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The radiative corrections to the Compton scattering cross section have been studied to deduce their
importance in a momentum-density measurement for accurate analysis of solid-state physics. The uncer-
tainty introduced by the infrared divergence of radiative correction and double Compton scattering is
discussed and analyzed in a model system resembling aluminum metal. The radiative correction has
been found to be very small in the energy range (E $2.5 MeV) useful for solid-state physics experiments

but not completely negligible.

INTRODUCTION

The use of Compton scattering is a well established
tool in condensed matter physics' which allows for deter-
mination of the so-called Compton profile. The Compton
profile is very important considering that it is a ground-
state property directly related to the ground-state
momentum density and energy’? as well as to the general
theory of ground state.>* However it is very important to
realize that useful information can be obtained from the
Compton profile only if it is determined with a very good
accuracy. It is well known that the Compton profile is
simply related to the inelastic photon cross section only
when a number of assumptions are made.! In fact the
simple naive result of direct proportionality is valid for
the nonrelativistic photon energy and nonrelativistic
free-electron system. It has been realized a long time ago
that this naive approach has a very limited validity and
can be used for semiquantitative studies only. When
more quantitative information is needed, as is the case of
condensed matter studies where one is interested in the
detailed study of electron distributions in reciprocal
space for direct comparison to the theory, a more ap-
propriate theory of the Compton process is essential.
First of all one has to consider that to get meaningful in-
formation from photon inelastic-scattering experiments
on the Compton profile, which is a single-particle proper-
ty, one has to cancel out all the correlations among the
electrons that is one has to perform a high momentum
transfer experiment. This prerequisite is the condition to
use the so-called impulse approximation.” However, to
perform the experiment at high momentum transfer it is
necessary to use high incoming photon energy, thus mak-
ing a nonrelativistic approach rather doubtful. On the
other hand, the relativistic formulation of the photon
scattering entangles photon and target properties®’ in
such a way that the simple decoupling valid in the first-
order Born approximation® no longer holds. All of these
problems have been considered in several papers!® 1
but when the aim of an experiment is an accuracy better
than a few percent, on increasing the photon energy, one
has to face further corrections to the cross section. In
fact the strength of the photon-electron interaction,
namely the fine structure constant, a =e?/#c ~ le is not
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a vanishingly small quantity, so that the actual cross sec-
tion is the sum of terms proportional to increasing
powers of a, the smallest being a?, corresponding to the
usual result, that is, the Klein and Nishina formula valid
in the case of a single free electron at rest in the laborato-
ry frame.>'® It should be noted that the a® contribution
to the photon scattering shows many ambiguous
features® !> which can be treated in the framework of
quantum electrodynamics (QED). Although the cross
section to the order @ has been derived 40 years ago in
the case of a single electron,'* in the case of a many-
electron system very little work has been done to under-
stand the role of the a> terms,’ apart from the case of
elastic scattering, which has been previously analyzed.!®

Having in mind all of the above discussion, a good
correction procedure is essential if very accurate data
have to be obtained from the experiments. To this pur-
pose we adapted the single-electron calculation of Ref. 14
to the case of a many-electron system, using an approach
which can allow for a good approximation when ap-
propriate conditions are satisfied and has been proved to
be good in the case of elastic scattering.!* In particular
the relevance of the double Compton process®!? is dis-
cussed with reference to solid-state physics experiments.
This point is of particular importance considering the
fact that the simultaneous emission, after the scattering
event, of the main quantum and a second photon is not as
simple as in the case of a single free electron. When a
many-electron system is considered, the Compton
scattering always produces a broad distribution of the en-
ergy of the scattered photon so that the accompanying
soft photon can have an energy in excess of or at least of
the order of the width of the Compton profile.

PHOTON SCATTERING
AND RADIATIVE CORRECTIONS

To discuss the photon scattering off a many-electron
system we assume that the electrons are governed by an
appropriate relativistic Hamiltonian. To consider a case
as general as possible we prefer to give no explicit form
for the system Hamiltonian, assuming that there exists a
ground state |0) and the interaction with the photons is
described by
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where a is the vector of Dirac matrices, A is the vector
potential of the photon field, and x; is the position opera-
tor of the ith electron. It is evident that H;, gives rise to
photon scattering (change of two photon occupation
numbers) to the second order, to the fourth order, and so
on. Therefore the appropriate transition matrix can be
written as

K=aK,+a’K,+ - . )

In a process in which a photon of momentum k, impinges
an electron system, the differential cross section for hav-
ing a final photon of momentum k scattered into the solid
angle dQ) with an energy between fick and #ick +do is
given by

F

dQ.d

where py is the density of final states, E, and E are the
energies of the initial and final electron states, and K Fo 18
developed according to Eq. (2). In the following we shall
use universal units i=c =1. Because the cross section is
proportional to |K|? one has that 1ts lowest nonvanishing
contribution is proportional to a2, while the first correc-
tion is proportional to a. When the target is composed
by noninteracting free electrons the use of the result
developed by Brown and Feynman'* for a photon imping-
ing a single free electron is straightforward. In such a
case the cross section relative to the N-electron system is
simply that of a single electron, having the appropriate
momentum, calculated according to Ref. 14 and multi-
plied by N. However, in the case of a system of N in-
teracting electrons in the presence of an external poten-
tial, all the matrix elements involved in the calculation of
the transition matrix of Eq. (2) imply the use of many-
electron states. The difficulties involved in such a situa-
tion have been traced in the case of Rayleigh scattering,’
but the approximation used in Ref. 7 can be employed
also in the case of Compton scattering. In general, to
derive a closed formula one has to resort to some form of
the so-called impulse approximation,! that is, the excited
states of the system should be described by some approxi-
mation where only one strongly excited electron is
present while the other N —1 electrons remain essentially
in the ground state. This approximation is meaningful
considering that the interaction of Eq. (1) implies that in
the matrix elements one electron only is involved and a
two-electron transition is not directly allowed. If one
speaks in terms of creation and annihilation electron
operators, H;,, allows for the annihilation (creation) of
one electron in a given state and the creation (annihila-
tion) of one electron in another state. In particular if one
is 1nterested in considering the effects beyond those of the
order a® in Eq. (3) it is perfectly appropriate to use the
free-electron result of Ref. 14, properly weighting each
initial electron state by the actual momentum density.
This procedure is particularly acceptable if one considers
also the fact that, when the incoming photon energy is

not high enough to use the approximate many-electron
state described above, the corrections of the order o’ are
quite small. However, in the case of a real experiment of
photon scattering off a condensed matter system, there is
a qualitative change from the result obtained in the case
of a single free electron. It is well known®!? that the
scattering treated beyond the lowest order produces an
infrared divergence which is canceled out by the pres-
ence, at the same order, of a process with two photons in
the final state, instead of a single one as is assumed in
normal scattering events. The infrared divergence is
eliminated by summing the double-photon process ob-
serving that this process is indistinguishable from ordi-
nary scattering when the second photon is softer than a
given cutoff energy. Actually in a typical experiment
only one scattered photon is collected in a given final
state and the presence of a second photon cannot be de-
duced from the experimental information. Then there is
a correction to the cross section which is given by the in-
tegral of the cross section of the double-photon process
over the range from A to ky—k, A being the vanishingly
small photon mass or lower-energy cutoff.!> This contri-
bution is very small in most cases because the double-
photon process has a cross section which, at low energy,
is of the order of aryky,/m,)?, ro being the classical
electron radius and m,, its rest mass. Nevertheless in the
case of very accurate experiments with incoming photon
energy of the order or in excess of m, the effect due to
this correction as well as to the other a® contributions
can be comparable to solid-state effects. For readers con-
venience we report the final formulas within the present
formulation in the Appendix.

It is worth noting that in a real experiment the cross
section is not directly measured, as two or more succes-
sive scattering processes can take place in the same sam-
ple. This process, which is usually referred to as multiple
scattering,’ is clearly dependent on the shape of the sam-
ple, but it cannot be interpreted in terms of Eq. (3). For
the present discussion we assume that the sample is van-
ishingly small in the sense that the multiple scattering,
which is proportional to the square of the sample volume,
is negligible as compared to the simple scattering event,
which is described by Eq. (3). The kinematics of the pro-
cess, assuming that the final state can be written as the
product of a plane wave describing one strongly excited
electron of momentum p and a smooth wave function of
the other N —1 electrons, is such that

E _—
E0+k0=—N9—(N—1)+\/(p2+m(2,)+k ,

p=potko—k,

where p, is the initial electron momentum, the distribu-
tion of which is the aim of the Compton scattering exper-
iment, and E is the system ground-state energy includ-
ing rest energy.

4)

NUMERICAL CALCULATION OF THE CROSS SECTION

To determine the role of various contributions we cal-
culated the cross section reported in the Appendix for a



model of crystalline aluminum as a prototype system.
The model is obtained as follows: 10 electrons per atom
are distributed into single-particle atomic states,'® while
the other 3 electrons are assumed to be modeled by a
homogeneous electron gas at the appropriate density.
The density n =3 /43 is determined in such a way that
the experimental Fermi energy Ex=11.7 eV is equal to
that of the electron gas, so that one has r,=2.07 in atom-
ic units. To perform the calculation the momentum den-
sity of the whole set of 13 electrons has been determined
by adding the momentum density of the 10 atomic elec-
trons and that of the electron gas. The momentum densi-
ty of the atomic electrons is taken as simply the square
modulus of the Fourier trasform of the electronic wave
functions. For the electron gas two cases have been con-
sidered. The first one is a noninteracting electron gas
where the momentum density is equal to 1 for p <kp, kp
being the Fermi momentum, and zero when p > k. The
second one is an interacting electron gas, where the
momentum density is given by

3 7
A(p,e)de, 5
ke f_w (p;€)de (&)

n(p)=

where p is the chemical potential and

1
e—p%/2my—3(p,e+in) |’

A(p,e)=——1—1m
T

n=0* (6)

3(p,€) being the electron gas self-energy, which in the
present instance has been calculated according to the ran-
dom phase approximation prescription.!”!® The momen-
tum densities, as determined according to the present
model, are reported in Fig. 1, where it is evident that the
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FIG. 1. Momentum density of present model. The dashed
curves represent the ls, 2s, and 2p contributions each normal-
ized to one, the thick solid line represents the total n(p),
n(p)=2n(p);;+2n(p)y; +6n(p)y,. The thin solid line is the
contribution due to the three interacting valence electrons.
n(p) for noninteracting (dashed line) and for interacting (solid
line) electron gas is reported in the inset.
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effect of the electron-electron correlations, calculated ac-
cording to Egs. (5) and (6), is rather small. Using the
momentum density of Fig. 1, 5X 10° electrons have been
distributed in the momentum space and the cross section
has been calculated according to the formulas of the Ap-
pendix and the kinematics of Eq. (4). Several calculations
have been done by varying the incoming photon energy
in the range 100-2500 keV and the scattering angle 6 be-
tween 15° and 170°. Although one can anticipate that the
third-order contributions are in all cases very small if one
is confined in an energy range useful for condensed
matter studies (2.5 MeV), it is evident that they have a
conceptual impact other than the introduction of further
small systematic errors. It should be mentioned that the
numerical effort of the present calculation increases
strongly as the incoming photon energy is lowered be-
cause several diverging terms appear in the radiative
cross section, while their sum is rapidly decreasing. As a
typical example the third-order contribution is reported
in Fig. 2 at 1000 keV incoming photon energy. Looking
at Fig. 2 one can observe that the third-order cross sec-
tion is very small and has essentially the same shape as
the lowest order. Nonetheless this contribution is not
completely negligible if an accuracy level of the order of
0.1-0.2 % has to be obtained. In Fig. 3 we report the ra-
ti0 (R o) Of the third-order contribution to the second-
order one at the peak position as a function of the energy
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FIG. 2. Contributions to the Compton scattering cross sec-
tion for 1000 keV incoming photon energy and 150° scattering
angle: (a) second-order cross section, (b) third-order correction.
Dashed curve: ratio of the third- to the second-order contribu-
tion.
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FIG. 3. Ratio of the third-order contribution to the second
one at the peak position as a function of the incoming photon
energy and scattering angle.

and the scattering angle. It is readily seen that this ratio
increases smoothly with energy up to the highest energy
we considered and an increase is seen also with the
scattering angle. However the trend of R ., is not com-
pletely monotonic as a function of 6. The problem of
correcting for the third-order cross section is particularly
subtle if one realizes that the double Compton process
has some uncertainty. According to the discussion of the
previous section the simulation has been performed as-
suming that the second photon energy ranges between A
and k,—k. However, such a prescription is a pure guess
due to the ignorance about the initial and final states of
the system or the fact that the additional photon is not
observed in a normal scattering experiment. To give an
idea of the error introduced by the double Compton pro-
cess its contribution is reported in Fig. 4 using the same
experimental condition of Fig. 2 and employing the
prescription described above as well as a fixed maximum
energy for the second photon chosen equal to the full
width of the Compton profile. As one can see, there is an
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FIG. 4. Ratio of the third-order contribution to the second
one as a function of the final photon energy. The double cross
section is evaluated assuming that k,,, ranges between A and
ko —k, curve (a), and that it is equal to 50 keV, curve (b).

appreciable change of the double Compton cross section
on changing the prescription for the second photon ener-
gy, so that one could be left with a systematic error of the
order of 0.5% at 1000 keV and such an error cannot be
corrected for, if a normal experiment is performed. Fi-
nally in Fig. 5 we report the Compton profile calculated
for the interacting valence electrons in aluminum as com-
pared to the third-order contribution as deduced for all
the electrons at 500 keV, according to the momentum
density model previously described. We see that the tails
of the cross section due to the valence electrons are com-
parable to the radiative contribution. Therefore if one
has to derive an accurate determination of the momen-
tum density tails as is the case of a condensed matter ex-
periment!® great care has to be taken in order to consider
the effect of the third-order contribution according also
the uncertainty reported in Fig. 4.

The most important result one can deduce from the
present calculation is that the third-order cross section
could be experimentally measured if a very accurate ex-
periment is performed at different energies. Although
such an experiment seems to be extremely difficult, as the
cross section has to be measured with an absolute accura-
cy as high as 0.1%, it deserves special effort because a
clear experimental observation of the radiative correc-
tions to photon scattering is still lacking.

As a final remark one can observe that the inelastic
scattering of photons in the energy range 100—-2000 keV
can be very useful for condensed matter studies and an
accuracy of the order of 0.1%, which should be within
the possibility of a correction procedure,’”!! could be
reached only if the double Compton process can be accu-
rately accounted for. This sort of accuracy is perfectly
adequate in order to perform a comparison between
different states of the same atom, though an absolute
comparison between theory and experiment could be
feasible only in the case of light elements where the core
electron contribution is relatively small.
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FIG. 5. Tails of the valence interacting electrons cross sec-
tion (solid curves) as compared to the third-order contribution
due to all the electrons of Al for 500 keV incoming photon ener-
gy and 150° scattering angle (long-dashed curve). Cross section
due to noninteracting electron gas (right scale, short-dashed
curve).



APPENDIX

In this appendix we report the cross section of the
Compton process for the third order in the fine structure
constant (@=e?/#ic). We use the formalism of Ref. 14,
which is relativistically invariant and successively confine
it to a particular reference frame. According to the dis-
cussion given in the text we assume that the scattering
takes place involving one electron only, which is de-
scribed by an initial state having energy E,/N and
momentum p,, negligible as compared to the photon mo-
menta. Then we define the two invariants in the labora-
tory frame:

2 E,
_ = —k .k ,
K m(z, N o Po kKo
£ (A1)
2 0
r=— |—k—pyk
m(z) N Po
In terms of x and 7, the differential cross section is
do= 21rr(2)d—;r , (A2)
K
where U is proportional to
EE'KFOIZ' (A3)

spin pol
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If Ko is expanded to the lowest order in «, one has

U=4k '+ 124 "+r Y~ (k/T+7/k),  (A4)
which, inserted in Eq. (A2), gives the Klein-Nishina for-
mula if k and 7 are specified in the rest frame of the initial
electron. If K, is expanded to the second order, it be-
comes a sum of a term proportional to a® and another
one of the order of a®. As discussed in the text it is not
possible to distinguish two processes containing one or
more photons in the final state. Taking into account the
usual Compton process plus the cross section for the dou-
ble Compton process, dop, integrated over all possible
directions of the second photon and over its energy up to
k max, the cross section of the whole process is given by
Eq. (A2) in which U has to be replaced as

U—>U~%Re[U(”} , (A5)
where
UV =P(k,7)+P(1,K) . (A6)

The function P(k,7) is discussed in detail in Ref. 20
where a comparison with the equivalent formalism of
Akhiezer and Berestetskii!® is reported and two printing
errors are corrected.
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