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Low-frequency Raman scattering in glasses
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Low-frequency (10—80 cm ) Raman spectra of glasses are considered theoretically. It is shown
that taking into account the interaction of light both with phononlike and quasilocal vibrational
states leads to the violation of the famous Shuker-Gammon formula for the scattering intensity. We
6nd that this violation can explain the experimental results comparing Raman and inelastic-neutron-
scattering spectra. Expressions allowing, in principle, the determination of the parameters of the
interaction of light with both phononlike vibrations and quasilocal oscillations from experiments are
derived.

I. INTRODUCTION

Low-&equency (~ ( 80 cm ~) vibrational spectra of
inelastic light scattering (Raman spectra) in glasses have
been intensively investigated both experimentally and
theoretically during the last two decades. One can find
a review of early investigations in Ref. 1, and the recent
results were reviewed in Ref. 2. The most noticeable
feature of Raman spectra in glasses as compared with
crystals is a low-&equency broad peak, the maximum of
which falls in the frequency range w 20—60 cm . In
crystals only acoustic phonons exist in this region, which
manifest themselves in the first-order Raman spectra at
frequencies ~ & 1 cm as Mandelstam-Brillouin lines.
Therefore it is evident that the most general cause for
the observed spectra is the disorder of the glass struc-
ture, which leads to violation of wave vector selection
rules.

The temperature dependence of the spectra in the peak
region appears to be determined by a Bose distribution
function:

(h~&
n(~) = exp

~ ~

—1
],k~T y

This behavior is routine for first-order Raman spectra,
and is caused by scattering from harmonic vibrational
excitations, which obey Bose statistics. This fact gave
the name "boson peak" to the discussed feature of the
spectra.

In the range w & 10 cm the frequency and tem-
perature dependencies of the scattered intensity are con-
siderably altered. The scattering in this region is known
as excess or quasielastic scattering. We will not be con-
cerned with this region in the present paper.

The problem of the boson peak has assumed addi-
tional significance with recognition of the fact that the
low-frequency dynamics of glasses display a number of
universal anomalies (as compared to the Debye model).
In the frequency region considered in our paper, these
anomalies manifest themselves in substantial excess of
the vibrational density of states above the Debye value.
This fact has been directly observed in inelastic-neutron-

scattering experiments. Such behavior of the density of
states leads to a departure of the temperature depen-
dence of the heat capacity C from the T3 law: the func-
tion C(T)/T has a broad maximum at T 5—10 K.4
The heat conductivity was also found to have a very un-
usual temperature dependence at the same temperatures
(the famous "plateau" ).

To explain these observations it has been assumed that
there exist some quasilocal vibrations in glasses at THz
frequencies, which coexist with phonons. This assump-
tion was supported by computer simulations. " The most
developed theory of glass dynamics involving this as-
sumption has been elaborated on the basis of the "soft
potential model. " According to this model, local Buctu-
ations of the glass structure can give rise to a strong soft-
ening of force parameters for some fraction of the atoms.
As a result, double-well potentials and soft single-well po-
tentials can appear in glasses. The double-well potentials
are responsible for the dynamics of glasses at very low fre-
quencies, which are not considered in this paper, while
vibrations of atoms in the soft single-well potentials have
the above-mentioned quasilocal nature. A detail presen-
tation of the soft potential model can be found in Refs.
9—11.

An early explanation of the boson peak was sug-
gested by Martin and Brenig. Within the Martin-
Brenig model the boson peak was related to the light
scattering from long-wave acoustic phonons. This scat-
tering is admissible in the whole wave number region
due to the lack of translational symmetry in glasses. In
this model phonons were postulated as propagating in
homogeneous continuum media and the disorder of the
glass structure was suggested to inBuence only the light-
phonon coupling parameters. In Ref. 12 the scattering
intensity was found to be

s]~) - ]n(~) + i]s (~)s (
—),

where gz& (u) is the Debye vibrational state density,
S(w/v) is the Fourier transform of the correlation func-
tion of the spatial fiuctuations of the elasto-optic param-
eters, and v is a sound velocity. The expression (1) de-

0163-1829/95/51(13)/8131{9)/$06.00 51 8131 1995 The American Physical Society



8132 LEV I. DEICH

scribes the u dependence of the reduced intensity de-
fined as

~(~)
(u[n(u)) + 1]

(2)

at u « u~ „, observed in several experimentsis [w

here is the f'requency of the maximum of IR(cu)]. Equa-
tion (1) also describes adequately the frequency depen-
dence of I~(u) in a wide frequency interval around u
if S(u/v) is chosen in the form of the Gauss function.
Owing to this fact the Martin-Brenig model was widely
used to treat experimental data (see Ref. 1 and Ref. 2).
Summing up, one can say that the shape of the intensity
curve I&(w) is determined in this model by the form of
the function S(u/v), and the position of the maximum

is determined by the radius of correlation of the
inhomogeneities of the elasto-optic parameters.

The second important theoretical result related to
Raman scat tering in glasses is due to Shuker and
Gammon. They argued that the reduced intensity of
the first-order Raman scattering in glasses can be pre-
sented in the form

~~(~) =) cs(~)
gg((u)

where gi, (ur) is the density of states of the bth vibra-
tional mode and cs(w) is an effective coupling parame-
ter of this mode with light. In deducing this expression
it was, in fact, postulated that vibrational excitations in
glasses are localized in some finite region. If one admits
that only one mode makes a considerable contribution to
scattering, then the sum in Eq. (3) contains only one
term. In just such a form this result was used in fur-
ther experimental and theoretical investigations.
Based on the Shuker-Gammon formula (3) one can sug-
gest that the boson peak arises due to the anomalous be-
havior of the density of states rather than the frequency
dependence of the coupling parameter. Such an approach
has been realized in a recent paper, where in the frame-
work of the soft potential model the intensity has been
found in the form of Eq. (3) with c(tu) =const. It was
suggested in Ref. 19 that phonons make no contribution
to the scattering of light, which is, hence, caused by the
interaction of light with quasilocal vibrations only.

The main question regarding the nature of the boson
peak can be stated now as follows. The frequency depen-
dence of which factor, the efFective coupling parameter or
the vibrational state density, mainly determines the be-
havior of the intensity I(w)? In order to provide the an-
swer to this question, the Raman spectra of some glasses
have been compared to inelastic neutron spectra. ' On
the basis of the measurements made, the value

c((u) = I ((d)ld

g(~)

has been calculated. It was found that c(w) is a rather
smooth monotonically increasing function in the range of
the boson peak. According to Refs. 15 and 16 this func-
tion can be approximated by a simple linear dependence.

It is evident &om these results that the Martin-Brenig
model is not adequate to describe the Raman spectra of
glasses and the boson peak is traced to non-Debye be-
havior of the vibrational state density.

However, the nature of such &equency dependence
of c(u)) has not been so far understood. The above-
mentioned calculations within the soft potential model
gave c(ur) =const. Several models based on the Shuker-
Gammon formula (3) have been suggested to explain this
dependence; however, some very specific ad hot" as-
sumptions concerning glass structure have been made in
these papers. Prom our viewpoint, the frequency depen-
dence of c(w) defined by Eq. (4) should naturally result
from the theory, taking into account the scattering of
light from both kinds of vibrational excitations of glasses
and the interaction between them. To develop such a the-
ory in the framework of the standard soft potential model
is the purpose of this paper.

In so doing we derive an expression for intensity I (u),
which in the general case cannot be reduced to the
Shuker-Gammon expression (3). It follows from this re-
sult that the value c(tu) cannot have the direct physi-
cal meaning of an effective coupling parameter of light
with any mode. We find that under some conditions its
frequency dependence has a form close to a linear func-
tion. It will be shown that such behavior results kom
the phonon contribution to scattering.

II. CALCULATION OF THE VIBRATIONAL
GREEN'S FUNCTION

It is convenient to start with stating the model in the
&amework of which the dynamics of glasses will be con-
sidered. The appropriate Hamiltonian within the har-
monic approximation can be written down as

(5)

where the first summand is the kinetic energy of the
atoms, the second one describes the part of the inter-
action between atoms corresponding to an ideal lattice,
and the last summand takes into account local Buctu-
ations of the force parameters. These Huctuations can
be divided into two parts: small smooth inhomogeneities
and strong deviations &om ideal values, which are rare
in occurrence. The first type gives rise to nonresonant
Rayleigh scattering, while the second is responsible for
the appearance of resonant quasilocal states. Accord-
ing to the soft potential model, just the latter kind of
glass inhomogeneities gives the main contribution to the
properties of glasses under consideration. Therefore we
consider the last summand in (5) as describing only this
part of the inhomogeneities. These strong Quctuations
are localized around a small number of sites (we desig-
nate these sites by the letter t) and hence they can be
described by means of some local pseudopotentials. In
so doing the fluctuation part of the Hamiltonian (5) can
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be replaced by the sum of local pseudopotentials U;~ (L, e),
where c = u:

U;~(ri, r2) = ) U;, (l, s)6i,r, 6l,r, ~

l

where l is associated with the defect sites. This approach
to describing glass dynamics was suggested in Ref. 20.
It can be shown that for defects corresponding to the
soft potential model such a reduction can be carried out
explicitly to give the pseudopotential of the form

U(l, s) =
8' —8'l

where el is the square of the frequency of the atom's vi-
brations in the soft potential without taking into account
its interaction with other atoms. However, for further
consideration we will not need any particular form of the
frequency dependence of the pseudopotential.

The Green's function G,~ (ri, r2) corresponding to the
Hamiltonian (5), taking into account the relation (6), can
be expressed in terms of a scattering matrix T ~(li, l2) in
the standard way:

of two parameters: the value of the pseudopotential U(l)
and the directions of the local axes of the anisotropy v.
These Huctuations are regarded as independent of each
other. This assumption looks rather natural since the
correlator of the form (Uv;) should vanish due to the
macroscopic isotropy of glasses.

One can considerably simplify the treatment of Eq.
(8) by neglecting the difFerence between transversal and
longitudinal initial phonons (the so called scalar model).
In such a case the initial Green's function has the form
G (ri —r2)6;~. This assumption does not allow us to
describe in detail the behavior of the depolarization ra-
tio of the scattering light, but we believe that it does
not inHuence noticeably the frequency dependence of the
scattering intensity.

Separating out of the sum in Eq. (8) the term with
l = l z one can rewrite this equation in the form

Ti~(li, L2) = S;i,(Li)Uk~(Li)6l„l,

+ ) S, (Li)U~k(Li)G (li —L)Ti~(L, L2),
l gl1

(10)

G j(ri r2) = G,', '(» —r2) + ).G,'&'(rl ll)
l1il2

xTA,, (li, l2)G (l2 —r2),

where G, (ri —r2) is the initial Green's function of an
ideal lattice and we sum over sites occupied by the de-
fects. The T matrix is de6ned by the equation

where the matrix S, (iL) is defined as

S, (iL) = [6;A, —P (s)U;g (L)j

and P(s) = G (0). Taking into consideration the defi-
nition of the pseudopotential (9), one can calculate the
product of the matrices S;iUgz entering into Eq. (10) to
obtain

+) U;l, (Li)Gq (li —l)T ~(L, l2). (8)

where p,~
= v, v~ and

According to the soft potential model strong softening
of the force parameters at a given point is most likely only
for displacements in some single direction. ' In other
words, this means that the local Huctuations of the force
parameters that are responsible for quasilocal vibrations
are rather anisotropic. The isotropic part of these Huctu-
ations within this model of glass dynamics is considered
to be quite, small, as has been explained before, and may
be neglected for the problems under consideration. Tak-
ing into account this remark, let us write down the site
pseudopotential U;~(l, s) in the form

The value tip, z(l) determines the scattering matrix, if
one neglects the interaction between defects, described
by the second term in Eq. (10). The pole of tl gives
the frequency and the linewidth of a single quasilocal
vibration.

We seek a solution of Eq. (10) in. the form

Tij (lli L2) T(L1& L2)tie pij (ll) ~

With Eq. (12) one can find the equation for T to look as
follows:

(9)

where the unit vector v prescribes nonzero components
of the pseudopotential at the given site l. In essence,
the vector v sets the direction of the eigenvector of the
soft quasilocal vibration at the site I,. Presenting the
pseudopotential in the form (9) distinguishes our consid-
eration from that of Ref. 20, where U;~(l) was regarded
as an isotropic tensor. This difFerence is of no impor-
tance for the calculations of the density of states, but
is very essential if Raman scattering is considered. By
this means statistical properties of the pseudopotential
in our consideration are determined by the fIuctuations

T(ii) l2)pij(L] ) = 6l~, lupi~ (ll) + pi/c(Li) ) pg~ (l)tl
l

xG (li —l)T(l, L2). (15)

The average value of p, z is found by taking into account

It has been argued in Ref. 20 that the value p;z(L)tl ap-
pearing in the sum over l in Eq. (15) may be regarded
under certain conditions as a self-averaging one. In such
a case one can replace it by the averaged values
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that any direction of the vector v has equal probability.
The average value (t) is calculated with a distribution
function f (U):

Uf(U)
(16)

Then the equation for T(Li, L2) can be solved to give

eik(l g —lg )
T Li, L2

1 —-' (t) G'(k)
(17)

xT(Li —L2)G (L2 —r2). (18)
The vibrational state density corresponding to this

Green's function can be written down in the form
1

g(s) = — ImP(s —is() — sDno(s) —ReP(s —is()
3

which coincides with the corresponding expression of Ref.
20. ReP and ImP symbolize taking the real and imagi-
nary parts of P. In Eq. (19) we have used the following
designations:

1
P(s —is() = —)N E —Ek —ls(k

n, (.)F(.)
sgD (s)

(20)

The values no(s) and F(s) are the initial state den-
sity of the noninteracting quasilocal vibrations and their
linewidth, respectively, cg is the initial phonon disper-
sion law ep ——e k, and eD is the square of the Debye
frequency. In deducing expressions (19) and (20) we used
the method of calculating the averages over the magni-
tude of the pseudopotential suggested in Ref. 20. As was
shown in the same Ref. 20 the averaged t-matrix approx-
imation used to derive Eqs. (18)—(20) is good if

(»)
E'D

Since c && cD in the actual &equency range for this prob-
lem, the condition (21) allows us to consider not only the
case when ( (( 1, but the case when ( & 1 as well.

The values no(s) and F(s) in this approach are re-
garded as knowns. They should be determined separately
&om the consideration of the noninteracting quasilocal
vibrations. For the width of a single quasilocal state one
can use a well-known expression (see, for example, Ref.
21)

F(s) = mrs gii(s).

where N is the number of sites, and Go(k) is the Fourier
transform of the initial Green's function. We obtain the
final expression for the Green's function G(ri, r2) as

G,, (ri, r2) = G (ri —r2)b;,

+) t~, p, (L )G (ri —Li)

Calculating the initial state density no(s) in the frame-
work of the soft potential model leads to the expression
as follows:

3/2
no(s) =

8

X 2 8'

exp — — dx

(the derivation of these expression is given in Appendix
A). Here N, is the number of defects per atom and iU is
the characteristic energy of the movement in the soft po-
tential, associated with crossover from two-level systems
to the almost harmonic soft vibrations. The integral in
Eq. (22) takes into account, according to Ref. 22, the
cutofI' of the distribution of the soft potential parame-
ters. The value h (kI3T~/b'av) ~, where k~ is the
Boltzmann constant and Tg is the glass transition tem-
perature, sets the scale of this cutofI'.

The density of states (19), calculated taking into ac-
count Eqs. (22) and (23) reproduces rather well the main
peculiarities of the vibrational state density known from
neutron experiments and numerical calculations: the
position of the maximum u, the u law at small fre-
quencies, and the linear dependence at w ) u

III. CALCULATION OF
SCATTERING INTENSITY

In this section we make use of the Green's function
calculated above to derive the frequency dependence of
the scattering intensity I((d)). We start, following Ref. 24,
from the general expression for the scattering intensity,

I(&u) ) m npm~n()(P p(t)P~~(0))
nPgb

(24)

where unit vectors n and xn describe the polarization of
the incident and scattering light, u is the change in the
light kequency due to scattering, and

K Pee = (P 0(t)P (0)) =eJedee' (P 0(t)Pee(0))

(25)

P p(t) =P p+) u;(r)+
zr

(26)

The first term of this series describes Rayleigh scatter-
ing; the second is responsible for the first order Raman
scattering. The values

OP~ p
cxP,i- ui .—p

(27)

is the Fourier transform of the correlation function of the
electronic polarizability tensor P p. In Eq. (24) we omit
factors which are independent of u. The angle brackets
in (24) indicate both thermodynamics and disorder av-
eraging. The polarizability tensor P p depends on atom
displacements u(r) and can be written as a power series
in u:

In so doing the parameter ( takes the form

( = 7rsno(s) (22)
are coupling parameters between the light and the dis-
placements of an atom located at site r. It should be
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noticed that these parameters taken at ideal sites and at
defect sites are rather different in their properties. The
first of them, which we designate as I' &,, are caused
by those small fluctuations of glass structure which have
been neglected while the Green's function was calculated
and hence they do not correlate with the parameters of
the pseudopotentials. The coupling parameters at de-
fect sites (L"p~,.) are determined by the strong distortions
of glass structure which cause the quasilocal vibrations.
Since fluctuations of L' &,- and I &,. are determined by
different kinds of glass inhomogeneities it is natural to
suggest that they do not correlate with each other. It
should be noted also that the coupling parameter L p;
satisfies a rather general condition

The calculation of the averages in (32) and (33) implies
a triple averaging: over the magnitude of the pseudopo-
tential U~(e), over directions of the vectors v, and over
distribution of the coupling parameters L p;(r). Substi-
tuting Eq. (18) for the Green's function into (32), there
appear correlators of the form

(L-p, *(r~)L~~,'(r~)tt PV(l)) d;. .

Making use of the above-discussed statistical properties
of the coupling parameters one can conclude that this
expression is difFerent &om zero only if both rq and r2
are ideal or defect sites, and it can be written down as(,'( ),'( ) ' ()t);.

) L p;(r) = 0, (28) = ~""~"~(L'.p'„(l)L,'a', (l)PV (l)t~),

where the sum over all kinds of sites is included. This
condition provides for the modulation of the polarization
to be equal to zero if the system is moved as a whole.

Since the disorder in the system is regarded as &ozen
one can carry out thermodynamics and disorder averag-
ing independently. Resolving the displacements u(r, t)
into normal coordinates and finding by the standard way
the thermodynamic average, we obtain the Stokes part
of the correlator (25) as follows:

K ~.r - )'+ "(~)l ):(L-~. (»)L.r, '(»)
r1,r2

x ) e,'(rq)e,'(r2)8(~ —~, )
ci1s

(29)

).':(r~)eg(r~)~(~ —~.)

Here n(ur) is the Bose distribution function, e'(r) is an
eigenvector of the 8th normal mode, and ~, is its asso-
ciated eigen&equency. The angle brackets ( )g;, desig-
nate now averaging over all kinds of disorder present in
the system. The summation in (29) is over all eigenmodes
and all sites.

The sum over s in (29) can be expressed in terms of
the Green's function according to the relation

1+-(1 —~„))(1—b„))

x (L' p;(rq)L~~(r2))&. (tt). (34)

1
(L 'p;(l)L ~

.(l)p;~(l)) .
—= Dp,~g— (35)

and consider the tensor D p ~g as an isotropic fourth-
rank tensor, components of which are phenomenologi-
cal parameters and have to be determined &om exper-
iment. We would like to note that this tensor corre-
sponds to the tensor o.;I,a~ &om Ref. 19. The correlator
(L' p,.(r) )L'

h
. (r2)) is presented in the form

The second summand in the right side of this expression
describes the interaction of light with the atoms located
in the sites corresponding to the ideal lattice, while the
first one is related to the interaction with atoms oscillat-
ing in the soft potentials. In this term we factor out the
term (t~) &om the angle brackets, taking into account the
averaged t-matrix approximation, used in calculations of
the Green's function. The expressions L ~,. involved in

CX~ q'C

this term can be written as BP p/Ou„, where u„ is the
atom displacement along v and hence describes the mod-
ulation of the polarization due to quasilocal vibrations.
Let us designate

= Im bk—dU;g(rg, e)
Gg, (rg, r2), (30)

(L p *( ~)Lv~g( 2))d = + p, ~~+( ~ (36)

which is established in Appendix B. The term dU,.g/de
takes into account the pseudopotential nature of the
value U;A, (r, e). With this relation one can write the cor-
relator (29) as

where B p ~g also defines the set of phenomenological
parameters for light coupling with nondefect atoms. The
correlation function I" (rq —r2) describes the correlation
properties of the fluctuations of values I'&, This evi-
dently obeys a condition similar to Eq. (28):

~~P~~ ~(~) ~(2)
1 + u(~) ~pe~ + ~pa~' ) P(r) = 0. (37)

.'p„. = ).( -P,'( ~) ",'( 2) V( ~ 2))a;.
(') Calculating K

& &
in the same way we obtain the even-

tual expression for the reduced intensity:

K p r ——) (L p;(rq)Lrrr(rr)(2)

dU;A, (r, )x '
Gg~ (rg, r2)ck' Ci1S

(33)

1 1 ) S(k)
(u

~™K e —eA, —ie(k
7r

D e I)n p (e)ReP (e ——ie(—),3 (38)
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where B and D stand for convolutions of the form
B p&gm npmzng and D @~am npm~ng, respectively.
The function S(k) is the Fourier transform of the corre-
lation function (36) and satisfies the condition S(0) = 0,
which follows from Eq. (37). If the correlation function
decreases rather fast with increasing r, one can obtain
that S(k) k at k « r, , where r, is a characteristic
size (correlation radius) of the inhomogeneities of I
Taking into account this remark one can see that the 6rst
summand in Eq. (38) leads to the Martin-Brenig result
(1) if ( = 0, while the second one in the same case is
in correspondence with the result of Ref. 19, if no(r) is
regarded as the density of states of the quasilocal vibra-
tions including the quasistatic interaction between them.

The general conclusion following from Eq. (38) is that
this expression is not reduced to .the Shuker-Gammon
form (3). Such a reduction is possible only in two cases:
if ( = 0 or if S(k)=const and B = D. In the first case
one has a sum of two terms of the form (3), one of which
corresponds to phonons and the second is gelated to the
quasilocal vibrations which are independent of them. In
the second case we obtain a single term with c(u) =const.
It follows from this result that the function c(~) defined
by Eq. (4) does not have the direct sense of the effective
coupling parameter of light with any vibrations.

A further analysis calls for a specification of the func-
tion S(k). Keeping in mind the property S(k) k2 at
small A:, one can consider functions of two kinds, which
are distinguished in the behavior at k » r . The erst
of them (curve 1 in Fig. 1) goes down at large k and
is in qualitative correspondence with the function of the
Martin-Brenig model; the second tends to 1 at k » r
Such function was used by Schlomann2 for describing
far in&ared experiments in glasses. At u (( w = vr,
both these functions are similar and from them one can
obtain the approximation for I in this &equency range:

(39)

where expression (23) for no (s) has been used. In so do-
ing we suggest that in the considered &equency range the
integral in (23) can be omitted. It is seen that in such a
case both summands in (38) lead to identical frequency
dependencies u of I . The relationship of these contri-
butions to each other is determined mainly by the ratio
ur, /tU. If we want expression (39) to actually describe the
scattering intensity in the &equency region of the boson
peak, the correlation frequency ~ must be larger than
20 cm at least. Using the parameters N„~D, and
m for a-Si02, one can find that in this case the coefB-
cient before D in (39) is larger than approximately 4. We
will see later that it is reasonable to consider the mag-
nitude of D to be less than B and hence we cannot be
certain which term in Eq. (33) gives the more significant
contribution. Additional experimental investigations of
spectra are required to tackle this problem.

At &equencies u ) u the behavior of the intensity
depends essentially on the form of the function S(k). In-
serting in (33) the function displayed by curve 1 in Fig. l,
one finds the function c(u) [Eq. (4)j to have a maximum,
in contrast to the experimental results. Therefore
it seems more reasonable to use Schlomann's function
(curve 2 in Fig. 2) to model the correlation properties of
the elasto-optic parameters I p ~. In this case one can
put S(k) = 1 if the frequencies ~ & ~, are considered.
Then Eq. (38) reads

R 'llI — BImP (e —is() —D —sD no (s') ReP (e —ie()
3

(40)
If ~, is not too large so that at ~ & ur, ( is still consid-
erably less than 1, an interesting situation, when I ((u)
contains a term independent of frequency, becomes pos-
sible:

I B+ —DN,

'1 . 20

0 0.80

0.60

C3 0.40

0.20

FIG. 1. Two kinds of spectral density S(k) used in order
to describe the correlation properties of the inhomogeneities
of the elasto-optic parameters L;~,q. Curve 1 presents the
Martin-Brenig function and curve 2 the Schlomann function.

0..00 I I I I I I I I I j I I I I I I I I I [( I I I I I I I I
[

I I I I I I I I I (
I I I I I I I I I ) i I I I I I I~

0.00 5.00 10.00 15.00 20.00 25.00 30.00
FREQUENCY

FIG. 2. The reduced intensity I (cu) (solid line) and the
function c(cu) (dashed line). The frequency is scaled by the
parameter xo.
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This term is expected to be usually masked by the excess
scattering. However, since its contribution does not de-
pend on temperature, it could be of interest to attempt
to separate it out by means of investigation of the Raman
spectra at very low temperatures.

At &equencies high enough to admit ( )) 1, Eq. (40)
can be transformed to

2N, b ~03 1
(41)

In so doing we make use of the following expression for
ImP(s —is():

ImP(e' —is() = —vr s (1~( ) ~ cosrp,
2

c(u)) B+3(B—D)
~ i ( (1+( ) i cosy.
k~D)

(42)

If one assumes that in the region of the boson peak the
cutoff of no(s) is already efBcient to give

where p = arctan(/2, and take into account the cutoff
due to the integral in Eq. (23) for no(s). The state den-
sity normalized by the square of the frequency, g(a)/~2,
can also be described by Eq. (41) if one puts B = D = 1.
The linear term in the corresponding expression is always
small in comparison to the second term in the frequency
region under consideration. Hence the state density at
these &equencies is described by the law I/u associated
with the contribution of the quasilocal vibrations.
However, the inHuence of the linear term on the scatter-
ing intensity can be more considerable if one admits that
B ) D. In this case this term could be responsible for
the deviation of the &equency dependence of I &om the
law I/~. In order to make the latter remark clear, let us
deduce the expression for the function c(w) [(4)]:

ideal lattice. The dynamics of the atoms is described
within the soft potential model.

The important theoretical result of our consideration
lies in the fact that the expression for scattering intensity
is not generally reduced to the Shuker-Gammon form (3).
From this it follows that the function c(~) has not the di-
rect meaning of the coupling parameter of light with any
kind of vibrations. We show that in such a case the &e-
quency dependence of c(w) is determined by the relative
contributions of various vibration modes to the scatter-
ing. The close to linear dependence of c(u) on &equency
observed in a number of experiments follows &om
the standard soft potential model under the assumption
that the coupling parameter of light with soft quasilocal
vibrations is less than a similar parameter for the atoms
placed in regular sites corresponding to an ideal lattice.

expressions (39)—(42) obtained give a principal
opportunity to determine these parameters (B and D)
by means of special treatment of experimental data.
For example, expression (42) for c(w) does not contain
any unknown parameters except B and D (the param-
eters of the soft potential model can be found &om
other experiments and they are known for a number
of glasses). Therefore by forcing the experimental data
to fit Eq. (42) one can determine both values B and D.
These data can be used for calculation of the reduced
intensity according to Eqs. (39) and (40), which can be
compared with corresponding experments. Such kind of
investigations could serve as a test of the theory sug-
gested.

It follows from our considerations that scattering by
harmonic oscillations can under some conditions give a
frequency- and temperature-independent contribution to
the region of the excess scattering. This contribution can
be considerable at very low temperatures.
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APPENDIX A

In this Appendix we deduce Eq. (23) for the initial
state density of the quasilocal vibrations no(s). The soft
potential can be written down in two forms:

IV. CONCLUSION
or

(A1)

Let us summarize the results obtained in this pa-
per. We develop the phenomenological theory of the
first-order Raman scattering in glasses. Unlike previous
considerations ' we do not assume that some partic-
ular vibration mode gives the major contribution to scat-
tering and take into account within a unified approach
the interaction of light with the vibrations of atoms in
the defect soft potentials as well as with atoms oscillat-
ing in the regular rigid potentials corresponding to an

V(x) = W Di (
—

) + Dg (—
) + (

—
) (A2)

The difference in these forms is that in the erst one the
potential is expanded as a power series in the atom dis-
placements around the equilibrium position of the mode
located at a given point, while the second form corre-
sponds to the expansion around some arbitrary point,
which can be chosen the same for all soft modes [the
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third order term, omitted in (A.2), is not important for
further consideration ]. Therefore to describe statistical
properties of the potential one should set a distribution
function for the parameters D1 and D2 rather than for g
and t. For a given mode the sets of parameters D1, D2
and g, t are connected by the evident relations

1 13D = ——gt+ —t,
2 8

G{A) = A —L(A) (B2)

L(A)P, = n, (A)P, . (B3)

Then the eigenvalues A, are determined by the self-
consistent equation

Let P, be an eigenfunction and o., an eigenvalue (for a
given A)

32
D2 ——g ——t .

8
Due to this the distribution function of the parameters
g, t is expressed in terms of the (Dq, D2) distribution
function:

A, = n, (A).

Let us consider the resolvent as a function of A:

G(A —ip) = A —L(A —ip) —ip

(B4)

1
P(q, ~) = —~g~P(Di, D2). (A3)

dl
dA

fDglP(D„D,) = X.exp —
~

(A4)

According to Refs. 22 and 23 the function P(Dq, D2) is
given as follows: di1

x A —L(A) 1—
dA

(B5)

where 8 = 0.169(W/k~Ts) ~ . Taking into account
that the soft single-well potentials are realized if g ) t /4,
one obtains the state density as

where p —+ 0. In order to obtain the Green's function
G(r —r') in coordinate representation one should act by
the resolvent on the delta function b{r —r'). Making use
of the completeness condition for the eigenfunction P, (r),

np((u) = (2W &"
drtdtP(q, t) 8 ~(r r ) = ) .'l~ (r)4 (r )

Making use of (A3) and (A4) one derives the eventual
expression for no(e) = no(a)/(2e~~2):

no(e) =

where to = W/h.

one derives &om (B5)

I' Zi )l
1 — G(r —r')

dA)

= ).~ (r)4 (r ) 'Y
A —n, (A)

S dA

(B6)

APPENDIX B

Formula (30) is established in this section. In so do-
ing we use the method presented in Ref. 21 where the
general expression for the state density of systems with
pseudopotentials was deduced.

Let us consider a linear equation of the form

L(A)P —AP = 0, (B1)

where L(A) is an arbitrary linear operator depending on
the eigenvalue A. The Green's operator (resolvent) of this
equation is

Now we separate the imaginary part of the obtained ex-
pression in the case of p —+ 0, and making use of the
identity

8(A —A, ) =
~

1 — '
~

8[A —n(A)]
( dn, l

dA

we obtain eventually

) P, (r)P, (r')b(A —A, ) = Im 1 — Gp, (r, r').dL(A)
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