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Manifestation of spin degrees of freedom 1n the double fractional quantum Hall system
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The double fractional quantum Hall system of spin- —, electrons is studied numerically. %e predict
that the inclusion of spin degrees of freedom gives rise to a spin-unpolarized quantum liquid with the
simplest example being at v= —.The state, which emerges from an intimate link between the spin state

and the interlayer electron correlation, and also survives the Zeeman efT'ect up to a critical g factor, illus-
trates that the fractional quantum Hall liquid is versatile enough to accommodate both the doubled fer-
mion species and spin. Even when the ground state is spin polarized as in v=1, the lowest charge-
excitation mode can involve the spin when the interlayer tunneling is considered.

Recently, much attention is focused on the double frac-
tional quantum Hall (FQH) system, in which two layers
interact with each other as realized in double quantum
wells' or in wide single quantum wells. Specifically, Ein-
stein et a/. have observed a FQH state at a total
Landau-level filling of v= —,

' in a structure in which the
interlayer tunneling is prohibited due to a barrier separat-
ing the two layers and yet the two layers are coupled via
Coulomb interactions. A usual practice in considering a
double FQH system is to introduce a pseudospin describ-
ing the layer degrees of freedom, while the real spins are
neglected under the assumption that they are fully polar-
ized. Then the spin-polarized double FQH system mim-
ics the single FQH system of spin- —,

' electrons, apart from
the differences in the symmetry [U(1) vs SU(2)] and in the
controllability of the "Zeeman energy. "

However, already in single-layer FQH systems, the
real spin degrees of freedom fundamentally affect the
electron correlation via Pauli s principle. Namely, the
ground state is spin fully polarized for some odd-
denominator filling fractions, while the ground state is
spin unpolarized for other fractions as detected in tilted-
field experiments. We must then question if the spin
should be included in the double-layer problem, and we
can indeed envisage that the total spin should crucially

affect the intimate link between the intralayer and inter-

layer electron correlations. Now the real question is as

follows: will the inclusion of the spin degrees of freedom
give rise to a new quantum liquid state~

Motivated by this, we shall show from a numerical
study for finite double-layer FQH systems of —,

' electrons

that the Laughlin s quantum liquid is, rather surprisingly,
versatile enough to accommodate both the double-layer
degrees of freedom and spin degrees of freedom. The
resultant spin-unpolarized FQH state specific to the sys-
tern occurs at v= —', , the simplest fraction predicted from

the double Czreek-Roman wave function, for a certain
range of d/i (the layer separation normalized by the mag-
netic length, I=+ck/eB ), which survives the Zeeman
energy up to a critical g factor. Another motivation of
the present paper is to look into the low-lying excitations
in the coexistence of real and pseudospins in view of the
recently emerged measurements of the excitations in the
FQH system from the inelastic light scattering. ' We
shall show that, even when the ground state is spin polar-
ized as in v= 1, the 1owest charge-excitation mode can in-
volve the spin.

We consider the Hamiltonian, first in the absence of in-

terlayer tunneling, given by

2
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where c & is the creation operator for the mth orbit of
real spin o in layer (pseudospin) A, ( = 1,2), r the in-plane
position, and e the dielectric constant.

%'e have obtained the ground-state wave functions
from the exact diagonalization of finite systems in both
torus and spherical geometries. Since the total spin, S„„
of the system is conserved, we concentrate on the sub-
space of S,"'=(%& N& )/2=0. Still, the inclu—sion of the
spin in the double-layer system enormously increases the

dimension of the Hamiltonian matrix (to typically 8 X 10
for v= —', with four electrons per layer), which has been

diagonalized by the Lanczos method. We have deter-
mined S„, and the intralayer and interlayer electron
correlations for various values of total v and d.

To characterize the numerically obtained wave func-
tions we have looked into, in addition to the radial distri-
bution function, the overlap between the exact and trial
wave functions: we can extend the Greek-Roman wave
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function proposed to accommodate the spin degrees of
freedom to the double-layer system of spin- —,

' electrons,
which is feasible in the absence of interlayer tunneling
with the fixed number of electrons in each layer. The
"double Greek-Roman" wave function is given (in the
symmetric gauge) for N electrons as

ip& „=A [@& „(z)(ua), . (ua)~/&(u13)& ' ' ' (uP)x/o

X (da ) i
' (d& )N/4(d/3), (d p)x/4]],

N
()g&1Ilfts(pilltfB(glllicfexpg~z~ /4

tensively studied v= —,
' state, in which case the only eligi-

ble function among 4t „'s with a finite interlayer correla-
tion (n&0) is spin-polarized +33i For v= —,', Yoshioka
et al. have pointed out, for spinless electrons, a large
overlap between the ground state and (the spinless coun-
terpart of) 0'33, around d/l =1.5 from the numerical cal-
culation, followed by an experimental identification of
the state by Einstein et al. Here, the v = 4 state
exemplifies a spin unpolarized class in the coexistence of
real and pseudo spins.

The numerical result for the overlap between the exact
ground state at v= —', and %'32& calculated in the spherical
geometry in Fig. 1(a), preliminarily reported in Ref. 8,
has indeed a maximum value, 0.968, around d/l =1.0.

32] has the intralayer correlation similar to that of the
v= —', single-layer state with S„,=O proposed by Halpe-
rin, but incorporates a significant interlayer correlation
as well. Namely, given the fact that three of the in-
tralayer correlation of parallel spins, intralayer correla-
tion of antiparallel spins and interlayer correlation can-

Here, z; =x; iy, i—s the position of an 1'-spin electron in
layer 1, Z,. for a $ spin in layer 1,$; for an 1 spin in layer
2 and:-; for a J, spin in layer 2. A is the antisymmetriza-
tion operator, u /d are the spinors for layer 1/2, a/P are
the spinor for real spin up/down. The exponents (I,m, n )
in the Jastrow factors specify the orbital correlation
(minimum relative angular momentum) for intralayer like
spins (l), intralayer unlike spins (m), and interlayer elec-
trons (n).

Fermi statistics requires I to be odd. In addition, a
wave function must be an eigenstate of S„,. Since the to-
tal spin of each layer is conserved in the absence of inter-
layer tunneling, we should impose the usual Pock condi-
tion on each layer, which is satisfied only when I =I
(spin polarized) or m = l —1 (spin unpolarized) for
S,"'=0. The filling factor is given by v=4/(l+m+2n ),
since we have N&=(l+m+2n )N/4 l in a spheri—cal
system having X& Aux quanta going out of the sphere,
which is in turn related to the Landau-level filling via
N&

=v 'N (integer). —
We have previously obtained the result for total v= 1.

The result shows an existence of a spin-polarized/
spin-unpolarized transition at a critical distance,
(d /1 ), = 1.43. A change in the interlayer radial distribu-
tion function, which is quantitatively slight but discon-
tinuous, signals the transition. The spin-polarized
ground state for d (d, has a large overlap with 4&&&.
This is in fact expected, since we have an obvious limit of
d =0 at which both the pseudospin and real spin should
be polarized and all the correlations between like/unlike
layers and like/unlike spins become equivalent as realized
in +

Now we turn to the case where the role of spin is truly
dramatic. The double Cireek-Roman trial function pre-
dicts the simplest spin-unpolarized state to be +32„which
has v= —,'. This state is thus in sharp contrast with the ex-
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FIG. 1. The overlap between the exact ground state at v=
7

and %'»& against the layer separation, d, for eight (four per lay-
er) electrons in the spherical geometry [(a) left scale]. The ener-
gy difference, AE, per particle between the ground state (which
is spin unpolarized) and the lowest spin-polarized state (b) and
the gap between the ground state and the first excited state [(a)
right scale] are also plotted. The lines are guides to the eye.
The right scale in (b) represents the ratio, AE/Ez„, „, in units
of 1/g)/B, where g =g/go, A, and B:B/10 T: in the region—
where the line exceeds unity, the spin-unpolarized ground state
survives the Zeeman effect.
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not vary independently in a quantum liquid, %3&& pro-
vides a simplest example in which all the three correla-
tions are distinct. The state is realized for a finite range
of d, because, as d is increased, the difference between the
intralayer and interlayer Coulomb interactions (or the
Haldane pseudopotentials in the spherical geometry) in-
creases, thereby giving a chance for the interlayer corre-
lation to deviate from the intralayer correlation, while
the system will eventually reduce to independent layers
when d becomes too large.

Experimentally, the quantization at v= —, in a double

FQH system has not been observed so far. This may be
because the layer separation has not been made small
enough. Another factor is that a spin-unpolarized state
will be unfavored when the Zeeman energy, Ez„,„, is
taken into account. Hence it is imperative to check
whether the v= —', state can survive the Zeeman effect.
We have calculated the energy difference per particle,
AE, between the lowest of the spin-polarized states and
the ground state as a function of d/l. The result in Fig.
1(b) shows that it has a peak of 0.0058e /el, which is
= 1.0 K for GaAs (with @=12.6) in a magnetic field of
8 =10 T and is quite comparable with the Zeeman ener-

gy g)MiiBs = 1.5 K, where g ( =0.44 for GaAs) is Lande's

g factor. ' The figure may also serve as a phase diagram,
if we normalize the vertical axis to regard it as the ratio,
b,E/Ez„,„(the right scale in the figure). Since
bE!Ez„,„o-(g&8 ) ', the peak value of bE/Ez„, „
exceeds unity for smaller 8 (with smaller density of elec-
trons to retain v= —', ), or for a smaller g factor possibly
realized in high-pressure experiments. " Then, in the re-
gion where the curve exceeds unity, the spin-unpolarized
ground state supersedes the Zeeman energy to realize the
v= —', FQH state.

We have also calculated the energy gap between the
ground state and the first excited state as a function of
d/l. The result in Fig. 1(a) has a peak of 0.027e /el,
which has a magnitude similar to the gap for the single-
layer v= —,

' state. The overlap, AE, and the gap in Fig. 1

are peaked in the same region of d, which confirms the
existence of an intrinsic state in this region.

We can further show that, even when the ground state
is real-spin polarized, the discussion of charge excitations
has to include the spin degrees of freedom when we take
the interlayer tunneling into account. The tunneling adds
a term, H, = —(bs~s/2)X (c i c 2+H c ), to the
Hamiltonian. The single-particle wave functions split
into symmetric and antisymmetric (SAS) ones about the
center of the system, and the gap, AsAs, enters as another
energy scale. For spin- —,

' electrons in a double-layer sys-
tem, we have then to consider the excitation mode in
which both pseudospin Rip and real-spin Aip take place
simultaneously (which we call SPS mode) in addition to
the spin-wave (S) and pseudospin-wave (PS) excitations.

The necessity of considering SPS modes is in fact ex-
pected from the effective spin/pseudospin Hamiltonian
for the system, which comprises the pair
creation/annihilation of the PS mode, the S~PS+SPS
and SPS~S+PS processes on top of three free-boson
pieces. Because of these processes, the effective Hamil-

tonian cannot be diagonalized by a Bogoliubov transfor-
mation, unlike the spinless case where the PS mode for
v=1 may be well described with the single-mode approx-
imation (SMA). ' ' The SPS excitation has been dis-
cussed by Brey for v= 1 in the Hartree-Fock approxima-
tion. ' However, this problem has to be investigated
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FIG. 2. The excitation modes for the double-layer system
with six electrons at v= 1, in the absence of the Zeeman energy,
for [d/l, bsAs/(e /el )]=(0.5, 0.05) (a), (0.5,020) (b), and (1.5,
0.20) (c). The modes comprise the spin-wave excitation (S, dot-
ted line), pseudospin-wave excitation (PS, broken line), and
pseudospin-wave excitation accompanied by one-spin-Hip (SPS,
solid line). The lines are guides to the eye. The inset indicates
the positions of the three sets of parameters on a plot of the nu-
merically obtained overlap between the exact wave function and
the fully-occupied symmetric state against d /l and hsAs.
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rigorously, since we are dealing with a strongly correlated
system, in which the SMA for the PS mode indeed tends
to underestimate the energy for larger d and for finite
wave numbers according to a numerical finite-size
study. '

Here, we look into the case of v= 1, because of the re-
cent interest for this situation in the presence of inter-
layer tunneling. Murphy et aI. have experimentally in-
vestigated the double-layer system to probe the phase dia-
gram, ' in which the v= 1 "QHE region" exists with the
ground state being both real-spin polarized and pseudo-
spin polarized throughout. There the nature of the
ground state evolves continuously, ' as As~s is increased,
from the 4»& state dominated by the interlayer Coulomb
interaction l(a) in the inset of Fig. 2] down to the fully-
occupied symmetric state 4py~ dominated by single-
particle tunneling l(b) in Fig. 2].

We present in Fig. 2 the numerical result, in the ab-
sence of the Zeeman energy, for the low-lying excitations
at three typical points in the QHE region, which include
the case (c) with a large d // for which a dip evolves in the
pseudospin-wave dispersion, a precursor of an instability
of 0',~

'. When AsAs&0, the spin-wave excitation
amounts to a gapless Goldstone mode restoring the SU(2)
symmetry of the spin if the Zeeman shift is neglected,
while both the PS mode and the SPS mode have gaps.

For long wavelengths (A: —0), the energies of the three

modes satisfy an inequality Es &sos + &ps fo all the
cases (a) —(c), which persists when the Zeeman energy is

considered, in agreement with Brey. ' Namely, the pseu-
dospin excitation expends less energy ((b,s~s for k-0)
when the spin Aip is exploited simultaneously. One
finding here is that, for small Zeeman energies, the in-

equality Esps (Eps persists for Pnite wavelengths with

k -l ', which applies even when there is a dip in the
dispersion associated with the collapse of the QHE gap
(i.e., softening of the "roton"). ' The SPS gap for finite
wave vectors can thus be a candidate for the thermal gap,
although a study of the sample-size effect will be required
for its quantitative estimate.

As for the multispin Hips, the pseudospin-wave excita-
tions from the spin-polarized ground state have been
shown to have multiplet structures of weakly-interacting
bosons (pseudomagnons) for small d. ' Extension of this
picture to include the real-spin degrees of freedom serves
as another future problem.
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