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Atomic-scale friction observed with a two-dimensional frictional-force microscope
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Using the two-dimensional frictional-force microscope, we studied the two-dimensional nature of the
atomic-scale friction between a Si3N4 tip and the cleaved MoS2 surface. As a result, we confirmed the
existence of two-dimensionally discrete friction with the lattice periodicity of the MoS2 surface. In addi-

tion to the well-known stick-slip behavior, we found the appearance of friction with square-wave

behavior which works across the scanning direction, although it is contradictory to the assumption of
classical friction. We found that this friction is due to spatially discrete adhesion and jumps with the lat-

tice periodicity, which is explained by the two-dimensional stick-slip model not only qualitatively but
also quantitatively. We also observed the fluctuation of the discrete jumps. Further, using the two-

dimensional stick-slip model with an effective adhesive radius, we explain the sawtooth and square-wave

behaviors due to each discrete jump in more detail.

I. INTRODUCTION

Friction is a familiar phenomenon which always occurs
between two sliding surfaces. At the macroscopic inter-
face, numerous asperities are in contact, where the
adhesion between the asperities contributes to the fric-
tional force. ' Thus, to understand the friction further, it
is necessary to study the simple system, for instance the
friction between a single apserity and an atomically Oat
surface. Frictional-force microscopy (FFM) (Ref. 2) en-
ables us to investigate a single asperity friction on an
atomic scale. FFM investigations explored atomic-scale
friction, and microtribology, i.e., friction, lubrication,
and wear on microscale to nanoscale. ' On the other
hand, in FFM investigations so far only one component
of the frictional force vector was studied, although the
frictional force vector at the interface is a two- or three-
dimensional vector. Thus only a part of the properties of
the friction seems to have been studied.

In the present paper, we study the two-dimensional na-
ture of the atomic-scale friction between a single apserity
of an atomic force microscope (AFM) tip and a cleaved
MoS2 surface using a two-dimensional frictional-force mi-
croscope (2D-FFM), ' based on the two-dimensional
stick-slip model. We extend the two-dimensional stick-
slip model by introducing an e8'ective adhesive radius,
which provides further understanding of the two-
dimensional nature.

the optical lever deAection method with a quadrant
position-sensitive detector. ' ' The AFM/LFM detects
angle changes of the torsion and deflection of the cantil-
ever, separately and simultaneously. On the other hand,
in general, force is a three-dimensional vector. So the
force which acts on the tip apex of a cantilever has X, Y,
and Z components, which we call Fz, Fz, and Fz, respec-
tively. The angle change of the defiection is caused by
both Fz and Fz, while the angle change of the torsion is
caused only by Fz. Here, as shown in Fig. 1, we define
the X, Y, and Z directions as across, along, and perpen-
dicular to the cantilever, respectively.

In the contact mode, both frictional and normal react-
ing forces act on the tip apex of the cantilever. Both
forces should have X, Y, and Z components, which we
call (f», fr, and fz) and (N», N~, and Nz), respectively.
Thus we have

II. TWO-DIMENSIONAL
FRICTIONAL-FORCE MICROSCOPE (2D-FFM)

A. Force components measured by AFM/LFM

First we discuss force components' '" of the normal
reacting force and the frictional force measured with an
atomic force/lateral force microscope (AFM/LFM) using

FIG. 1. Schematic representation of the X, Y, and Z direc-
tions. The X, Y, and Z directions are defined as the directions
across, along, and normal to the cantilever, respectively.
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Fx =fx+Nx

Fr =f„+Ny,.

Fz =fz+Nz

B. Interpretation of AFM/LFM as a 2D-FFM

On an atomically Oat surface, we obtain

Nx =Nr =fz =0 (zero),

so we have

(2)

condition. As a cantilever, we used a rectangular micro-
0

cantilever' with -250-A radius of curvature on a sharp
tip apex, which is made of Si3N4. Its length, width, and
thickness are 100, 40, and 0.8 pm, respectively. Its calcu-
lated spring constants of the deAection and torsion are
kz=0. 75 and k~=550 N/m, respectively. We set the
repulsive force at —1.8X 10 N. The raster scan rate
was set at -400 A/s for the fast-line scan and -0.80
A/s for the slow scan.

IV. RESULTS AND DISCUSSION

Fx fx—
FY fY

Iz=Xz .

(3)

As a result, the angle change of the deflection is caused
both by fr and Nz, while the angle change of the torsion
is caused only by fx. Then the deiiection output of Vd f
due to the angle change of the deflection is given by

Vd, t = AFz /kz +BFy /k r
= ANz/kz+Bf) /kr .

The torsion output of V„,due to the angle change of the
torsion is given by

V, ,=CFx/kx

=Cfx/kx .

Here kz, k~, and kz and A, 8, and C are the spring con-
stant and output sensitivity of X, Y, and Z, respectively.
When f~ is much larger than Nz, as is often the case
with the layered materials, ' ' ' the deAection is dom-
inated by fr, i.e.,

Vd.t=Bf) /k) .

So the deAection and torsion are caused by fr and fx, re-
spectively, when

f, »Nz .

Thus the AFM/LFM could be interpreted as a 2D-FFM.

III. EXPERIMENT

In the present experiment, with the 2D-FFM described
above, we measured the two-dimensional frictional-force
vector (fx,fr) between the tip apex and the atomically
fiat surface with a raster scan through Vd, t( =Bfr/kr )

and V„,(=Cf /kx) under the variable deflection mode.
As a result, we obtained both fx and fr, which are mea-
sured simultaneously. Here we used a weak feedback
control of the Z direction to the deflection signal in order
to compensate for the Z direction drift. As an atomically
liat surface, we used a cleaved (0001) surface of MoSz. Its
lattice structure shows threefold symmetry with a lattice
constant of 3.16 A. ' Soon after the cleavage of the sur-
face, measurements were performed in air under ambient

A. Frictional-force images
with the lattice periodicity

Figures 2(a) and 2(b) show fx (left) and fr (right) im-
ages obtained for the fast-line-scan directions along and
across the cantilever, i.e., the Y and X directions, respec-
tively. These images were obtained by stacking the fast-
line-scan data step by step toward the slow-scan direc-
tion. Here the magnitudes of fx and f~ were indicated
by the brightness, and the fast-line scan and slow scan
were performed from the left to right and from the bot-
tom to top of the images, respectively. Thus the changes
of the fast-line-scan data due to the slow scan create the
contrast of these images. Ef we ignore the Ane structures
or small differences, they all seem to have threefold sym-
metry with a periodicity of 3.1+0.3 A, which agrees well
with the lattice constant of the cleaved MoS2 surface.
This implies that the change of the two-dimensional
frictional-force vector has the lattice periodicity.

B. Two-dimensionally discrete friction
with the lattice periodicity

To investigate the nature of the two-dimensional
frictional-force vector imaged by the raster scan, i.e., the
mechanism of the atomic-scale friction with the lattice
periodicity, we analyzed all fast-line-scan data.

1. Atomic scale friction acr-oss the scan direction

Figure 3(a) shows typical data due to a single fast-line
scan obtained at the place indicated by the thick arrow in
Fig. 2(a). Upper and lower data correspond to fx and
fz, respectively. fx shows the square-wave behavior
comprised of a sharp steplike rise and fall with a constant
amplitude, while f~ shows the sawtooth behavior in
which the sharp rise is synchronized with the steplike rise
and fall in the square-wave behavior. The periodicity of
the square-wave behavior is 5.4+0.6 A, while the period-
icity of the sawtooth behavior is 2.7+0.3 A, i.e., half the
square-wave behavior. The sawtooth behavior in the fr
is due to well-known stick-slip motion of the tip
apex ' ' ' '" ' induced by friction.

Further, the fx with square-wave behavior indicates
the appearance of the friction which works across the
fast-line-scan direction. That is, the two-dimensional
frictional-force vector with nonzero fx and fr com-
ponents is not parallel to the scanning direction, although
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FIG. 2. f» and fr images for
the fast-line-scan directions (a)
along the cantilever (along the Y
direction) and (b) across the can-
tilever (along the X direction).
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Scan area is 25 X 25 A . Beside
each image, schematic views of
the lattice structure of the ob-
served MoS, surface are shown.

;.~~M~~~P~

1

' 'i ' Mi:."'.'':~'xir" iiiP/~ai Ni "+"' zz. '' 8 /ry

C
ok,cQ

V) I

~ I

Oi
Vl

fast line scan

this is contradictory to the assumption of macroscopic
(classical) friction.

Figure 3(b) shows typical data due to a single fast-line
scan obtained at the place indicated by the thick arrow in
Fig. 2(b). fx shows the well-known sawtooth behavior
with a periodicity of 3. 1+0.3 A, while fr shows no fine
structure within the noise level.

2. Spatially discrete adhesion and jumps

From the periodic sawtooth behaviors of fr in Fig.
3(a) and fx in Fig. 3(b), we conjectured the presence of
spatially discrete adhesion points, namely stick points.
Further, from the frictional-force component images with
lattice periodicity in Figs. 2(a) and 2(b), we proposed a
two dimensional stick-slip model, where the stick points
distribute two dirnensionally with a lattice periodicity of
the MoSz surface, as shown in Fig. 3(c). As result, the tip
apex slips or jumps two dimensionally from one stick
point to the nearest stick point for the fast-line-scan
direction.

Based on the two-dimensional stick-slip model, for the
fast-line scan toward the Y direction, the tip apex will
take a zigzag walk with the stick-slip motion as shown in
Fig. 3(c). Thus fr will show the well-know sawtooth
behavior with a periodicity of 2.74 A by a stick-slip
motion along the F direction. This predicted behavior
and periodicity agree well with the observed sawtooth
behavior and experimentally estimated periodicity of
2.7+0.3 A in Fig. 3(a). Across the scan direction, the tip
apex will move an alternate constant distance of 1.58 A
due to the slip motion, which will induce the square-wave
behavior of a constant amplitude 1.58 A with the periodi-

city of 5.48 A on fx. The sharp steplike rise and fall in
the square-wave behavior of fx will synchronize with the
sharp raise in the sawtooth behavior of fr. This predict-
ed behavior and periodicity well agree with the observed
square-wave behavior and the experimentally estimated
periodicity of 5.4+0.6 A in Fig. 3(a). The predicted
synchronism also agrees with the observed synchronisrn
shown in Fig. 3(a).

On the other hand, for the fast-line scan toward the X
direction, the tip apex will a take straight walk with the
stick-slip motion, as shown in Fig. 3(c). Thus fx will

show the well-known sawtooth behavior with a periodici-
ty of 3.16 A by the stick-slip motion. This predicted
behavior and periodicity agree well with the observed
sawtooth behavior and experimentally estimated periodi-
city of 3. 1+0.3 A in Fig. 3(b). Across the scan direction,
the tip apex will not move, which will induce no fine
structure in fr. This predicted behavior of no fine struc-
ture also agrees well with the observed signal in Fig. 3(b).
Moreover, the amplitude of the sawtooth behavior ir ~~~

is Cbx, where Ax =fx lkx should agree with the period-
0

icity of 3.16 A. Using this assumption, we calibrated the
value of C, and then determined the amplitude of the
square-wave behavior in fx shown in Fig. 3(a) as 1.6+0.2
0
A, which agrees well with the expected zigzag walk width
of 1.58 A. Thus the two-dimensional stick-slip model
shown in Fig. 3(c) can explain the data of fx in Figs. 3(a)
and 3(b) fully; i.e., not only the periodicity but also the
wave form and amplitude of the signals.

The motion of the tip apex described by the two-
dimensional stick-slip model could be interpreted as two-
dimensionally discrete jumps between spatially discrete
adhesive points (stick points) with the same periodicity as
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C. Fluctuation of the spatially discrete friction

Due to the slow scan, the way the tip apex moves due
to the stick points, such as the zigzag walk or the straight

2SA 254

(c) 2.74A

~ 0
stick point

the lattice structure of the MoS2 surface. Thus the fric-
tion which induces the tip apex motion also could be in-
terpreted as a spatially discrete friction with the lattice
periodicity. Theoretical studies and molecular-dynamics
simulations on atomic-scale friction predicts the two-
dimensional motion of the single atom, which is similar
to the tip motion apex described by the two-dimensional
stick-slip model. ' These studies are based on the fact
that the motion of a single atom is the interplay of the
compliance of the friction system and the interaction be-
tween the single atom and an atomically Hat surface.

walk shown in Fig. 3(c), will change. Therefore, we inves-
tigated the change of the fast-line-scan data, i.e., the
change of the direction of the stick points such as the zig-
zag walk or straight walk. We assume that due to the
slow-scan, the scan line position is changed step by step
toward the direction orthogonal to the fast-line-scan

0

direction with a 0.1-A interval per fast-line scan. Here
the scan line refers to the way the tip apex traces with the
fast-line scan if there are zero deflection and torsion.

1. Fast-line scan across a rour

of stick points (along the Y direction)

Figures 4(a) —4(c) show fast-line-scan data for the fast-
line scan across a row of stick points (along the Y direc-
tion), where the scan line position of each datum was
changed due to the slow scan. Figures 4(a) and 4(c) cor-
respond to parts of the image at the lower and upper thin
arrows in Fig. 2(a), respectively. Figure 4(b) corre-
sponds to a part of the image between these two thin ar-
rows in Fig. 2(a). In Fig. 4(a), f» and fr show synchron-
ized square-wave and sawtooth behaviors similar to Fig.
3(a). This behavior is understood by the tip apex motion
of the regular zigzag walk, between the stick points on
the a and P lines, as illustrated in Fig. 5(a).

In Fig. 4(b), f» and fz also show synchronized
square-wave and sawtooth behaviors, although three of
the square waves are inverted. This behavior is under-
stood by the Auctuated zigzag walk, where the tip apex
walks on the stick points not only on a and P lines but
also on the y line, as illustrated in Fig. 5(b). Here we
define the top, middle, and bottom levels of the square-
wave behavior in f» shown in Fig. 4, corresponding to
stick points on the lines of a, f3, and y, respectively,
shown in Fig. 5. In Fig. 4(c), f» and f~ show synchron-

slip motin

(a)
&x

(c)

X

FIG. 3. (a) Typical data for f» and f„(two-dimensional
frictional-force vector components) due to a single fast-line scan
along the cantilever {along the Y direction). The values f» and
fr are experimentally estimated values assuming the amplitudes
of the sawtooth behaviors are equal to their periodicities. (b)
Typical data due to a single fast line-scan across the cantilever
(along the X direction). (c) The two-dimensional stick-slip mod-
el. The closed circle arrangements for the Y and X directions
represent the trace of the tip apex, which explains the data
shown in (a) and (b), respectively.

FIG. 4. (a) —(c) show fast-line-scan data for a fast-line scan
across a row of stick points, where the scan line position of each
data point changes toward the X direction due to the slow scan.
These data are parts of images between the two thin arrows in
Fig. 2(a).
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ized square-wave and sawtooth behaviors, where all the
square waves are inverted. This behavior is understood
with the tip apex motion of the regular zigzag walk be-
tween the stick points on f3 and y lines, as illustrated in
Fig. 5(c). Thus, due to the slow scan, the regular zigzag
walk between a and P lines shown in Fig. 5(a) is shifted to
/3 and y lines shown in Fig. 5(c) toward the slow-scan
( =X) direction. During this shift, the zigzag walk shows
the fluctuation illustrated in Figs. 5(b).

These changes of the tip apex motion along the slow-
scan direction suggest that, due to the slow scan, the reg-
ular way the tip apex moves along the stick points
changes, not suddenly, but Auctuating between two regu-
lar ways. Thus, along the slow scan direction, there seem
to exist two states which follow one another repeatedly.
One shows the regular zigzag walk of the tip apex, which
could be interpreted as a stable state. The other, in
which the tip apex moves between two adjacent regular
zigzag ways, showing fluctuation, could be interpreted as
an unstable state.

2. Fast-line scan along a row

of stick points (along the X direction)

Figures 6(a) —6(c) show fast-line-scan data for the fast-
line scan along a row of stick points (along the X direc-
tion), where the scan line position of each datum was
changed due to the slow scan. Figures 6(a) and 6(c) cor-
respond to parts of the image at the lower and upper thin
arrows in Fig. 2(b), respectively. Figure 6(b) is a part
of the image between these two thin arrows in Fig. 2(b).
In Fig. 6(a), fz shows sawtooth behavior while fr shows
no fine structure, similar to Fig. 3(b). This behavior is
understood by the tip apex motion of the straight walk,
where the tip apex moves on only one row of the stick
points on the g line, as illustrated in Fig. 7(a).

In Fig. 6(b), fz shows a sawtooth behavior consisting
of 11 small slip signals, while fr shows six square-wave
behaviors with a constant amplitude synchronized with
the small slip signals in f». This behavior is explained by
the fluctuation of the tip apex shown in Fig. 7(b), where
the tip apex performs an almost regular zigzag walk be-
tween g and g lines. The periodicity of the small
sawtooth behavior in Fig. 6(b) is 1.6+0.2 A, which agrees
well with the expected width of the zigzag walk of 1.58 A
in the model of Fig. 7(b).

The amplitude of the sawtooth behavior of fr shown
in Fig. 3(a) is Bby, where by = fr/kr should agree with
a periodicity of 2.74 A. Using this assumption, we cali-
brated the value of B, and then determined the amplitude
of the square-wave behavior in fr shown in Figs. 6(b) to
be 2.8+0.3 A, which agrees well with the expected zigzag
walk width of 2.74 A. Thus we confirmed that the two-
dimensional stick-slip model is the first one that can fully
explain both data of f~ and fr due to the two-
dimensionally discrete friction, i.e., not only the periodi-

(a)

Q "it&)h~
1.58k.

FIG. 5. (a) —(c) show the tip apex motions which explain the
fast-line-scan data shown in Figs. 4(a) —4(c), respectively, based
on the two-dimensional stick-slip model. The stick points on a,
P, and y lines correspond to top, middle, and bottom fiat levels
of the square wave in fz shown in Fig. 4.

FIG. 6. (a) —(c) show fast-line-scan data for a fast-line scan
along the row of stick points, where the scan line position of
each data point changes toward the Y direction due to the slow
scan. These data are parts of images between the two thin ar-
rows in Fig. 2(b).
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2.74'

(a)

slow scan

(c) These changes of the tip apex motion along the slow
scan direction suggest that, due to slow scan, the way the
tip apex moves along the stick points changes, not sud-
denly, but fl.uctuating between two straight ways. Thus,
along the slow scan direction, there seem to exist two
states which follow one another repeatedly. In one, the
tip apex performs a straight walk, which could be inter-
preted as a stable state. In the other, the tip apex moves
between two adjacent straight ways, showing fluctuation,
which could be interpreted as an unstable state.

FIG. 7. (a) —(c) explain fast-line-scan data shown in Figs.
6(a)—6(c), respectively, based on the two-dimensional stick-slip
model. The stick-point rows on g and q lines represent upper
and lower fiat levels of the square wave in fr shown in Fig. 6.

D. Two-dimensional stick-slip model
with effective adhesive radius

city but also the wave form and amplitude of the signal.
Table I shows a comparison between theoretical values
based on the two-dimensional stick-slip model and exper-
imentally estimated values of periodicities and amplitudes
of fx and fr. We mention that the two-dimensional
stick-slip model is the erst one that can explain not only
periodicity (horizontal axis) but also amplitude (vertical
axis), as well as the wave form of the data of the atomic
scale.

In Fig. 6(c), fx shows a sawtooth behavior with only
large slip signals, while fr shows no fine structure, simi-
lar to Fig. 6(a). Compared with Fig. 6(a), however, the
phase of the sawtooth signal changed by ~, and the dc
level of fr changed from upper to lower levels of the
square-wave behaviors. This phase change of the

0

sawtooth signal is understood by the 1.58-A position shift
of the stick points along the X direction between g and 7)

lines, as shown in Fig. 7. The dc level change in fr is un-
derstood by the distance of 2.74 A between g and ri lines
along the Y direction as shown in Fig. 7.

Thus, due to the slow scan, the straight walk shifted
from the g line in Fig. 7(a) to the g line in Fig. 7(c) to-
ward the slow scan ( = Y) direction. During this shift, the
straight walk shows the Auctuation illustrated in Fig.
7(b).

As described above, based on the two-dimensional
stick-slip model, (l) wave forms of sawtooth and square-
wave behaviors, (2) averaged periodicities of sawtooth
and square-wave behaviors, and (3) amplitudes of square-
wave behavior, are explained. However, questions like (4)
what changes sticking to slippage (or where does the slip
occur), (5) what causes the small unevenness of the peak
value in the sawtooth behavior and the asymmetry of the
interval in the sawtooth and square-wave behaviors [due
to each discrete jump, as shown in Figs. 3(a) and 4], and
(6) which is the nearest stick point (or which stick point
will be the nearest one to which the tip apex can jump)
cannot be explained by the simple two-dimensional
stick-slip model. Here, in order to explain these ques-
tions, we expand the two-dimensional stick-slip model by
introducing an efFective adhesive radius.

1. Fjfective adhesive radius

For simplicity, we assume that spring constants along
and across the cantilever ( Y and X directions) are the
same, and that the sticking force (adhesive force, i.e.,
f,~h) is constant and independent of direction. In order
to explain question (4), we assume that the eff'ective

adhesive radius determines the place where the tip apex

TABLE I. Theoretical and experimental values of square-wave and sawtooth behaviors on MoS&

based on the two-dimensional stick-slip model.

(scan along Y)

scan across a row
of stick-points

fx
square wave

fr
sawtooth

periodicity
amplitude
periodicity
amplitude

Theoretical

5.48 A
1.58 A
2.74 A
2.74 A

Experimental

5.4+0.6 A
1.6+0.2 A
2.7+0.3 A
hy =2.74 A

(scan along X)
scan along a row
of stick-points

fx
sawtooth
fr
square wave

periodicity
amplitude
periodicity
amplitude

3.16 A
3.16 A
3 ~ 16 A
2.74 A

3.1+0.3 A
5x —=3. 16 A
3. 1+0.3 A
2.8+0.3 A
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slips, as follows. Hereafter, we use the notations J. and ~~,

which refer to across and along the fast-line-scan direc-
tion, respectively.

As shown in Fig. 8(a), the distance a between the stick

point and the scan line creates the force component of
ft=kta across the scan direction. Here, the scan line
means the way in which the tip apex traces with the fast-
line scan if there are zero deAection and torsion, and the
stick point corresponds to the point where the both force
components are zero. This f~ works against the sticking
force in addition to the ordinary force component of fI

along the scan direction. When fI=k~~b, the resultant
force of these force components (f~+fI )' becomes
equal to the sticking force of f,dh, and the tip apex slips,
which is expressed as

f2 —f 2 +f2

=(k ) +(k~~b)

Hereafter, we call this the slip place. We simplify to

ki =kii ——k,
so that

stick
t—sIip =k2(a2+b2) (10)

0:b" scan
f'„„ik'= r'

is a constant value independent of a and b, we have

a+& =r (12)

scan

fx
kx

I
I
I
I
I
I
I

0
I-d--

P-
b-

= scan

e This means that this stick place traces an arc with a ra-
dius of r, by the change of the distance a due to the slow
scan, as shown in Fig. 8(a). Therefore, we call r the
effective adhesive radius. Here the slip place is also re-
garded as the cross-point of effective adhesive radius and
the scan line.

Thus ft is determined by the distance a, which is con-
stant during the sticking and determines the value from
the zero force, i.e., the absolute value of the Hat area in
the square-wave behavior as shown in Fig. 8(b). On the
other hand, f I

changes linearly by the fast-line scan dur-
ing the sticking, and reaches a peak value just before the
slip, which is determined by the distance b as shown in
Fig. 8(b). The distance b also determines the interval of
the sticking, where b is determined by r and a through
Eq. (12).

~f

kY 0
—f-
—C

I

b "c e g b c'

2 3

i I I

e f' b'c' = scan
2. Two-dimensional stick-slip model

combined with effective adhesive radius

FIG. 8. (a) Effective adhesive radius corresponds to the trace
of the slip place, where sticking changes to slipping, with a
change of scan line position due to the slow scan. Thus the slip
place is determined by the cross point of the scan line and the
effective adhesive radius. (b) Predicted behavior of f~ and fI
due to the single effective adhesive radius shown in (a). (c) Ex-
tended two-dimensional stick-slip model with an effective
adhesive radius, where the fast-line-scan direction is across the
row of the stick points, i.e., X=l and Y=~~. (d) Predicted
behavior of fs(f~) and fr(f ~~

) based on the model shown in (c).

In order to explain questions (5) and (6), we combine
the effective adhesive radius and two-dimensional stick-
slip model as shown in Fig. 8(c), where the fast-line-scan
direction is across a row of the stick points, i.e., X=l
and Y =

~~. Just before the slip from the stick point A at
the slip place 1, similarly to Fig. 8(a), the effective
adhesive radius r and the distance a determine the abso-
lute values of both f» and fr and the interval of the
sticking, as shown in Fig. 8(d) similarly to Fig. 8(b).
Then, since the slip place 1 is located in the effective
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adhesive radius of stick point B, the tip apex will jump to
the stick point B as the nearest stick point.

Just after stick to stick point B, absolute values of f»
are determined by the distance d. On the other hand, ab-
solute values of fr are determined by the distance c,
which is a minimum value as shown in frlkr of Fig.
8(d). Thus the absolute values of both f» and fr just
after the slip are determined by the vector, i.e., both dis-
tances along X and Y between the slip place and the next
stick point.

During stick to stick point 8, the absolute value of f»
takes a constant value determined by the distance d,
which forms the Aat lower area in the square-wave
behavior between 1 and 2 shown by f»lk» in Fig. 8(d).
On the other hand, the absolute value of fr changes
linearly by the fast-line scan, and reaches another peak
value which is determined by the distance e just before
the slip at slip place 2. Here distances d and e are as-
sumed to satisfy the relation

d +e =r (13)

a+d=1. S8 A (15)

can be obtained as shown in Fig. 3(c).
During stick to stick point C, the absolute value of f»

takes a constant value determined by the distance a,
which forms the Oat upper area in the square-wave
behavior between 2 and 3 shown by f»/k» in Fig. 8(d).
On the other hand, the absolute value of fr changes
linearly by the fast-line scan, and reaches a peak value
just before the slip which is determined by the distance b.
Thus the stick points 3 and C produce exactly the same
behaviors as f» and f„,and the behaviors between 1 and
3 shown in Fig. 8(d) are repeated by the fast-line scan.

Based on this model, fr (f
~i

) shows sawtooth behavior
with alternating high and low peak values just before and
after the slip, which are determined by the distances b, c,
e, and f. These two types of sawtooth behaviors with
high and low peak values have slightly different intervals
of c +e and b +f, while those two intervals together
have a constant periodicity of

similarly to Eq. (12). Further since slip place 2 is located
in the effective adhesive radius of stick point C, the tip
apex will jump to the stick point C.

When the tip apex slips from stick points 8 to C at slip
place 2, absolute values of f»lk» and frlkr change
from —d to a and from e to f, respective—ly, as shown
in Fig. 8(d). Here

b+c =e+f =2.74 A

(orthography of the lattice constant to the scan direction:
3.16 AXsin30') and

c+e+f +b=5.48 A (16)

from Eq. (14). On the other hand, f» (fi) shows square-
wave behavior synchronized with sawtooth behavior,
where the upper and lower absolute values of the Hat

areas are determined by the distances a and d although
the resultant amplitude is a constant value of 1.58 A from
Eq. (15). These explain the small unevenness of the peak
value in the sawtooth behavior, and the asymmetry of the
intervals of sawtooth and square-wave behaviors due to
each discrete jump, as shown in Figs. 3(a) and 4. XVe

mention that, by using this model, we can deduce the ab-
solute values of the both force components, or fast line-
scan data toward the arbitrary direction, quantitatively.

Further, we mention that the effective adhesive radius
introduces the effect of the compliance of the cantilever
into the two-dimensional stick-slip model, which is indi-
cated by Eq. (10). Thus this extended model suggests
that phenomenon described above is an interplay of the
compliance of the cantilever and the interaction between
the tip apex and the atomically Aat surface, which is con-
sistent with the theoretical analysis. '

V. CONCLUSION

The two-dimensional stick-slip phenomenon implies
that, on an atomic scale, the frictional force acts not only
along the scan direction but also across the scan direc-
tion, which is contradictory to the assumption of the fric-
tion on a macroscopic scale. This means that the funda-
mental assumption of classical friction on a macroscopic
scale shows a breakdown on the atomic scale.

The motion of the tip apex described by the two-
dimensional stick-slip model could be interpreted as two-
dimensionally discrete jumps between spatially discrete
adhesive points with the same periodicity as the lattice
structure of the MoS2 surface. Thus the friction which
induces the motion of the tip apex also could be inter-
preted as a spatially discrete friction with the lattice
periodicity. This spatially discrete friction shows the
fluctuation. Further, the nature of the spatially discrete
friction was explained in more detail by the two-
dimensional stick-slip model with an effective adhesive
radius, which introduced the e6'ect of the compliance into
the two-dimensional stick-slip model.
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