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The temperature behavior of the zone-center soft modes of KTa03 and SrTi03 is remeasured
between 5 and 300 K by the technique of hyper-Raman spectroscopy, the experimental errors of
soft-mode frequency and damping constant being reduced to below +1 cm . The results are taken
as a stimulus to a refined treatment of the prototype dynamical model of a ferroelectric crystal, i.e.,
a lattice of anharmonic oscillators randomly driven by a heat bath and coupled to each other by a
dipolarlike intercell interaction. While the intercell coupling is described as previously in terms of a
molecular-field approximation, the pseudoharmonic frequency of the anharmonic oscillator at each
lattice site is calculated as exactly as possible within the framework of the statistical-linearization
approach. The effective classical potential method is used to test a variety of local anharmonic-
oscillator potentials. In the case of KTa03 excellent fits to the experimental values of the soft-mode
frequency Ao(T) are obtained on the basis of only three parameters characterizing globally the
harmonic limit, the anharmonicity, and the dipolar interaction, respectively. In the case of SrTi03
some uncertainty arises from the unknown dependence of these parameters on the octahedral rotation
in the antiferrodistortive phase below 105 K. In both materials Ao(T) turns out to be too smooth for
deducing details of the local anharmonic-oscillator potential like its anisotropy and the ratio of sextic
and quartic anharmonicity parameters. On the other hand, local potentials of the multiple-well type
with quartic anharmonicities and negative harmonic terms can definitely be excluded.

I. INTRODUCTION

The success of Devonshire's phenomenological descrip-
tion of ferroelectrics suggests the idea to discuss the
dynamical behavior of these materials in terms of an
anharmonic-oscillator model. Provided the relevant di-
electric polarization P is proportional to some linear com-
bination u of ionic displacements, the anharmonic oscil-
lator should move in a potential V(u) quite analogous
to the expansion of Gibb's free-energy density in powers
of P. Although such a conclusion has to be drawn with
caution, it has been con6rmed to some extent by recent
total-energy and &ozen-phonon calculations, revealing
a strongly anharmonic dependence of the energy at zero
temperature as a function of u.

In the case of the incipient ferroelectrics KTa03 and
SrTi03, which are under investigation in the present pa-
per, symmetry requires V(u) to have to fourth order the
form

V(u) = —M~, (u + u„ + u, ) + Agg(u + u„ + u, )2

+2Ag2(u u„+ u„u, + u, u ),

where u = (u, u„, u ) is essentially the displacement of
the central transition-metal ion with respect to the sur-
rounding oxygen octahedron and the tetragonal distor-
tion of SrTi03 below 105 K has been ignored. The pa-
rameters M, uq, Aqq, and Aq2 indicate an appropriate
mass, the oscillator &equency in the harmonic limit, and

quartic anharmonicity coeKcients, respectively. One of
our points of debate will be that the anharmonic terms
in Eq. (1) are so large that even the commonly used
self-consistent harmonic approximation seems to fail.

The problem of incorporating Eq. (1) into the frame-
work of lattice dynamics is rather complicated and will
only be touched on in the following section by combin-
ing and extending arguments from the literature. In the
simplest approach, a local anharmonic oscillator with a
potential as in Eq. (1) is attributed to each unit cell
and coupled to its neighbors by a dipolarlike intercell in-
teraction. If con6ned to one dimension and to quartic
anharmonicities, the model Hamiltonian may be written
as

(2)

with

V(u, ) = -M~, u, + Xu, .2 2 4
2

Here, p~ and u~ represent momentum and displacement
of the anharmonic oscillator of potential V(u~) in the lth
unit cell, while the parameters v~~ denote the intercell
coupling.

Model predictions from Eqs. (2) and (3) have been
deduced on various levels of accuracy. Recently, Cow-
ley and Horton have demonstrated the necessity to go
beyond the self-consistent phonon approximation to ob-
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tain results in acceptable agreement with exact numeri-
cal calculations. Instead, they used the effective classi-
cal potential formalism"' which allows one to treat the
thermodynamics of both single-well (~~2 & 0, A & 0) and
double-well (uz ( 0, A & 0) anharmonic oscillators with
a minimum of computational effort.

In order to introduce the temperature, the ensemble of
independent anharmonic oscillators described by the erst
sum in Eq. (2) is assumed to be in thermal equilibrium.
Refinements may be achieved by applying the variety of
methods elaborated for anharmonic oscillators randomly
driven by a heat bath. The branch of lattice modes
resulting from the second sum in Eq. (2) can be recog-
nized in the poles of the generalized susceptibility y(q, u)
characterizing the collective response to an external dis-
turbance of given wave vector q and frequency u. '

The set of parameters appearing in Eqs. (2) and (3) is
regarded as adjustable to experimental data while lack-
ing any obvious relation to the set of harmonic and an-
harmonic coupling coefFicients of the usual Taylor expan-
sion of the lattice potential. For the mode of vanish-
ing wave vector, intended to model the zone-center soft
mode, the number of parameters reduces to 3, i.e., wi,
A = hA/(M2u~), and 6(0) = v(0)/(Mu~2), where v(0) is
given by

frequency dielectric response of LiTa03 in terms of cou-
pled anharmonic oscillators moving in a triple-well poten-
tial, while Foster et al. have explained the multiple-
subpeak structure of the soft-mode Raman line of fer-
roelectric PbTi03 as indication of distinct transitions
within a double-well potential.

II. THEORETICAL BACKGROUND

A. Justification of the model

A simple way to establish an analogy between De-
vonshire's expansion of Gibb's free-energy density and
an anharmonic-oscillator potential has been indicated by
Fleury and Worlock. They used the Lyddane-Sachs-
Teller (LST) relation to replace consistently the static
susceptibility y, (T, P, ) as a function of both tempera-
ture T and static polarization P, by the square of the
soft-mode frequency 00(T, P, ). Writing

(5)

with 4 being almost independent of T and P„ they ob-
tained expressions of the form

v(0) = ) vg (4) Qo(T, P, ) = 00(T, O) + As0 (3(P, + 5gP, ), (6)

and the tilde is used to mark dimensionless quantities.
In this paper we show how far a one- or three-

dimensional anharmonic-oscillator model (AOM) based
on Eq. (2) or its three-dimensional equivalent can ac-
count for the temperature behavior of the zone-center
soft modes in KTa03 and SrTi03 if the anharmonicity is
handled more rigorously than in previous works. ' Our
results demonstrate some merits and difBculties of ap-
proaching a genuinely nonlinear problem by adhering to
a rudimentary Hamiltonian, but treating the nonlinearity
in higher-order approximations. We have also improved
the experimental data basis by a careful measurement
of the Stokes and anti-Stokes low-frequency parts of the
hyper-Raman (HR) spectra of KTaOs and SrTiOs in the
temperature range between 5 and 300 K. In comparison
to former HR studies our aim has been to bring the
experimental errors of the soft-mode frequency 00 and
damping constant p down to below +1 cm

The outline of the paper is as follows. In Sec. II we
summarize the concepts and formulas to be applied, some
details being postponed to the appendixes. In Sec. III we
describe experimental problems encountered in measur-
ing Oo(T) and p(T) by HR scattering. In Sec. IV we con-
centrate on 00(T) and its interpretation in terms of the
outlined model on various levels of approximation. The
discussion of p(T) is reserved for a forthcoming paper
in which the conspicuous similarity of 00(T) and p(T)
shall be explained in terms of the transition-frequency
distribution of the local anharmonic oscillator.

Finally, we should mention two very recent attempts
to apply the strongly-anharmonic-oscillator concept to
ferroelectrics. Bakker et al. have interpreted the low-

where c~ is the permittivity of the free space and the co-
eKcients ( and g are directly taken from Devonshire's ex-
pansion. Provided ( and g are positive, Eq. (6) describes
the stiffening of the soft mode in the presence of a biasing
polarization P, . In general, P, can be either spontaneous
or induced by an externally applied electric field. Due to
the lack of a ferroelectric phase, however, only the second
case can be realized in KTa03 and SrTi03 at ambient
pressure. A relation similar to Eq. (6) can be deduced
for the effective or pseudoharmonic frequency O~h of
an anharmonic oscillator moving in a potential V(u) as
given by Eq. (3), extended by a term of sixth power in
u with an additional sextic anharmonicity parameter Il.
In the statistical-linearization approach ' Ozh is deter-
mined by the thermal average of the second derivative of
V(u) according to

2

If the anharmonic oscillator is biased by an external force
I', its potential energy changes to

V(u, E) = V(u, 0) —Eu,

while its frequency O~h is still given by Eq. (7) with
(u2) and (u4) depending on F In the sim. plest approx-
imation, the inBuence of F on the thermal-equilibrium
distribution of u consists in shifting the center without
affecting the central moments ((u —(u)&) ) of any or-
der l, i.e.,
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The corrections to be applied to Eq. (9) are briefly dis-
cussed in Appendix C in terms of the effective classical
potential method. Inserting the approximation (9) in Eq.
(7), we find

MA „(T,(u)z) = MO „(T,0) + 12 (A + 15@(u )0)
x (u)~+30@(u)~. (10)

Comparing Eqs. (6) and (10), we can relate the anhar-
monicity parameters A/M and p/M to the experimental
values of A, (, rl, and the effective charge connecting po-
larization and displacement. In contrast to Qo(T, O) in
Eq. (6), however, 0 h(T, O) according to Eq. (7) always
remains positive for any reasonable set of parameters of
V(u, 0) and is not capable of vanishing or even becom-
ing negative in a potential ferroelectric phase. For this
reason, the model has to be enlarged to an ensemble of
linearly coupled anharmonic oscillators. The pseudohar-
monic frequency of their zero-wave-vector motion is again
described by Eq. (7), only the constant harmonic term
being reduced to Mwi —v(0). If v(0) ) Mwi, the pseudo-
harmonic frequency of the unbiased oscillator ensemble
perfectly simulates 00(T, O) and behaves like the coeffi-
cient of the quadratic term of Devonshire's free-energy
expansion; i.e., it passes through zero with a positive
slope at the potential phase transition temperature.

The AOM under discussion can be interpreted in
the language of lattice dynamics if the dispersion and
anisotropy of the soft phonon branch in wave-vector
space is almost entirely due to long-range dipolar in-
tercell interactions. If we imagine these interactions to
be switched ofF, the soft-mode branch would become flat
and describable by an Einstein oscillator attributed to
each unit cell. Since the positive harmonic contribution
of the Einstein oscillator to the square of the soft-mode
frequency at the zone center is overcompensated by the
negative one of the dipolar forces, an anharmonic exten-
sion has to be introduced as has been done in Eqs. (2)
and (3) which indeed represent the simplest formulation
of the ideas just sketched. Strictly speaking, the local
potential V(ui) of Eqs. (2) and (3) has to be taken as
the result of a Hartree approximation applied to the in-
teractions of the mode of interest with all other phonons
and carried out under the assumption that the long-range
dipolar forces are absent. 2 Although there is no reason
to exclude variations of the parameters of V(ui) with
temperature, the Hartree approximation would lose its
attractive simplicity if these variations become apprecia-
ble. In accordance with the exact interpretation of V(u~),
the displacement coordinate u~ must have the meaning of
a local soft-mode normal coordinate defined as projection
of the set of arbitrary displacements within the lth unit
cell on the relevant soft-mode eigenvector. ' '

The special form of Eqs. (2) and (3) suggests a sta-
tistical treatment quite analogous to that of a Brownian
motion problem. The anharmonic oscillator of a partic-
ular unit cell is singled out as a Brownian "particle" while
the rest of the crystal is lumped together to a heat bath.
In the lowest-order approximation, sometimes called the
conservative limit, the interaction between the Brown-
ian oscillator and heat bath is assumed to be so weak that

our model reduces to an undamped anharmonic oscilla-
tor in thermal equilibrium, its pseudoharmonic &equency
being given by Eq. (7). In the next order of approxima-
tion the linear coupling to the anharmonic oscillators in
the other unit cells is taken into account in the molecular-
field approach applied to the response of the Brownian
oscillator to an external uniform (q = 0) field of given
frequency. The resulting modification of Eq. (7) essen-
tially consists in subtracting v(0) from Mui.

In the case of classical statistics, continued-fraction
techniques have been developed ' to calculate the
pseudoharmonic &equency and the complex &equency-
dependent self-energy of a Brownian anharmonic oscilla-
tor explicitly coupled to the heat bath by both a &iction
and a stochastic driving force, the parameters of which
are related to each other by the fluctuation-dissipation
theorem. The statistical-linearization approach we have
used so far turns out to provide the leading term in such
expansions. Hence further improvements of the statisti-
cal treatment of Eqs. (2) and (3) are expected if dissi-
pative interactions between oscillator and heat bath are
specified. and attention is paid to the resulting self-energy.

The model justification just given does not show how
to incorporate the low-&equency relaxator issue raised
in the case of pure KTa03 and SrTi03 by Maglione et
al. These authors have observed an additional disper-
sion step at temperatures below 65 K which they at-
tribute to a Debye-type relaxator mode with a relaxation
time of the order of 10 ns. Due to the new dispersion
step they have to reduce the contribution of the infrared-
active phonons to the static dielectric constant down to
the order of magnitude of 100 in clear contradiction to
the LST relation which predicts a value of about 4400
for KTa03 in the low-temperature limit. The discrep-
ancy is even more difBcult to explain than the opposite
one reported for BaTiOs and KNbOs (see discussion in
Ref. 30), because in the case of KTaOs and SrTiOs the
&equencies of all zone-center optical phonons, including
the soft mode, are precisely defined and leave no possi-
bility for an additional dispersion mechanism as long as
the LST relation is assumed to be valid. One may argue
that the LST relation does not provide a direct measure-
ment of the zone-center phonon contribution to the static
dielectric constant. Volkov et al. have been able to de-
termine the complex dielectric permittivity of KTa03 in
the frequency range around 300 GHz by backward-wave
spectroscopy. According to their data, the real part of the
dielectric permittivity at 300 GHz already coincides with
the static dielectric constant. Since they restricted their
investigation to the temperature range above 100 K, how-
ever, their results cannot be said to be in con8ict with
Ref. 28. In view of the experimental findings of Refs.
18, 22, 31, and 32 we take the basic proportionalities
P u and Ao(T, P, ) y, (T, P, ) for granted and will
no longer debate on the relaxator problem in the present
paper, thus confining its scope to exploring the capability
of our AOM for describing Oo(T).

B. Rigorous statistical linearization

As stated in the Introduction, the frequencies of the
collective or lattice modes of our AOM are given by the
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poles of the generalized susceptibility y(q, u) describing
the response of the system to an externally applied in-
Bnitesimal force b f, i.e. ,

where h (uz) (w) and h fq(u) are the Fourier transforms of
b (ui) (t) and h fi(t), respectively, and the angular brack-
ets indicate the thermal average. If the dipolar intercell
interaction in Eq. (2) is taken into account in the form
of a molecular Beld, y(q, tu) can be related to the sus-
ceptibility yl (cu) of an individual anharmonic oscillator
according to

x(q, ~) = Xl(~)
1 —v(q)XI(~)'

where v(q) is the Fourier transform of vii . In general,
yl(w) may be written as

My ( ) = jO — + 20 [A( ) —'I'( ))j, (13)

where Ql is the pseudoharmonic frequency and the com-
plex &equency-dependent self-energy is split into the shift
function A(u) and the damping function I (cu). Inserting
Eq. (13) in Eq. (12), we find the frequency Os of the
zero-wave-vector mode to be given by

n,' = n', — + 2n, z(n, ). (14)

Myl(~) = lim )
mn mn

with

Equation (13) has to be compared with formulas ex-
pressing yl(w) in terms of energy levels and matrix ele-
ments of the anharmonic oscillator. If the broadening of
the energy levels is negligibly small, one obtains

m in

(i9)

Using Eq. (A5) of Appendix A, we find that for
l = 2 Eq. (19) becomes equivalent to the statistical-
linearization result

MOI ——M(ui + 12A (u ), (20)

where (u ) is the mean square displacement of the quar-
tic anharmonic oscillator to be calculated from its energy
levels E and matrix elements (n u n) according to

(n u' n) e —t'~-
( ) = "

y —pz„ (21)

Because of the identity of Eq. (19) for l = 2 with Eq.
(20) we consider the second moment of the transition-
frequency distribution to be the best approximation
for 0& available from the foregoing arguments. It
has been demonstrated for a classical Brownian quar-
tic,anharmonic oscillator that the rigorous statistical-
linearization (RSL) approach based on Eq. (20) with an
exact expression for (u ) represents a considerable im-
provement compared to more common approximations,
since it corrects the displacement autocorrelation func-
tion (u(0) u(t) ) in the region around the delay t = 0 where
approximate results diRer most from the exact ones.

In the self-consistent harmonic (SCH) approximation,
(u2) is identified with the mean square displacement

which is well known from the damped harmonic-oscillator
response.

We do not intend to attack the general problem of
transforming Eq. (15) into Eq. (13). Even in the classi-
cal limit this problem seems to be still a matter of debate
in the low-friction case. ' We restrict ourselves to the
question which moment of the transition-frequency dis-
tribution is most appropriate for defining Ol,' i.e. , we ask
for the optimum value of / in

(16) 1
(u ) = coth —PARI (22)

'7t

id+I (CO)did = (18)

where Z is the partition sum of the anharmonic oscilla-
tor at temperature T = (k~P), E the energy of its
nth eigenstate In), and ~ „= (E —E„)/5 the fre-
quency of the transition between Im) and In). Details of
the methods to be used for calculating all energy levels
and matrix elements appearing in yl(w) in the case of
the one-dimensional single-well oscillator with a quartic
anharmonicity are given in Appendix A. The dimension-
less quantity p has the significance of a weight factor
weighting the contribution of each transition frequency

to yl(u). Indeed, it is normalized to 1 according to

) p„=i, (»)
m)n

as follows from Eq. (A3) of Appendix A, in agreement
with the sum rule

of a harmonic oscillator of frequency Ol and Eq. (20) is
solved for Ol(T). In an even simpler approximation the
second term in Eq. (20) is interpreted as a first-order
perturbation (FOP) and (u ) is replaced by the mean
square displacement (u ) in the harmonic limit.

In I' ig. 1 we have plotted Ol in units of uq as a function
of T in units of Ti ——he@i/k~ for A = 0.1 and 10 apply-
ing the three versions of statistical linearization (RSL,
SCH, FOP) just described. As is evident from the lower
diagram of Fig. 1, the FOP treatment of Eq. (20) is
obsolete even at A = 0.1. The SCH approximation yields
the correct overall shape of Al(T), but with significant
deviations from the RSL result at higher temperatures.

Additional insight is gained if the Huctuation-
dissipation theorem is used to decompose (u ) into the
contributions from individual transition frequencies u
We find
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(1) RSL square displacements of a harmonic oscillator ensemble.
In the anharmonic shell model this ensemble consists of
all phonons, the shell eigenvectors of which have an ap-
propriate oxygen component, whereas in our AOM the
Hartree approximation seems to prevent an interpreta-
tion of comparable straightforwardness.

4.6—
4.2— C. ER'ective classical potential method

2.0—

3
1.6—
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/
/

/

5
T/Ti

10

FIG. 1. Temperature dependence of the pseudoharmonic
frequency 01 of a one-dimensional anharmonic oscilla-
tor moving in the potential V(u) = —Muiu + Au .
A = Ahri/(Maui) = 0.1 and 10, Ti ——hei/kn. Solid
line (1): rigorous statistical linearization (RSL). Dotted
line (2): self-consistent harmonic approximation (SCH).
Dashed line (3): effective classical potential method (ECP).
Dashed-dotted line (4): first-order perturbation treatment
(FOP). For A = 10 curve (4) is out of scale.

1 8 V2(T, ()
M B(2 a~ =a~ (T,g)

(25a)

and

Judging &om Appendix A, the determination of 01
Rom Eqs. (20) and (21) appears to be rather cumber-
some, especially if a variety of anharmonic-oscillator po-
tentials shall be tested. This task is much simplified by
the efFective classical potential (ECP) method by which
quantum effects can be incorporated into the formalism
of classical statistical mechanics. The basic idea consists
in replacing the potential V(u) in the Boltzmann factor
of the classical partition function by an effective poten-
tial W(T, () which is a function of both temperature T
and "classical" displacement coordinate ( defined as the
average value of u within the time interval hP. In the
variational approach first developed in Refs. 7 and 8, the
quantum-mechanical partition sum of a harmonic oscil-
lator of frequency ~(T, () is adjusted to the quantum-
mechanical partition sum of an anharmonic oscillator of
arbitrary potential V(u) by means of the path-integral
representation technique. The result is summarized in
two formulas

m )fL

(23)

(25b)

where the ECP average on the left-hand side is defined
by

so that the square of the soft-mode ft. equency can finally
be written as

n2o(T) = [1 —S(0)]+12') " coth
~

.p „T f~
2ldrnn ( 2T )

(24)

where frequencies and temperature are measured in units
of u~ and T~, respectively. This formula is somehow sim-
ilar to that derived within the framework of the anhar-
monic shell model. ' In this model the quartic anhar-
monicity is concentrated in the intra-ionic fourth-order
core-shell coupling of the oxygen ions. Within the SCH
approximation, an adequate description of the temper-
ature dependence of all phonon &equencies throughout
the Brillouin zone is attempted on the basis of 16 ad-
justable parameters. As in Eq. (24), Ooz is expressed
as a sum of a negative term, indicating the instability
of the harmonic lattice, and a stabilizing positive term
given by the product of the quartic anharmonicity pa-
rameter and a suitably weighted average over the mean

f~ ~2(T q) Pw(T, g)dq—
( ( 1 &))ECP JOO pW(~ ~)&&

(25c)

) = (~ )Ecp+( )Ecp' (26)

Details of the algorithm for calculating V ~ (T, (),
a (T, ('), and W(T, () are described in Appendix B.

Identifying the left-hand side of Eq. (25b) with 01,
we arrive at a fourth version of statistical linearization,
also illustrated in Fig. 1 for single-well oscillators with
quartic anharmonicity parameters A = 0.1 and 10. The
low-temperature limit of 01 exactly coincides with the
result of the SCH approach. At high temperatures the
ECP method overestimates the quantum fluctuations.
This is demonstrated in Fig. 2 which compares (( )Ecp

The potential V 2 (T, () is obtained by "smearing" V(u)
over the quantum fluctuations characterized by the quan-
tum spread a (T, (). This quantity is defined as the
quantum contribution to the mean square displacement
(u2) according to
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FIG. 2. Temperature dependence of the mean square
displaceinent (u ) of a one-dimensional anharmonic oscil-

lator moving in the potential V(u) = —Meri u + Au .
A = Ahri/(Maui) = 1, Ti = huti/k~. Solid line (1): mean
square displacement directly calculated from energy eigenval-
ues and matrix elements ((u ) ). Dotted line (2): mean

qm

square displacement in the classical limit ((u ) ). Dashed
cl

line (3): "classical" mean square displacement within the ef-
fective classical potential approach ((( ) ). Dashed-dotted

ECP
line (4): mean quantum spread within the effective classical
potential approach ((a ) ).

and (a )E p with the quantum-mechanical and classi-

cal mean square displacements for A = 1. Nevertheless,
the ECP method turns out to be more accurate than the
SCH approximation of Eqs. (20) and (22).

In Sec. IV we shall apply the ECP approach to poten-
tials more complicated than that of Eq. (3), in particular
to the anisotropic potential of cubic symmetry given by
Eq. (1). We shall also include double-well potentials the
harmonic part of which being negative.

III. EXPERIMENTAL DETAILS AND RESULTS

Our experimental setup has been described
elsewhere. The source of the exciting radiation is an
acousto-optically Q-switched Nd-YAG laser of 1.064 pm
wavelength. For optical multichannel recording of the
HR spectra we use the first stage of a Spex 14018 double
monochromator as a spectrograph and a position-sensing
photomultiplier tube (ITT-F4146M, Mepsicron) as de-
tector. Due to the limited spectral resolution of this ar-
rangement, supplementary single-channel measurements
have to be performed below 50 K by using both stages
of the monochromator and a RCA31034 photomultiplier
tube in the conventional manner.

The upper half of Fig. 3 shows the soft-mode part
of the HR spectrum of a KTa03 sample at 142.6 K as
recorded by the multichannel technique. The sum of a
damped harmonic oscillator response and a b function at
the center of the spectrum is convoluted with the instru-
mental profile and then fitted to the experimental points.
The result is indicated by the solid line. The instrumen-
tal profile itself is presented in a semilogarithmic plot in

O. l

g) 0.01z
UJ

Z 0.001
-120

~ ~

~ ~

( I I I

-80 -40 0 40 80
HYPER RAMAN SHIFT (cm I)

120

the lower half of Fig. 3. It consists of a narrow peak
superimposed on a rather broad pedestal of a less than
l%%uo level. The width of the former is determined by the
entrance slit of the spectrograph while the latter arises
from limitations in the electron imaging capability of the
Mepsicron detector. Analytically, the instrumental pro-
file can be approximated by the sum of two Gaussians
as shown by the solid line. The parameters of the in-
strumental profile and the temperature being given, four
fitting parameters can be deduced, i.e. , 00, p, and the in-
tegrated intensities IHRg and IHRM of the hyper-Rayleigh
line and the Stokes HR line, respectively.

Figure 4 displays the splitting of the soft-mode HR line
of a polydomain sample of SrTi03 in the antiferrodis-
tortive phase at 28.5 K as recorded by the single-channel
technique. The response of two damped harmonic oscil-
lators of different frequencies Op(A2„) and Op(E„), but
the same damping constant p, is convoluted with a trian-
gular instrumental profile and then fitted to the experi-
mental points (solid line). The spectral slit width being
given, four fitting parameters are involved, i.e. , Qp(A2 ),
Op(E ), T, and IHRM.

At temperatures below about 60 K, our efforts to re-
duce the experimental errors of Op (T) and p(T) are some-
what hampered by the observation that even in nominally
pure samples the soft mode is affected by lattice distor-
tions around apparently unavoidable symmetry-breaking
defects.

The variations in Oo and p &om sample to sample at

FIG. 3. Soft-mode part of the hyper-Raman spectrum of
KTa03 at 142.6 K. The scattering configuration is indicated
by x(yy)z, where x, y, and z stand for the cubic crystallo-
graphic axes. A position-sensing photomultiplier and a sin-

gle monochromator are used. The instrumental profile of the
whole system is shown in the lower semilogarithmic plot. The
solid lines in both diagrams are fits to the experimental data
points as explained in the text.



8052 H. VOGT

CO

UJ l
z 0
z C

o
D

tX

tx:
UJ
CL

Z
0

10

03
K

}z

I I I I I t -~r—
20

HYPER-RAMAN SHIFT (cm I)
3O

the same temperature turn out to be correlated to the
hyper-Rayleigh intensity IHRp . Hence an accurate de-
termination of 00 and p would require one to measure
these quantities as a function of IHRL and to extrapolate
them to the limit of IH~L ——0. Since this procedure is
tedious and time consuming, we decide to select those
of our samples for which we observe the weakest hyper-
Rayleigh line and to restrict our discussion to their values

80
KTao

r — 30

FIG. 4. Splitted soft-mode hyper-Raman line of polydo-
main SrTi03 at 28.5 K. The spectrum is measured by the
conventional single-channel method using a double monochro-
mator and a photomultiplier tube. The Av bar indicates the
spectral resolution. The solid line represents a four-parameter
6t to the experimental data points as explained in the text.
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FIG. 6. Frequency and damping constant of the soft mode
of SrTiO~ as functions of temperature.

of Op(T) and p(T), although these values may system-
atically deviate from the ideal ones by about 1 cm at
low temperatures.

The results of our measurements are shown in Figs. 5
and 6.
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IV. TEMPERATURE DEPENDENCE
OF THE SOFT-MODE FREQUENCY

A. Inconsistencies of Barrett 's formula

Barrett's formula, which is often used and com-
mented upon (e.g. , Ref. 15), can be derived from the
present AOM if a high-temperature limit Op(oo) of the
soft-mode frequency Ap(T) is introduced as an additional
fourth parameter in the form

np(T) = Bp(oo)Ap(T)
X/2 '

Op2(oo) + 02p(T)
(27a)

where Op(T) is the soft-mode frequency following from

Eqs. (14) and (20) under the assumption that A(Op) can
be neglected and (u2) taken in the harmonic limit at wq

(FOP treatment), i.e. ,

FIG. 5. Fjrequency and damping constant of the soft mode
of KTa03 as functions of temperature. Solid line: fit of Bar-
rett's four-parameter formula [Eqs. (27)] for the soft-mode
frequency to the experimental points. Dashed line: Barrett' s
formula without the high-frequency limit [Eq. (27b)].

Ap(T) = (ui
~

1 —y(0) + 6A coth —Phut
[
.

2 )
(27b)

As shown by the solid line in Fig. 5, Eqs. (27) reproduce
the experimental values of Op(T) in the case of KTa03
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with an accuracy of better than +0.2 cm and seem
to leave no opportunity for any further improvement,
at least on the basis of four or even more parameters.
We find Ti ——55 K, A = 0.1, v(0) = 1.3, and A(oo) =
162 cm

Despite this success, Barrett's formula sufFers from
three basic inconsistencies:

(i) Since the value of Ao(oo) is sufficiently near the fre-
quency of the temperature-insensitive (compared to the
soft mode) TO2 phonon at about 200 cm i, the "fre-
quency repulsion" between phonons of identical symme-
try type seems to be a reasonable explanation for the
high-temperature limit of Oo(T). However, if we compare
the four-parameter expression Oo(T) (solid line) and the
corresponding three-parameter expression Oo(T) (dashed
line) in Fig. 5, we have to conclude that the TOi-TO2
"frequency repulsion" already starts at 50 K, which is dif-
ficult to accept because the phonon frequencies are more
than 150 cm apart and have linewidths smaller than
5 cm

(ii) As demonstrated in Fig. 1, a FOP treatment of Eq.
(20) approximating (u ) by the harmonic limit (u ) is

inadequate even if A is as small as 0.1.
(iii) Combining Eqs. (6) and (10), we can estimate

A/M &om experimental values of A, ( (Ref. 22), and
the soft-mode transverse efFective charge Z+ (Ref. 42)
defined by

P = —Z QMu, (28)

where N is the number of unit cells within the volume
V. We find A/M to lie in the interval between 2.5 and
6 x 10 3 s and to be around an order of magnitude
larger than A/M = Audi /5 = 3.5 x 107 3 s following

from A = 0.1 and Ti ——55 K. With regard to the failure
of the FOP treatment, this discrepancy indicates that A

should be substantially larger than 0.1.
In addition to the three inconsistencies just specified,

another problem arises in SrTi03 &om the splitting of
the soft mode into two components of symmetry type
A2„and E„, respectively, associated with the antifer-
rodistortive ordering of the oxygen octahedra below T
105 K. In Fig. 7 we have plotted the temperature depen-
dence of the average frequency

Z/2

Oo —— — Bo (A2„) + 20o (E„)3- '

80
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U~ 60
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0 20
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Although a satisfactory description of the experimental
data is achieved (solid line in Fig. 7), the ffve-parameter
fit turns out to be highly questionable when compared
with Oo(T) obtained from Eq. (27b) for n = 0. We
encounter not only the same inconsistencies as in the case
of KTa03, but also the additional difBculty of explaining
the loss of quantum paraelectricity in the absence of the
octahedral rotation.

FIG. 7. Fit of an extended five-parameter version of Bar-

rett�'s

formula [Eqs. (27) and Eq. (30)t to the average
soft-mode frequency of SrTiO& defined by Eq. (29). Solid
circles: experimental results. Solid line through circles: ex-
tended version of Barrett's formula with Ti ——78 K, A = 0.07,
8(0) = 1.5, Bo(oo) = 390 cm, and n = 0.05 (deg) . Dashed
line: Barrett's formula without the high-frequency limit and
antiferrodistortive correction of ~i. Crosses: octahedral ro-
tation angle &ps(T) according to Ref. 44. Solid line through
crosses: empirical three-parameter description of ps(T) in
terms of a Brillouin function.

~i(T) = ~i(T-) [1+~~.'(T)j. (30)

which is expected to be independent of the electrostric-
tive spontaneous strain accompanying the octahedral
rotation. Fitting Barrett's formula to Qo(T), we have
to take into account that below T the three parame-
ters ui, A, and u(0) indirectly depend on temperature
via the spontaneous rotation angle &p, (T). This order
parameter is also shown in Fig. 7, together with an em-

pirical description in terms of a three-parameter Brillouin
function. In order to confine the number of adjustable
parameters to 5, let us assume ~i to be the only param-
eter varying with p, (T), i.e. ,

B. One-dimensional anharmonic-oscillator potentials

The upper half of Fig. 8 shows a fit of Eqs. (20), (21),
and (14) under neglect of A(Oo) to the experimental val-
ues of Oo(T) obtained for KTaOs, the matrix elements
and energy eigenvalues being computed by the algorithms
outlined in Appendix A. For all temperatures under in-
vestigation the vibrational quantum number n can be re-
stricted to the range n ( 50. Compared. to the parameter
values obtained for Barrett's formula, the quartic anhar-
monicity coeKcient A has now increased &om 0.1 to 0.6,
while Tq and the "classical transition temperature" To if
defined by~5
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FIG. 8. The temperature dependence of the soft-mode
frequency of KTa03 and its description in terms of
a one-dimensional anharmonic-oscillator model based on
unit-cell potentials of the form V(u) = —Muiu + Au . The
lower diagram shows the transition-frequency weight factor
p +q, as a function of temperature for n = 1 to 5. See Sec.
IV B for further explanation.

volved, raising simultaneously the mean frequency and
the linewidth. This phenomenon, sometimes called fre-
quency straggling, may be considered as the key to the
understanding of the soft-mode behavior in terms of the
present AOM.

No acceptable fit to the experimental data is achieved
if we assume wi ( 0, A ) 0 and calculate Op(T) by the
ECP method. Therefore we can definitely exclude the
double-well version of the one-dimensional potential of
Eq. (3).

An even better fit than that of Fig. 8 is obtained if
the ECP method is applied to a potential V(u) with a
sextic anharmonicity pu in place of a quartic one. For
Ti ——50 K, p = p(Rui) /(Mui) = 0.05, and 8(0) = 1.3,
the soft-mode frequency Op(T) of KTaOs is reproduced
within the experimental errors as shown in Fig. 9. The
improvement of the 6t suggests to take into account a
sextic anharmonicity in addition to the quartic one in
accordance to Eq. (6). Since Op(T) is a rather smooth
curve, however, it does not permit to determine the ratio
p/A to any acceptable degree of accuracy.

In Fig. 9 we have also plotted the sextic-anharmonicity
fit obtained for the average soft-mode frequency Op(T)
[see Eq. (29)] of SrTiOs. The parameter values are Ti ——

80 K, p = 0.025, 8(0) = 1.5, and n = 0.04 (deg) where
n is defined by Eq. (30). The dashed curve refers to
o. = 0, the other parameters being kept unchanged. As

80

f 8(0) —1&Tp=
/ (»)

12A )
almost remain the same (Tp = 14 K). Thus the param-
eters A and Op(oo) in Barrett's formula can be replaced
by the enlarged parameter A alone, provided the anhar-
monicity is treated more rigorously than in the FOP ap-
proach. Strictly speaking, we also have to correct Eq.
(31) since in the classical limit the virial theorem yields

M(ui2 (u') = kIBT —4A (u') .

As far as the anharmonic term on the right-hand side
cannot be neglected, the temperature Tp at which Op(T)
vanishes in the classical limit becomes larger than the
value given by Eq. (31). For Ti ——53 K, A = 0.6, and
8(0) = 2.9, we have to correct Tp from 14 to 35 K. The
new value is closer to the "extrapolated classical Curie
temperature" T* = 40 K quoted recently by Martonak
and Tosatti, who associated it with the onset of qua-
sistatic local disorder indicated by NMR data for T &
4~ K.4'

In the lower half of Fig. 8, the weight factor p +q
is plotted as a function of temperature for several values
of n, the parameters Tq and A having the values speci-
Bed in the upper diagram. With increasing temperature
more and more transition &equencies w +q become in-

60z

40
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I-
20
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0 I

100
l

200 300
TEMPERATURE (K)

FIG. 9. The temperature dependence of the soft-mode fre-
quencies of KTaO& and SrTi03 and its description in terms
of a one-dimensional anharmonic-oscillator model based on
unit-cell potentials of the form V(u) = —M&uzu + pu . The
dashed line refers to n = 0, the other parameters being kept
unchanged. See Sec. IVB for further explanation.
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in Fig. 7, there seem to be indications that the increase
of ui due to the octahedral rotation p, (T) in the anti-
ferrodistortive phase prevents SrTi03 f'rom undergoing
a ferroelectric phase transition around 35 K. Although
this suggestion is quite .attractive, we should admit that
the crucial dependence of the three model parameters
on p, (T) is entirely unknown and that Eq. (30) only
presents the simplest approximation intended to reduce
the number of parameters as much as possible. On the
other hand, the temperature dependence of the model
parameters via y, (T) turns out to be necessary in order
to describe Dp(T) by our AOM. Assuming a quartic an-
harmonicity, we find Ti ——87 K, A = 0.36, v(0) = 2.7,
and n = 0.05 (deg) 2. As in the case of KTaOs the
more rigorous treatment of the nonlinearity permits one
to abandon the high-frequency limit Ap(oo). Again the
o, = 0 curve intersects the T axis, suggesting a ferroelec-
tric phase transition in the absence of the antiferrodis-
tortive ordering.

C. Three-dimensional anharmonic-oscillator
potentials

In treating the anisotropic potential V(u) of Eq. (1),
we have to require Aii ) 0 and (Aii + 2Ai2) ) 0 because
otherwise the quartic anharmonicity does not provide an
infinite barrier in all directions for ~u~ ~ oo. If ui ) 0,
there is only a single minimum at u = 0. For negative
values of ~z there are either six minima along the cubic
axes (Ai2 & Aii) or eight minima along the (ill) direc-
tions (Ai2 ( Aii). Moreover, a negative harmonic part
of V(u) is always associated with a maximum at u = 0
and 12 symmetry-equivalent stationary points along the
(110) directions which are neither minima nor maxima. 4s

No satisfying description of the experimental values
of Op(T) is achieved for KTaOs and SrTiOs under the
assumption ~z & 0, so that in three dimensions we can
also exclude the multiple-well case of the potential of Eq.
(1). At this point we must stress that the "frozen-mode"
potential

VFM(u) = V(u) ——v(0) u' + u„' + u', (33)

referring to static displacements (on the time scale of
optical phonons), has, of course, a multiple-well character
because its harmonic part is negative due to the intercell
interaction. We may write

VFM(u) = ru + Aiiu
+2 (Ai2 —Aii) (u u„+ u„u, + u, u ), (34)

where u2 = u2 + u2 + u, and v = 2Mwi2 [1 —v(0)] ( 0.
Our interest, however, is focused on the unit-cell poten-
tial V(u) which has to be of the single-well type in order
to account for the experimental data.

For ui & 0 the anisotropy ratio Ai2/Aii turns out to
remain indeterminable. For any value of Ai2/Aii & —0.5
a description of Bp(T) is obtained, the quality of which
in the case of KTa03 is comparable to that of Fig. 8,

60— KTa03

C)I- 40—
0

Tp

20 I

0
Xq2

10

FIG. 10. The temperatures Tz and To obtained by describ-
ing the temperature dependence of the soft-mode frequency of
KTa03 in terms of a three-dimensional anharmonic-oscillator
model based on unit-cell potentials given by Eq. (1). Since
the four parameters of this model [Ti, Aii, Aig, and v(0)] are
too many, the anisotropy ratio Aiz/Aii is kept fixed. For all
values of Aiz/Aii three-parameter fits of almost equal quality
are achieved, demonstrating that no information about the
anisotropy can be gained. Tz and To characterize the har-
monic limit and the "classical Curie temperature, " respec-
tively.

V. SUMMARY

The model of linearly coupled anharmonic oscillators
is examined on its capability to describe the tempera-

the maximum deviations from the experimental points
varying below 1.2 cm . Figure 10 shows the optimized
values of the characteristic temperatures Ti and Tp [Eq.
(32)] as functions of Ai2/Aii. Thus the smoothness of
Op(T) prevents our analysis &om deducing details about
the three-dimensional features of V(u) and leads to un-
certainties of Tq and Tp around k5 K.

Let us Gnally pay attention to the formal equivalence
of Eqs. (33) and (34) to similar expansions in recent
first-principles investigations (see Ref. 48 and references
therein). The question arises how far the values of K,

Aii, and 2(Ai2 —Aii) calculated there should be com-
pared with the results of our fits. Without pretending
to give the exact answer, we state that numerical agree-
ment cannot be expected because the coupling between
the soft-mode displacements and other lattice distortions
is treated in entirely difFerent ways in both cases. The de-
tails of this coupling are neglected in our model in favor of
a simplified thermal average procedure. They are taken
into account much more accurately in Grst-principles
calculations, which, however, must resort to extensive
Monte Carlo simulations in order to describe any tem-
perature dependence. Estimates of v and Aqq based on
our Gts yield orders of magnitude consistent with those
obtained by 6rst-principles investigations of various cu-
bic oxygen perovskites. Extending our method to other
members of this class of materials, we may fInd the cor-
rect trends in the variations of the "frozen-mode" poten-
tial parameters.
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ture dependence of the zone-center soft-mode frequencies
of KTa03 and SrTi03 within the limits of accuracy ob-
tainable by hyper-Raman spectroscopy. A combination
of molecular-6. eld and statistical-linearization approaches
seems to be adequate for calculating the frequency of
the zero-wave-vector mode of the model system. Within
this framework, however, the commonly used first-order
perturbation treatment and self-consistent harmonic ap-
proximation turn out to be insufBcient. Improvement
is achieved by calculating the thermal averages of the
anharmonic oscillators either rigorously or by the eKec-
tive classical potential method. The algorithm of the
latter has the advantage of being rather easily applica-
ble to a large variety of anharmonic-oscillator potentials.
In particular, it permits one to exclude local multiple-
well potentials of quartic anharmonicity in the case of
KTaOs and SrTiOs. The temperature dependence Qo(T)
of the soft-mode frequencies is found to be too smooth for
deducing details of the single-well anharmonic-oscillator
potential like its anisotropy or the ratio of sextic and
quartic anharmonicity coeKcients. While excellent three-
parameter Gts to the experimental data are obtained for
KTaOs, a satisfactory description of 00(T) in the case
of SrTi03 is only possible if the model parameters are
assumed to become temperature dependent due to the
antiferrodistortive ordering below 105 K.

(m([H, Q](n) = (E - E„)(m(Q(n), (A2)

where H is the Hamiltonian of the oscillator and Q an ar-
bitrary observable. Substituting u, [H, u], and [H, [H, u]]
for Q, we find the following set of equations:

mun (A3)

) |d „(m ~u~ n) = E„———(n u n), (A4)

) (u' „(m ~u~ n)' = —+ 6A (n u' n),
m

(cu „—1) (m~u~n) = 4A(m u n) .

(A5)

(A6)

In a first step we extend the dipole-moment selection rule
of the harmonic oscillator to the anharmonic one, i.e.,

(m ~u~ n) = 0 for m g (n + 1).

treatment with a perturbative one.
Beside E, we have to know the matrix elements of

powers of the displacement u. An accurate evaluation
requires a tedious numerical determination of the wave
functions. This difFiculty can be circumvented by ap-
proximations based on sum rules and recurrence relations
deducible from the hypervirial theorem53
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APPENDIX A: ENERGY LEVELS AND MATRIX
ELEMENTS OF A ONE-DIMENSIONAL

SINGLE-%ELL OSCILLATOR
WITH A QUARTIC ANHARMONICITY

(n ~u~ n + 1)'

(n ~u~ n —1)

1 + 8~~ ~—&En + 3~
2 (~n+1,n + ~n, n —1) ( + 3~n, n —1 tdn+1, n)

(As)

Using dimensionless quantities throughout, we omit
the tilde in the following three appendixes. Energies,
temperatures, and lengths are understood to be mea-
sured in units of Ruq, Tq, and (h/Muq), respectively.
Let us consider the one-dimensional potential

V(u) = —u + Au (A ) 0).
2

(A1)

The quantum mechanics of an oscillator moving in such
a potential has attracted persisting attention since Ben-
der and Wu discovered the divergence of the common
Rayleigh-Schrodinger perturbation expansion of the en-
ergy eigenvalues E in powers of the anharmonicity pa-
rameter A for all n and all positive values of A, no matter
how small. Rapidly converging algorithms permitting a
calculation of E to any degree of accuracy have been
developed by Hioe et aL ~ If an error around +0.5% is
accepted, various simpler methods of approximation are
available from the literature. We choose the approxima-
tion proposed by Yamazaki who combined a variational

—1 + 8~n+x, md —3~„+q,„
2(cd +y +M y) (1+368 j&d +y )

(A9)

In a second step we take into account the matrix elements
(n ~u~ n 4 3), approximating the expectation value of the
square displacement by

(n u n) = ) (n~u~n+ v)
v= —3

(A10)

The matrix elements (n ~u~ n + 3) follow from Eq. (A6)
if the right-hand side is calculated by means of Eqs.
(A8) and (A9). Inserting (n ~u~ n + 3) in Eqs. (A3) and
(A4), we obtain improved expressions for (u ~u~ n + 1)
and (n u n).

In Fig. 11 we have plotted the transition frequency
w +q and the matrix element (n u2 n) as functions
of the quantum number n for A = 0.1, 1, and 10. The
consistency of our calculations is checked by means of the
virial theorem
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E„=(n u' n) + 3A(n u' n) . (A11)

Computing the left-hand side by Yamazaki's algorithm
and the right-hand side from the matrix elements
(n ~u~ n + 1) and (n ~u( n 6 3), we find the difFerences be-
tween both sides to be less than 1.5%.

APPENDIX 8: SUMMARY OF THE EFFECTIVE
CLASSICAL POTENTIAL METHOD APPLIED

TO ANHARMONIC OSCILLATORS

FIG. 11. Transition frequencies u +z, and matrix ele-
ments (n u n) of an anharmonic oscillator moving in the
potential V(u) = —u + Au with A = 0.1, 1, and 10. Dimen-
sionless quantities are used throughout.

"(~ T) = V(&) + — '+ 3~(,.(.)2

+15@(as + 3a4(2 + 2(4) (84)

((,T) = 1+ 12k (( + a ) + 30@(( + 6a ( + 3a ) .

(85)

Substituting expression (83) for a in Eq. (25a) or (85),
we obtain an implicit equation for u(g, T). If V(u) rep-
resents a multiple-well potential, e.g. , A ( —(3)a/2) in
Eq. (Bl), w((, T) may become purely imaginary, whereas
a (g, T) remains positive.

(c) The partition sum Z of the anharmonic oscillator
can be calculated according to the "classical" formula

( T ) ' W(g, T)
d exp(2') ~ T (86)

where

-(CT) y b, „g„d,d
()o ~ th q

A
these quantum Quctuations are approximated by those of
a harmonic oscillator of appropriately adjusted &equency
~(& T)

(b) The position- and temperature-dependent f're-

quency w((, T) is given by the second derivative of
V 2 (g, T) with respect to ( according to Eq. (25a). In
the case of our example specified by Eqs. (81) and (84),
we find

The ECP algorithm used in this paper can be divided
into four steps. For illustration, we choose the potential

W((, T) = V ~ (g, T) ——u ((, T)a ((, T)

(sinh
+T ln (( T)

2i
(87)

1 2V(u) = —u + Au + pu' (p ) 0).
2

(81)

(a) At a fixed temperature T, the smeared potential 's

V ~((, T) is introduced as the average of V(u) over a
Gaussian displacement distribution centered at the "clas-
sical" position (, i.e.,

(d) Thermal averages can be deduced from Eq. (86)
by taking the derivative with respect to parameters ar-
tificially introduced in V(u). Manipulating the exact
quantum-mechanical expression of Z in the same way
and equating the results of both differentiations, we find
for any potential V(u) and any positive integer l

V..(r, T) = f d«V(«)G(« —g;«, T), (82a)
1 d2k

&-(2k)« ' zp«~) (88)

where

/Q 2

G(u;(, T) = (2vra ) & exp (82b)

The quantum spread a2 = a2((, T) is defined by the dif-

especially

(u) = (&)ECX»

("') = (&')ECP ( ')ECP '

(88a)

(88b)
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( ') = (&')Ecp+3("~)Ecp
( ') =(&)„,+6( & ), +3( )

(B8c)

(B8d)

The ECP average is now given by triple integrals over
the whole ( space.

2

Moz ——M(~ (j,r))z~p —
~ ) . (BS)

Extending the ECP procedure to a three-dimensional po-
tential V(u), we have to generalize Eq. (B2b) to

1 2

G(u;(„T) = (87r a a„a,)
' exp

2u

2Q

2u

2G

The ECP averages on the right-hand side have to be un-
derstood in the "classical" sense according to Eq. (25c).
Comparing Eqs. (B5), (B8b), and (B8d), we immediately
verify Eq. (25b), i.e. ,

APPENDIX C: THERMAL AVERAGES
QF A BIASED ANHARMONIC OSCILLATOR

Let us consider a one-dimensional anharmonic oscilla-
tor under the influence of an external static force E [mea-
sured in units of (hMwi) ], the total potential being3 x/2

given by Eq. (8). Applying the algorithm of Appendix
8, we immediately recognize that the eBective classical
potential W((, T, E) contains E only in the form E(, s—o
that the thermal averages can be expanded in powers of
E/T like their classical counterparts. Thus the quantum
analogue to Kirkwood's formula may be written as

(B10)

where the three quantum spreads a, a„, and a, as well as
the corresponding harmonic oscillator frequencies u, u»
and u, depend on ( = ((, (,'„,(,) and T. In the presence
of cubic symmetry, Eq. (BS) has to be rewritten as

MO2 M 2 T 0 v

/B (u) p')
BE (C1)

where (( ) refers to the undisturbed oscillator the po-
tential V(u) of which is assumed to be an even function
of u.

The shift of the second central moment due to E is
given by

2

u —u + — u = — — —3 + a — a

4

+—„~ ; ~ (((').— ~ (('). (~*).+ » (&')'.

+ (.*&').—6 (.'&'). (&'). + ~ (.'). (&')' —(.'). (&').) + (c2)

The coeKcients in this expansion consists of cumulants
of ( and of terms describing correlations between (z and
a . In general, the correlation terms can be neglected
in comparison to the cumulants of (, so that a modified
classical expression is retained.

According to Eq. (C2) and similar formulas for the

I

shifts of the higher-order central moments, the assump-
tion of Eq. (S) in Sec. II is correct in both the low-
and high-temperature limits. In the intermediate range
it holds if the ratio E/T is sufficiently small or the Boltz-
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Gaussian distribution.
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