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Origin of magic angular momenta in few-electron quantum dots
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We show the effect of quantum-mechanical symmetry on determining the features of two-dimensional
few-electron quantum dots, and thereby elucidate the origin of the magic numbers.

Recent advances in microfabrication have allowed the
creation of quantum dots in semiconductor heterostructures

by laterally confining two-dimensional electrons. The con-
fining potential is, to a good approximation, parabolic and a
small number ji/ (N=1,2,3, . . . ) of electrons per dot has
been achieved experimentally. ' The electronic states of a
few-electron system subjected to a strong magnetic field
have been studied extensively. " For example, to under-
stand the fractional quantum Hall effect, Laughlin first stud-
ied the states of a three-electron system in two dimensions in

a strong magnetic field and confined by a parabolic potential.
Laughlin explicitly constructed the spin-polarized correlated
states in the lowest Landau level and showed that they ap-
proximated the exact eigenstates well. The ground states
turned out to be incompressible since only "magic numbers"
of the angular momentum L =3k (/c=1,2,3, . . . ) of the
ground state minimize the Coulomb repulsion. Girvin and
Jach extended the analysis to systems containing more elec-
trons. The magic numbers were seen to exist, but the rules
explaining them seemed to increase in complexity as the
number of particles increased. The role of the electron-
electron interaction and the effects of the external magnetic
field on few-electron states in quantum dots have been stud-
ied by Maksym and Chakraborty (MC). By numerically di-

agonalizing the Hamiltonian, MC calculated the energy spec-
tra of three- and four-electron quantum dots and pointed out
that the angular momentum of the ground state of the elec-
tron systems changed with increasing magnetic field through
the series of magic numbers formerly discovered by Laugh-
lin, Girvin, and Jach. Analyses based on partial-wave mix-
tures did not arrive at a reasonable explanation. The strong
efforts towards developing the general rules obeyed by the
magic numbers for an arbitrary number of electrons at an
arbitrary spin have not been successful because the origin of
the magic numbers has not been clearly known. It is the
purpose of this paper to demonstrate that the quantum-
mechanical symmetry (Pauli principle and rotational invari-
ance) plays a decisive role in determining the states of these
few-electron systems. Consequently, the magic numbers or
fractional filling factors (FFF's) in quantum Hall effects have

a very simple physical origin and the rules determining the
magic numbers are easy to derive algebraically,

Let us first consider a system of three electrons moving in
the x-y plane subjected to a parabolic confinement; the
Hamiltonian reads
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where

H=H, m+HI, (2)
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is for the c.m. motion, and
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is for the internal motion, where M=3m*, p&=m*/2,
p, =2m*/3, and

e2

where the term proportional to r,. arises from the confine-
ment. A noteworthy point is that the equivalent particle-
particle potential u(r;, ) is repulsive at small separation but
attractive at large separation, with a minimum at

ro —=(3e /47rem*coo) / . Therefore, the landscape of the to-
tal potential energy surface U=Z, ~ u(r;, ) in the multidi-
mensional coordinate space is quite different from that with-
out the Coulomb interaction. There is a minimum in U
associated with an equilateral triangle (ET) with all the side

where r; is the position of the ith particle, v(r;, ) is the Cou-
lomb interaction, r; j =

I
r; —rj!. Introducing the center of

mass (c.m. ) coordinates R, =(ri+ rz+ r3)/3 and the Jaco-
bian coordinates (=ri —rz, r/=r3 —(r, +rz)/2, the Hamil-
tonian is then separated into
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lengths being equal to rp. There is also a saddle point in U
associated with a straight line (SL) with equal separations
between adjacent particles. If the wave function is smoothly
(without nodal lines) distributed around the above ET, the
binding will be averagely strong and the internal motion will
appear only as a gentle oscillation around the equilibrium of
ET configuration. The total energy can then be minimized.
Hence, the ET is the most important configuration of three-
electron systems and should be pursued by low-lying states.
However, we will see that in some cases this favorable con-
figuration is prohibited by symmetry.

For circular quantum dots, the eigenstates of HI are clas-
sified by the total spin S and the total orbital angular mo-
mentum L [denoted by (S,L)]. In the polarized (S= —',) states,
the spatial part of the wave function 4 is antisymmetric; thus
it is invariant under cyclic permutation P{123~,

+L P (123)+L

E(meV)
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If the electrons form an ET, a cyclic permutation is equiva-
lent to a rotation by 120'. In this case, we have 0.40

S= 1/2

P(t23) 4&/ (ET) = exp(i-,'7rL )4/ (ET).

Combining Eqs. (6) and (7), we obtain

[1—exp(i-,'rrL)]4/(ET) = 0.

(7)

(8)

0.38

E(rneV)o g7

In Eq. (8), if the first factor is not equal to zero, 4L( ET) has
to be zero. This is called an ET prohibition; it occurs when
L 43k, where k is an integer. Once the ET prohibition
occurs, an inherent nodal line appears in the wave functions
at the ET configuration, resulting in instability. ' It will
soon be clear that the ET prohibition is the most important
factor affecting the energy spectra. In the unpolarized (S=
—,') states, the wave function can be expanded as

@a 1/2+ C b 1/2
LXP LX1 (b)
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where X, is the spin part with the spins of particles 1 and 2
coupled to s, then s is coupled with the spin of particle 3 to
S. Since t// is antisymmetrized, the spatial parts are subjected
to the transformation

FIG. 1. The energy spectra of a three-electron system in a quan-
tum dot with weak confinement (@coo=0.01 meV). (a) 5 =

2 states,
(b) S= 2 states.
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under cyclic permutation. If the electrons form an ET, Eq. (7)
holds also for 4~(ET) and 4/ (ET). Then, instead of Eq. (8),
we have

[1+exp(i-', 7rL)+e p(xi ,vrL)]&&~ (E/T) =0-(j=a,b)
(11)

If the first factor in Eq. (11) is not equal to zero, the ET
prohibition occurs. In contrast with the S= -', states, now it
occurs when L =3k.

To see the effect of ET prohibition, the Hamiltonian was
diagonalized in a model space spanned by translational-
invariant harmonic oscillator product states,

(12)

where A is the antisymmetrizer. The antisymmetrization was
realized by using the two-dimensional Talmi-Moshinsky
transformation brackets. "The dimension of the model space
is constrained by 0~No=2(n, +n2)+ it!+ Iiz! —24. If N is
increased by 2, the ratios of the difference in energy and the
energy in the head states [the lowest one of a (S,L)] is less
than 0.001%. To emphasize the particle-particle correlation,
a large dot (facto= 0.01 meV) where the Coulomb interaction
is dominant has been chosen. The other parameters are taken
appropriate for GaAs.

In the case of S= ~, the spectrum is given in Fig. 1(a). It
shows that the head states without ET prohibition (i.e.,
L =3k) are remarkably lower. To show the internal structure,
as an example, the wave function of the ('-,,0) head state is
plotted in Fig. 2(a) as a function of g and ri with 0, the angle
between g and r/, given at its optimized value 90 . This
figure shows that the wave function is smoothly distributed
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tern evolves back and forth between these two peaks by
crossing the nodal line repeatedly.

Since in the SL configuration a rotation of 180 is equiva-
lent to an exchange of the two particles sitting on the two
ends, there is a SL prohibition for the L even states. The SL
prohibition has no effects on the low-lying states of a large
quantum dot where the ET configuration is strongly pursued,
but induces instability in a small dot. This makes the FFF's
with even denominator more difficult to observe than those
with odd denominator.

Our detailed observations of the wave-function distribu-
tion in the multidimensional coordinate space reveal that, if
two different (S,L) sequences are subjected to the same con-
straint from symmetry [e.g. , the (2,3) and the ('-„9)], then
there is a one-to-one similarity between the corresponding
states of the two sequences. This fact facilitates the classifi-
cation of the whole spectra. '

Experimentally, a homogeneous magnetic field
perpendicular to the x-y plane is applied. In the sym-
metric gauge, the Hamiltonian of Eq. (4) then has

a new cup~ getup+ co, /4 with the cyclotron frequency
ru, = eB/m *, and has the additional Zeeman terms
(ru, L/2+ g*/L~B,S) which have no effect on the wave func-
tion but shift the energy levels. The Zeeman terms have
preference for large angular momentum and make the unpo-
larized states unfavorable. As a result, the ground state will
run over the series L =3k (k=0,1,2, . . . ) with increasing
magnetic field.

The above analysis is easily extended to other few-
electron systems. For example, in the case of n, =4, the
minimum of U is associated with the square (SQ) configu-
ration. However, a rotation of the SQ by 90' is equivalent to
a cyclic permutation PI,234) (an odd permutation). Thus in
the polarized (5 = 2) states (where there is only one compo-
nent for the spatial part), instead of Eqs. (8) and (11), we
have

FIG. 2.
I PI plotted as a function of ( and g with 8=90 . (a)

The head state of (2,0), (b) the head state of (2,0). The contours
marked by 1,2,3,4 give 4, 2, 4, —,0 of the maximum, respective1y. The
line is given by r/= Q3(/2, representing the ET configuration. The

length unit is ap= gA, /(m*cop).

/ 7r
1+exp' i —L 4(SQ) =0. (13)

around a peak on the line r/= v3$/2 at g= rp. Besides the
wave function of the other (-'„3k) head states appear exactly
the same as shown in Fig. 2(a). Thus in all the (-'„3k) head
states, the favorable ET configuration is strongly pursued,
resulting in a particularly low energy. The J.= 3k is
just the magic numbers. Using the well-known formula
v = n, (n, —1)/2L, " the sequence of FFF's reads 1,—,', —,',

. From the above analysis, it is now clear that the ap-
pearance of the magic numbers is due to the ET prohibition.

In the case of 5= L the spectrum is given in Fig. 1(b). It
shows also that head states without ET prohibition (i.e.,
L 43k) are remarkably lower, while the L = 3k head states
are remarkably higher. To show the internal structure of an
ET-prohibited state, the wave function of the ( 2,0) head state
is plotted in Fig. 2(b). The y= Q3g/2 line is now a nodal line
demonstrating the ET prohibition. There are two peaks asso-
ciated with a sharp and a flat isosceles triangle, respectively.
The nodal line induces an energetic oscillation, and the sys-

I
I —exp(i,'-vrL) ]4'(EP) = 0, (14)

1+exp i —L &b(CSQ) =0. (15)

The magic numbers are those values satisfying
[1+exp(i'/2)] = 0 (otherwise, the SQ-prohibition occurs);
they are L = 2(2k+ 1). Consequently the FFF's read1331

)5)7) 3~

In the case of n, = 5, there are two minima in U having
similar energies. One is associated with the equilateral pen-
tagon (EP) and the other one is associated with the centered
square (CSQ, i.e., a square with an extra particle at the cen-
ter). A rotation of the EP by 72' is equivalent to a cyclic
permutation Pt/2345) (an even permutation), a rotation of the
CSQ by 90 is equivalent to a cyclic permutation P(]234) as
before. Thus, in the polarized (S= ~) states, instead of one,
we have two equations as
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The magic numbers are those values of I. giving

[1—exp(i-, rrL)] or [1+exp(irrL/2)] to be zero; they are

0,2,5,6,10,14,15,18,20,22, . . . . Accordingly, the FFF's read52515251
r 7r 3r 9r 2r ]]r 5r ]3r 3r '

The above derived magic numbers are exactly the same as
those found by exactly diagonalizing the Hamiltonian.
Now, the origin of magic numbers is clear. It is noticeable
that the filling factor is common in a number of few-
electron systems (at least, it is common in n, = 3, 4, 5, and 6
systems). This explains why the signal corresponding to is
particularly strong in experiments.

In the above procedure of analysis, parabolic confinement
has been assumed and the c.m. motion is separable from the
relative motion. In the case of nonparabolic confinement,
there is hybridization of c.m. and relative motion; however,
the magic numbers remain the same. ' Thus the magic num-

bers are insensitive to details of the dynamics; the dominant
factor is the constraints of symmetries.

The method presented here is applicable to other strongly
correlated few-body systems such as the multiexcited states
of atoms and nuclei where the shell model is no longer
valid. ' The outcome is that it projects the spectrum into
rotation bands and the order of bands can be well under-
stood. Traditionally, our physical understanding of con-
straints arising from symmetries (e.g. , Pauli principle) relies
seriously on the independent particle model. The present
method provides a key to understanding the symmetry con-
straints in strongly correlated systems where the concept of a
single-particle state is no longer valid.
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