
PHYSICAL REVIEW B VOLUME 51, NUMBER 13 1 APRIL 1995-I

Stability of the replica-symmetric solution of a quadrupolar glass model
with random strain fields
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The stability of the replica-symmetric solution of a model recently proposed for describing the
glassy properties of mixed alkali halide-cyanide crystals is examined carefully. The limits of stability
are determined in terms of the temperature T and the variance parameter A of the random strain
fields. Analytical results are obtained near the quadrupolar glass (QG) transition for small A and the
full line of instability in the (T, A) plane is obtained numerically. In addition, numerical calculations
of the QG order parameter and of the elastic constant C44 are given as functions of temperature for
various values of A.

I. INTRODUCTION

Randomly diluted molecular crystals have recently at-
tracted much experimental and theoretical attention es-
pecially in view of their very rich glassy behavior at low
temperature (see Refs. I, 2 and references therein).

Typical examples are the solid ortho-para hydrogen,
solid argon-nitrogen mixtures, and mixed alkali-halide-
cyanide crystals such as Na(CN) Cli or K(CN) Bri
which are known to be miscible at all concentrations x.
These last systems, to which we are mainly interested,
are generally characterized by a cubic structure where
the sites of anions are randomly occupied by halide ions
and dumbell-shaped CN molecular groups which rotate
nearly &eely. Due to the coupling between translational
and orientational degrees of freedom, below a critical con-
centration z„ the rotating molecules experience an indi-
rect &ustating interaction so that, lowering the temper-
ature below a critical value T~(z), a special phase oc-
curs where the quadrupolar momenta of the CN ions
are &ozen in random directions. Since the random freez-
ing of the CN ions leads to local static lattice defor-
mations, this low-temperature phase, called quadrupolar
glass (QG), shows also some properties of a structural
glass. ' '

A microscopic model of the cyanide glasses was pro-
posed by Michel and Rowe stressing the analogy with
the spin-glass phase in disordered magnetic materials. 4

Here, the interaction between randomly distributed CN
ions originates from linear coupling of translational and
rotational degrees of &eedom. Subsequently, ' the model
was developed and studied including random strain fields
as a consequence of a substitutionial disorder. In the
theory, the CN ions are considered as molecular groups
with quadrupolar momenta and no restriction on their
orientational states.

An alternative semimicroscopic model, which is a
simplified coarse-grained efFective version of the previ-
ous microscopic one, has been introduced by Vollmayr,
Kree, and Zippelius. They assumed the lattice as an
anisotropic elastic medium where the randomly inter-

acting CN ions have a limited number of orientational
states, reducing the problem to the study of the p-state
Potts spin-glass model (p = 3, 4, 5) with "Potts spins"
coupled to the local strain fields.

Quite recently an effective model has been formulated
for alkali-halide-cyanide crystals which started from
the coarse-graining averaging interactions considered in
Ref. 7 but without restrictions on the spatial orientations
of the CN ions. This model arises from the possibility
of integrating over the displacement fields, reducing the
original problem to an efFective Hamiltonian involving
only rotational degrees of freedom of the defects (CN
ions). So an efFective spin-glass-like problem on a rigid
lattice is obtained which can be treated using known
methods from the theory of spin glasses. 4 In Ref. 8 within
the replica-symmetric theory, the general expressions of
the Edward-Anderson-like QG order parameter qE~ and
of the orientation free energy have been obtained. Next,
preliminary calculations of the QG order parameter qE~
and the elastic constant C44 as functions of the temper-
ature have been also performed near the QG transition
point under weak disorder conditions.

The main purpose of this paper is to investigate the
limits of stability in the phase diagram of the replica-
symmetric solution for the previous effective QG models
where the random strain fields are present. Moreover,
we give also full numerical results for quantities of di-
rect experimental interest such as the QG order pa-
rameter and the elastic constant C44 as functions of
the temperature for different values of the parameter
4 which characterizes the random strain fields. As we
shall see, the results appear to be rather in good agree-
ment with experimental data. This will be realized in
strict analogy to the de Almeida —Thouless (AT) stabil-
ity analysis of the replica-symmetric solution for the
famous Sherrington-Kirkpatrick spin-glass model and
the corresponding one for proton glasses. This ap-
pears a quite important tool especially in view of the
possible failure of the replica-symmetry breaking Parisi
scheme when applied to richer models of disordered
systems. Indeed, there has been some previous works
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on the stability of the replica-symmetric solution of con-
tinuously orientable units, like QG's. A review of the
first mean-field replica-symmetric treatinent for QG's
and subsequent replica-symmetry breaking scheme ap-
plied to these systems can be found in Ref. 2.

Unfortunately, little has been published about the de-
tails of the replica-symmetry-breaking theory for more
complex situations (see, however, Ref. 18). It now seems
that the mean-field solutions of a number of frustrated
models, such as QG's, Potts glasses, ' s i i p-spin
interaction spin-glass models, and the random energy
model appear to be qualitatively very similar. Nev-
ertheless, doubts on the direct extension of the current
spin-glass theory for such more complex randomly frus-
trated systems are raised. In particular, it has been sug-
gested that QG's (Ref. 15) and Potts glass model are
more subtle than conventional spin glasses. Thus it ap-
pears to be a quite important problem to give a satisfying
solution of such models before confident extention of the
analysis to more general frustrated systems. The present
investigation on QG's has just to be considered as a con-
tribution towards this direction.

The paper is organized as follows. In Sec. II we in-
troduce the main features of the model, the replica-
symmetric solution is presented, and its stability con-
ditions are obtained. Explicit analytical results near the
QG phase transition with small values of the control pa-
rameter 4 are also given. Section III contains numerical
results and. a discussion of their connection with experi-
ments.

with

Z — Tr g
—2"=I H /&&T Tr e Hq—g /k~T (3)

where Tr. denotes an integration over defect orien-
tations, n is the replica index, [

. .
] means averag-

ing over the quenched disorder, and Hgc is the efFec-
tive QG Hamiltonian whose explicit expression depends
on the probability distribution of the random variables
uAgI(x, y) and hp(x). For Gaussian distributions with
zero means and variances J /N and A, respectively,
Hgc assumes the form

J2 n

4k Tm ) - ) - q-'(")q-'(y)4k~TN
wgy cx,cx'=1

2 n): ). q-,-()
cx)cx =1

(4)

where

q...(x) = (1 —b...) ) Y„(n„-)Y„(n„) (5)

E —. 1—= JT lim —'R[q],n~o ~ (6)

and N denotes the number of coarse-grained lattice
sites. Now, a Sherrington-Kirkpatrick-like saddle point
treatment ' can be applied to the efFective problem (4),
yielding, for the free energy per site, the expression

II. C}UADRUPOLAR GLASS MODEL
AND STABILITY CONDITIONS

OF THE REPLICA-SYMMETRIC SOLUTION

We consider the model defined by the Hamiltonian

where

'R[q] =
n

1
Q

H = ——) ) ups (x, y) YA (0„)YA (Ay)
wgy A, A'=1

5
—) ) hA(x)YA(O„),

containing only orientational degrees of freedom whose
interaction is described in terms of the symmetry-
adapted spherical harmonics Yy(O„)(A = 1, . . . , 5),s's's's

where the angles 0 = (e, rp„) specify an orientation
of a defect at site w with respect to the cubic crystal
axes. In (1), uA A (x, y) denote the random orientational
couplings and hg(x) represent the random strain fields
at site x:. This model appears to be quite relevant for
describing the glassy properties of alkali halid. e-cyanide
crystals ' and was obtained by averaging the semimicro-
scopical coarse-grained Hamiltonian introduced in Ref. 7
on the translational degrees of freedom and assuming the
CN ions as linear quadrupoles.

Using the replica trick, 4 the free energy of the model
can be obtained as

1I" = —k~T lim —lnZ„,
n-+0 ~

—ln exp, ) (q', +8 )q . (7)
2T ~ c I —i 0

with

(" ) =
(g +A )q

The Edward-Anderson QG order parameter for our
model is defined by '

5 n

qEA ) [P'a(~~))z ],= »m ) q~,
A=a

In Eqs. (6) and (7), T = kHT/J, A = 4/J, q
is q I (x) for any site x, (. )e —— I dB/4~ with
0 = (0, &p), and q is determined by the self-consistent
equation

q- = (q-),
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C44 ——C44 1 +
a2

qEAI ( )

where (. . .)2 denotes the thermal average. For the
present model it is also found that the elastic constant
C44 can be expressed in terms of qEA as

self-consistent Eqs. (8) and (9). Our objective here is
just to determine the stability condition of the replica-
symmetric solution.

For this, as usual in the spin-glass theory, '1 one must
require that, in the limit n ~ 0, the eigenvalues of the
Hessian,

where the parameter B measures the strength of the cou-
pling of the orientational modes of the T2~ symmetry
and C44 is the bare elastic constant.

The replica-symmetric solution for our problem can
be obtained setting q = q (n g n') in the previous
equations. In this case one has a qEA

——q solution of the

c)2 8[q]
G(ap) (») (q)

g~p g~g =e}
(i2)

must be positive. Similarly, as in the spin-glass
problem, ~ the elements of the matrix (12) have the form

1
G(-p), (-~) = —,[(q:pq-~) —(q-p)(q-~)]T'

G(-p), (~5) = —
2 [(q-pq») —(q-p) (q»)]

T

(P 8 v),

(~ 8 P P ~ A ~) .

Using Eqs. (5) and (9), in the limit n ~ 0, one obtains
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where

m~(&) = (YA(~1))t-.

A2 ——1—
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T
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(22)

yxz (() = = (YA(A) Y7, (0))(-—mA(()mp ((), (19)T-
with

The use of the expressions (15)—(17) shows immediately
that Al ) A2 so that the stability condition for the
replica-symmetric solution is A2 ) 0 or, explicitly,

(2o)

5

(27I)5/2

and ( = ((&, A = 1, . . . , 5). Notice that, Eq. (14), with
(q p) = q [see Eq. (8)], determines the QG order param-
eter within the replica-symmetric theory.

Now, following strictly the procedure of Ref. 10, we
see that the matrix (12) has, in the limit n ~ 0, the two
eigenvalue s

Equation (23) expresses the complicated relation be-
tween L and T to be satisfied in order that the replica
symmetric-solution for the QG order parameter,

5 5

q = d(Ae ~ ~~=~ ~& ) (Yg(O)) -, (24)(27r)5/2
A=i A=i
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is a stability value for the argument of the &ee energy
density (6).

From Eqs. (23) and (24) it is possible to obtain a
line of instability A = A(T) in the plane (T, A) which
is analogous to the known AT instability line for the
Sherrington-Kirkpatrick solution of a spin glass. ' Its
exact analytic expression is, of course, prohibitive and. the
problem is accessible only numerically. Postponing the
numerical results to the next section, here we investigate

analytically the limits of stability for our glassy problem
near the QG transition point (q « 1) under the condition
4 «1.

For this purpose, in terms of the shifted QG parameter—2
q = q+ b, « 1, we first calculate the quantities y~~i(()
and m~($) in Eqs. (23) and (24) with an accuracy up
to terms proportional to q and q /, respectively. Prom
(20) it is easy to see that

5

(Yy(O) Yg (O))& = ' + ) (Yg(O) Yp (O) Yg (O))p(g + 2 ) (Yg(O) Yp (O)Yg (O) Yg (O))p(p
A1 ——1

5

) (2 ~~ (-3/2)
A1 ——1

(25)

where use was made of the relations

(»(O)) =o (Y(O)Y (O)) = (26)

Similarly, for mg(() we find

-1/2
m~(() = —(i+ &(q)

4vrT
(27)

Then, for y&p~ (() defined by Eq. (19), we obtain

5

yAA'(() = = + — ) (Yi(O) Yx'(O) Yx, (O))p(a, + 2 ) (YA(O) YA'(O)Yj, (O)Yj, (O))(x, (x,4' 2T A1 A2 —1

~AX'
A1

A, =1
~, (~(v + &'-&(v'*)I . (2S)

Using this equation and the relations '

5

) Y„',(O) = —,

A=1

50) (Yg(O)Yj, (O)Yp, (O))p =
AA'A1 ——1

(29)

the stability condition (23) becomes

2+O(q ) &1,
7~T'

(30)

1/2
28~—. /', 9 al

Tg 7+ 7'+ —29 g
( 28~ T2)

where, as we shall see, Tg = ~5/4' is the scaled QG
transition temperature in the absence of rand. om strain
fields.

It remains to solve the self-consistent equation (24) for
small q or q. This can be realized as before by expand. ing
the right hand side of Eq. (24) into a power series of q up
to terms of the order q2. In terms of w = (T~ —T)/Tg &&

1, assumed to be of the same order of L, we find

Inserting this expression for q into Eq. (30), the stability
condition, with an accuracy to linear terms in w, reads

5
w ~1.866~. (32)

Notice that, for 4 = 0, the stability condition is fulBlled
only for 7 & 0, i.e. , T ) Tg =

4 J/k&, where q

q = 0 [see Eq. (31)j. Thus, decreasing the temperature
with 4 = 0, a sharp continuous transition to the QG
phase (q g 0) occurs but, here, the replica-symmetric
solution is unstable. In the presence of the random strain
Belds the phase transition is smeared out, the replica-
symmetric solution is stable below Tg, and near Tg the
stability limit for 4 « 1 is expressed by the equation

4 = 1.866m .

It is worth noting that a similar scenario exists in the
Ising spin-glass model with random longitudinal Beld
for proton glasses where the stability limit for 4 « 1 is
given by b, = 0.5347. A comparison with (33) shows that
the range of stability for the replica-symmetric solution
at a given L is about 3.5 times larger for proton glasses
than for quadrupolar ones.
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III. NUMERICAL SOLUTION
AND DISCUSSION

0.9

As mentioned before, the complexity of the equations
describing QG systems let us obtain analytical results for
physical quantities only for small values of the involved
parameters. Therefore particular relevance, expecially
from the experimental point of view, is assumed by nu-
merical predictions on the corresponding quantities for
realistic values of the parameters.

In Fig. 1 the full behavior of the QG Edwards-
Anderson order parameter qEA ——q as function of the
reduced temperature T is plotted for seven di8'erent
values of L. As a support to the present model for
QG's, the form of the temperature dependence of q
for b, g 0 is very similar to that of the quadrupo-
lar Edwards-Anderson order parameter determined from
the Na satellite distribution's second moment data
for Na(CN) Cli systems s and from elastic diffuse
intensity neutron scattering. It is also worth noting
that a comparison of our numerical results with the
corresponding ones of Ref. l2 confirms the strict anal-
ogy existing between alkali halide-cyanide crystals and
mixed hydrogen-bonded ferro- and antiferroelectric crys-
tals such as Rbi (NH4) H2PO4.

The temperature behavior of the elastic constant C44,
as given by Eq. (11) in terms of q, is shown in Fig. 2 for
the same values of L used for numerical results in Fig.
1. Here we have assumed B /(20m. JC44) = 0.1 &om ex-
perimental data. The numerical results show clearly
that the sharp minimum, which appears at Tg for 4 = 0,
is flattened in the presence of the random strain field and
this efFect becomes more and more apparent with increas-
ing L. Also, for this quantity, the characteristic form as
a function of temperature agrees with the experimental
measurements.

The results of Figs. 1 and 2 give clear evidence for
the smearing of the sharp QG transition at (Tg, 4 = 0)

O.S

C44

&44

0.7

0.6
0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 2. Elastic constant C44 scaled by the bare one C44
plotted vs T = kgyT/ J for various values of the random strain
field parameter A = A/ J.

caused by random local strain fields. This aspect of the
efFective model (1) has been verified by various experi-
mental methods ' and in particular by nuclear mag-
netic resonance. '

The borderline of the stability is given by the simul-
taneous solution of Eq. (24) and the equality assumed
in (23). In Fig. 3, the instability line is plotted in the
(T, E)plane. It plays a role similar to that of the AT
line in spin glasses in a homogeneous field and in pro-
ton glasses; 2 i.e. , for all values (T, A) above the line
the replica-symmetric solution is stable. Below this line,
only a solution with replica-symmetry breaking (to be de-
termined) may provide a correct description of the QG
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0.1
0.2—

0
0 0.1 0.2 0.3 0 4 0.5 0.6 0.1 0.2

FIG. 1. Replica-symmetric solution for the QG order pa-
rameter plotted vs T = kriT/ J for various values of the ran-
dom strain field parameter D = A/J.

FIC. 3. Phase diagram showing the limit of stability of
the replica-symmetric solution for quadrupolar glasses in the
presence of random strain fields.
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phase properties.
Of course, our results for too low a temperature can-

not be applied to alkali-halide-cyanide crystals. In such
a case, indeed, bipolar e6'ects become important and our
model is not suKcient to describe correctly the proper-
ties of these materials. However, knowledge of the full
instability line and of all the predictions based on the
semimicroscopic model (1) may be in any case of interest
for more general aspects of QG theory.
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