions G'?(z)
decrease linearly with time for short times ¢ /7,<<1 and
faster than ¢! for large times. Accordingly, we have
[see Egs. (11) and (12)], 1 /T ~7o{wTy) "2 for wry>>1 and
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1/T, ~ 7, independent of frequency for wry<<1. In the
two-dimensional case, a logarithmic dependence of 1/T
on the magnetic field is expected to occur on the high-
temperature side of the 1/7, maximum (w7y<<1) as
long as the magnetic field has a component parallel to the
substrate. Recently, this logarithmic field dependence
has been observed very nicely in Li, ;TiS,. “

*Present address: Department of Physics, University of Califor-
nia, Los Angeles, California 90024.
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