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We present a study of the spectral properties such as the energy spectrum, the eigenmodes,
and the density of states of a classical finite system of two-dimensional charged particles which are
confined by a quadratic potential. Using the method of Newton optimization we obtain the ground
state and the metastable states. For a given configuration the eigenvectors and eigenfrequencies for
the normal modes are obtained using the Householder diagonalization technique for the dynamical
matrix whose elements are the second derivative of the potential energy. For small clusters the lowest
excitation corresponds to an intershell rotation. The energy barrier for such rotations is calculated.
For large clusters the lowest excitation consists of a vortex/antivortex pair. The Lindeman melting
criterion is used to calculate the order-disorder transition temperature for intershell rotation and
intershell difFusion. The value of the transition temperature at which intershell rotation becomes
possible depends very much on the configuration of the cluster, i.e., the distribution of the particles
between the difterent shells. Magic numbers are associated with clusters which are most stable
against intershell rotation. The specific heat of the cluster is also calculated using the Monte Carlo
technique, which ee compare with an analytical calculation where e6ects due to anharmonicity are
incorporated.

I. INTR.GDU CTI(3N

During the past few years considerable attention has
been paid to the study of the properties of systems con-
sisting of a finite number of neutral or charged particles.
The particles are confined by an artificial external con-
firiing field. Behavior of either ions in a radio-frequency
trap (Paul trap) or a Penning trap ' and heavy-ion ring
storage can serve as an illustration of three-dimensional
(3D) Coulomb clusters. Very large Coulomb clusters
have been created recently in strongly coupled rf dusty
plasmas. Examples of two-dimensional (2D) Coulomb
clusters are electrons on the surface of liquid He (Ref. 5)
and electrons in quantum dots. The vortex clusters in
an isotropic superfm. uid and in superconducting grains
have many common features with those of 2D charged
particles. References 10, 11 have been devoted to the in-
vestigation of the ground state of 3D clusters of charged
particles. Below we give a short overview of previous
theoretical work on 2D clusters of charged particles.

Clusters of particles in 2D with Coulomb repulsion
were investigated by Lozovik and coworkers, in the
case of parabolic confinement. They found that for low
temperature and in the case of a small number of parti-
cles, the cluster has a shell structure. A two-step order-
disorder transition was found. With increasing temper-
ature, first intershell rotation starts, and intershell dif-
fusion may be possible at high temperature. When the
size of the cluster is suKciently large, the simple shell
structure gradually disappears in the center and features
of a Wigner lattice appear. Then cluster melting occurs
around the 2D Wigner lattice melting temperature.

Bolton and Rossler considered the case of parabolic
confinement for a small number of particles: 1—40. They

investigated the ground state as well as some metastable
states. For clusters consisting of six particles they deter-
mined the barrier height for transition from the config-
uration (1,5) (these are the number of electrons in each
shell) to the configuration (6).

Systematic and detailed investigation of the structure
of 2D clusters was carried out by Bedanov and Peeters.
They considered both parabolic and hard-wall confine-
ment. A table of Mendeleev was constructed for clusters
with 2—52, 82, 151, 230 number of particles. Using the
Lindeman melting criterion these authors determined the
temperature for the order-disorder transition for angular
and radial displacement.

In all of the above works on 2D systems with a finite
numb'er of charged particles, the Monte Carlo simula-
tion technique was used. We found that in some cases
this method is rather slow in finding the ground state of
the cluster. The reason is that the Monte Carlo tech-
nique spends too much time in the vicinity of metastable
states such that for a finite simulation time the correct
ground state is not necessarily found. This becomes more
of a problem for clusters with larger number of particles,
which have many more metastable states. In Ref. 14,
this drawback was partially avoided by heating up the
system and cooling it down repeatedly. In the present
work, we will present an alternative approach. To find
the ground state, we choose the Newton method with ini-
tial configurations determined randomly. In this way, we
are able to obtain not only the ground state but also the
metastable states. The latter are relevant in the calcula-
tion of thermodynamic properties and the barrier height
for intershell rotation.

In previous work, the ground-state properties and
melting temperatures were obtained. Here, we will inves-
tigate the spectral properties of the system. This paper
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is organized as follows. In Sec. II, we describe the model
and introduce the dimensionless units. In Sec. III, our
numerical technique to obtain the ground and metastable
states is outlined and compared to the Monte Carlo tech-
nique. Section IV is devoted to the stable configurations
and the spectrum of normal modes is determined. The
barrier height for intershell rotation is obtained in Sec. V.
Intershell rotation is the lowest excitation for small clus-
ters. We correlate the strong dependence of the height of
the barrier for intershell rotation to the number of parti-
cles placed in various shells. In Sec. VI, we discuss large
clusters for which we calculate the density of states and
discuss their lowest excitation which consists of a vor-
tex/antivortex pair. In Sec. VII, the zero-temperature
results for the excitation spectrum are used in order to
calculate the melting temperatures using the Lindeman
melting criterion. These results are compared with ear-
lier results, which were based on the Monte Carlo simu-
lation technique. As an example of the use of metastable
states in the calculation of thermodynamic property, we
calculate the heat capacity in Sec. VIII. We compare the
Monte Carlo results with an analytical approach in which
we include anharmonicity effects in an approximate way.
Our conclusions are presented in Sec. IX.

II. MODEL SYSTEM

The model system was defined in Ref. 14. But for
completeness, we recall the main features. Our system is
described. by the Hamiltonian,

2

H = —') +) V(.-;),

where q is the particle charge, e is the dielectric constant
of the medium, the particles are moving in, and the con-
finement potential V(r) = 2muar is taken parabolic.
Particle motion is described by classical mechanics in the
plane r = (x, y). To exhibit the scaling of the system,
we introduce the characteristic scales in the problem:
r0 ——(2q /memo) ~ for the length, E0 ——(muroq /2e ) ~

for the energy, and T0 ——(mursq /2e ) ~ k& for the tem-
perature. These scales will be used as our new units and
all our results will be given in these units. In so doing,
the Hamiltonian can be written as

(2)

with V(r) = x + y . The numerical values for the pa-
rameters ~p, rp, Ep, Tp for some typical experimental
systems were given in Ref. 14.

In the present paper, we will consider only classical
systems. Although a classical approach for the descrip-
tion of the behavior of electrons in quantum dots is not
applicable, nevertheless it is possible that certain features
of the classical system may survive in a quantum system.
For example, in the quantum study of the transition from
a crystal to a liquid in the absence of a magnetic field,
we know that the parameter for formation of a Wigner

III. NUMERICAL APPROACH

The Monte Carlo simulation technique is relatively
simple and provides relatively rapid convergence and a
reliable estimate of the total energy of the system in
cases that a relative small number of Metropolis steps
is su%cient. However, the accuracy of this method in
calculating the explicit states may be poor in certain
cases. We can understand this as follows: for the present
system of axial symmetric confinement, some configura-
tions have very small &equencies for intershell rotation

;„=10 —10,which may lock the simulation in an
unstable state. Using the Monte Carlo method with an
acceptable number of steps 10 —10, in order to limit the
computer time, we may obtain the energy E up to an
error b. But the error in the coordinates will be propor-
tional to Hi~2/ur;„, which in such a case can be large.

To circumvent this problem we used a different numer-
ical approach, which is mainly based on our experience
&om which we learned that with different modifications
to the gradient method and the method of molecular dy-
namics using artificial viscosity, we were able to obtain
more reliable results than with the Monte Carlo tech-
nique. To be more explicit, to find the state with the
minimal energy, we used the modified Newton technique.
Since this method is practically not applied in the present
field, we will give a short outline. Let us suppose that
the coordinates of the particles in a cluster are given by
(r;; n = x, y; i = 1, . . . N), after n steps in the simu-
lation. Then the potential energy in the vicinity of this
configuration can be written in the following quadratic
form:

where H, = OH/Or; is the —force and H p;~ is the
dynamical matrix,

02H
nP, ij (4)

crystal is r, = to/a0 ——37 6 5, where l0 is the mean dis-
tance between the particles. If the number of particles is
small, the interparticle distance in the case of parabolic
confinement is close to rp. Thus, for typical parameters
for a quantum dot in GaAs with m = 0.067, e = 13,
Rap ——1 meV, we obtain r, = 7.8. Reducing the con-
finement up or applying a magnetic field will give us a
possibility to investigate the existence of a Wigner crystal
or another ordered state for a finite number of particles.
In Ref. 14, it was found that a classical 2D cluster with
a finite number of charged particles can be more or less
stable than a 2D crystal, which has the same value for
the parameter I' = q /&tak~T. We expect that a similar
quantity will be relevant in the quantum case and, there-
fore, it is expected that also a Wigner crystal like state
can exist in quantum dots.
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The next step in our simulation is based on the condition
of minimal total energy, which leads to

(5)

Monte Ear lo
t h

where b p;~ is the unit matrix and the coefBcient g is
added to assure the stability of the algorithm. It is
easy to show that the iteration procedure converges if

;„, where A;„ is the minimal eigenvalue of the
dynamical matrix. The system of linear equations (5) is
solved using Gaussian elimination. The calculation of the
matrix and solving the system of linear equations takes
about N numerical operations. This is equivalent to a
Monte Carlo step, where also about N operations are
needed. to find the energy, but the coeKcient in &ont of
N2 is less for the latter. The reason is that to obtain the
spectrum of the matrix is more laborious. The usual ap-
proach guarantees only convergence in the vicinity of the
minimum. Therefore, we introduced an empirical dump-
ing coeKcient g. In the first few iterations, the value for

g is set to be large: g = 10—100. If in the next step, the
total energy of the system decreases the dumping coefE-
cient is reduced, while in the opposite case, the value g
is increased. From our experience, we know that such an
algorithm for choosing the dumping parameter guaran-
tees convergency of the iteration process. Furthermore,
near the last steps, the dumping parameter becomes less
than the minimal value of the eigenvalue of the dynam-
ical matrix and the rate of convergency becomes square
(6„+i 8„). The accuracy of the calculated energy b

is now only limited by rounding errors. For systems
with axial symmetry there exists an eigenvalue with value
zero, which corresponds to turning the system as a whole
around the axis of symmetry. In such a case, the second
eigenvalue A2 has to be taken as the minimal eigenvalue.
We found that about 10—100 steps are needed in order to
obtain an accuracy of 10 —10 . The exact number of
steps depends on the number of particles.

After finding the state with the minimal energy, we cal-
culate the eigenvalues and eigenvectors of the dynamical
matrix (4). The eigen&equencies of it are the eigenval-
ues squared. The condition that the minimal eigenvalue
is positive guarantees that the obtained configuration is
stable. Of course, also, the present method does not
guarantee that all stable and metastable configurations,
and the configuration with the lowest energy are found.
To overcome this diKculty partially, we consider a large
number (typically 200) of initial configurations which are
generated randomly. From these initial configurations a
few stable configurations remain, the number of which
increases fast when N ) 30—40. Among these stable con-
figurations, the state with the lowest energy is taken to
be the ground state of the system. The fact, that usually
the state with the minimal energy is achieved already
after a small number of steps, gives us confidence that
this is likely the actual ground state of the cluster. Usu-
ally, the radius of convergence of the ground state is sufFi-

ciently large. We confirmed that the present approach for
N ( 80 leads to the ground-state configurations of Ref.
14, which were obtained using the Monte Carlo method
with about 10 —10 simulation steps.

C3
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Newton
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104

number of steps
FIG. 1. Accuracy of the calculated ground-state energy

versus the number of simulation steps, using the Monte Carlo
technique, and the present optimized version of the Newton
technique for a cluster consisting of N = 13 particles.

IV. EIGENVALUES AND EIGENVECTORS

A detailed description of the features of the lattice
structure, the interparticle distance scale in the vari-
ous shells, and the Mendeleev table for the configura-
tions with N = 2—52, 82, 151, 230 particles was given
in Ref. 14. Here, we will discuss the excitation spec-
trum corresponding to the ground-state configuration of
the system. This spectrum is shown in Fig. 2, as func-
tion of the number of particles for even N ranging from
2 to 50. The eigen&equency in this figure is in units
of ufo/v 2. Notice that there are three eigenfrequencies

The efFiciency of the present method is illustrated in
Fig. 1. We plot the precision of the energy, which is de-
fined as the difFerence from the exact energy value, as
a function of the number of simulation steps for a clus-
ter of 13 particles. It is apparent that the present tech-
nique converges much faster, an increase with a factor of
about 200 is found. Furthermore, we discovered that for
N = 13, even if within the Monte Carlo approach the
error in the energy is only of order 10, the obtained
cluster configuration was unstable. This conclusion was
reached by calculating the minimal eigenvalue of the dy-
namical matrix. For the case of Fig. 1, the configuration
obtained with the Monte Carlo technique had a mini-
mal eigenvalue, which was negative and, consequently,
the configuration is unstable. The present Newton opti-
mization approach did not exhibit such a deficiency. In
contrast to the Monte Carlo approach used by Bolton
and Rossler who found more than one stable config-
uration for the case of N = 13 particles, the present
approach in which 200 initial configurations were con-
sidered, demonstrates that there exist only one stable
configuration, which is (4,9). But for this configuration
the minimal excitation frequency u;„6x 10 is very
small which may be the reason for the error in Ref. 13.
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FIG. 2. Excitation spectrum of normal modes as a function
of the number of particles in the cluster. The frequency is in
units of u)0/2 ' .

k=1 k=2

k=15

FIG. 3. Eigenvectors for a cluster with N = 9 particles for
di8'erent mode number k, which corresponds to the eigenfre-
quencies ~z ——0, uz —0.127, w7 1.414, wqs 2.449.

which are independent of ¹ (i) for any axial symmet-
ric system the system as a whole can rotate, which gives
an eigenfrequency u = 0. This is illustrated in Fig. 3
(figure indicated by k = 1; k counts the eigenvalues in
increasing order) for a cluster of N = 9. The arrows indi-
cate the direction of movement of the different particles
(i.e. , the eigenvectors of the excitation); (ii) there is a
twofold degenerate vibration of the center of mass with
frequency w = ~2 = 1.4142 (see Fig. 3, k = 7 ); and (iii)
the third eigen&equency corresponds to a vibration of
the incan square radius N g, (x, + y, ) with &equency
w = ~6 = 2.4495 (see Fig. 3, k = 15). The value of this
breathing mode can easily be obtained analytically.

For clusters of sufFicient large size (i.e. , N & 8), a typ-
ical feature of its spectrum is the occurrence of a very

low eigen&equency. Because of the scale in Fig. 2, this
&equency is not always discernable from the w = 0 fre-
quency and, therefore, we have listed it in Table I as w

For a number of clusters the eigenvectors correspond-
ing to these minimal eigenvalues are shown in Figs. 3
(k = 2), 4, and 5 (k = 2). For N = 19 and N = 20,
the central particle does not move for this specific ex-
citation and, consequently, its displacement vector has
length zero and is therefore not visible in Fig. 4. For
the clusters with N = 9, 19, and 20 particles, the mo-
tion with the minimal frequency ~;„corresponds to in-
tershell rotation. The necessary condition for the ex-
istence of intershell rotation is the presence of at least
two particles on the inner shell in order to conserve to-
tal angular momentum. With changing configuration,
the minimal eigenfrequency can vary by several orders
of magnitude (see Table I). For instance, for N = 19
with the ground-state configuration (1,6, 12), the min-
imal eigenfrequency is u;„= 0.67, and for N = 20
and configuration (1, 7, 12), ~;„=1.0 x 10 4. In both
cases the minimal eigen&equencies correspond to inter-
shell rotation (Fig. 4). This large change in the size of
the minimal eigenfrequency is connected to the shell con-
figuration, and not to the total number of particles. For
example, if for N = 19 we take the metastable configu-
ration (1,7, 11) whose energy is an amount 1.66 x 10
larger than the ground-state energy, we found numeri-
cally u;„1.1 x 10,which coincides practically with
cu;„ for the cluster with 20 particles.

From the data given in Table I, we infer the following
law: a high frequency value for intershell rotation is ob
tained for configurations such that the number of particles
on the outer shell is an integral number times the num-
ber of particles on the inner shell. For example, N = 12
(3, 9), N = 15 (5, 10), N = 16 (1,5, 10), and N = 19
(1,6, 12). For clusters with more than two shells (i.e. ,
N ) 21) a large w-;„ for intershell rotation is found for
ground-state configurations, in which the number of par-
ticles in the different shells are multiples of an integer
number. The latter is usually the number of particles in
the inner shell. For example, N = 22 (2, 8, 12), N = 30
(5, 10, 15), N = 45 (3, 9, 15, 18) and to a lesser extent
also N = 34 (1,6, 12, 15). These cluster nuinbers can be
considered as the magic numbers, because they represent
the clusters which are most stable against intershell rota-
tions. In previous work by others on 3D clusters, magic
numbers were determined on the basis of energy calcula-
tions of the cluster configuration. We found that for 2D
clusters no clear steps are found in the cluster energy ver-
sus the number of particles in the cluster and, therefore,
the stability argument is more appropriate in the present
case. On the other hand, a configuration with small ~
for intershell rotation is realized when the number of par-
ticles in the different shells have no common divisor. For
example, N = 13 (4, 9) and N = 20 (1, 7, 12).

The above rules can be understood. &om the Hamilto-
nian by analyzing the intershell interactions using cylin-
drical coordinates. Let us consider the most simple con-
figuration with two shells. From the outset we notice that
the occurrence of a particle in the center of the system,
for example, for a cluster with 20 particles, does not dis-
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turb the intershell rotation. Therefore, we do not have to
consider such a case separately. Let us discuss the rota-
tion between two outer shells. The interparticle distance
and the distance between the shells changes only by a few
percent when we alter the number of particles and/or the
con6guration. Therefore, in an initial approximation, we
can describe each shell by an ideal polygon and, thus,
the interaction Hamiltonian between two shells can be
reduced to the form

Ng Ng

H = —) ) [R', +R,'
i=1 j=l

+2RiR2 cos (~ei —j02 —0)]

where Ri, R2, ei ——2'/Wi, 02 ——2vr/N2 are the radii
and angles between particles of the erst and second shell,
which have N1 and N2 particles, respectively, and 0 is the

TABLE I. Shell configuration (Ni, N2, . . .) for clusters with N particles with parabolic confine-
ment. The minimal excitation frequency (ur; in units of uo/~2), the period (p, ) in degree units,
and the barrier height (U, ) for intershell rotation are given together with the parameter R, for the
ground state of the cluster.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
60
70
80

Xg ) X2) ~ ~ ~

2) 7
2, 8
3, 8
3, 9
4, 9
4, 10
5, 10
1, 5) 10
1, 6, 10
1, 6, 11
1, 6, 12
1712
1713
2, 8, 12
2, 8, 13
3, 8, 13
3, 9, 13
3, 9, 14
4, 9, 14
4, 10, 14
4, 10, 15
5, 10, 15
5, 11,15
1, 5, 11)15
1, 6, 11,15
1, 6, 12, 15
1, 6, 12, 16
1, 6, 12, 17
1 7 12 17
1, 7, 13, 17
2, 8, 12, 17
4, 6, 13, 17
4, 6, 14, 17
3, 8, 14, 17
3, 9, 14, 17
3, 9, 14, 18
3) 9, 15) 18
3, 9, 15, 19
4, 10, 15, 18
4, 10, 15, 19
4, 10, 16, 19
4, 10, 16, 20
5, 11,16, 19
1, 7, 13, 18, 21
6, 6, 15, 20, 23
1, 6, 12, 17, 22, 22

~min

1.268 x 10
8.910 x 10
2.451 x 10-'
5.308 x 10
6.002 x 10 4

4.940 x 10
4.599 x 10
4.924 x 10
5 416 x 10
6.141 x 10
6.676 x 10
1.031 x 10
3174 x 10
2 934 x 10
1.287 x 10
2.762 x 10
1.138 x 10-'
1.041 x 10
1.311 x 10
5.682 x 10
3.911 x 10
2.974 x 10
2.351 x 10
2.971 x 10
6.805 x 10
2.379 x 10
6.585 x 10
8.963 x 10
3.214 x 10
6.134 x 10
2.231 x 10
1.242 x 10
1.237 x 10
3.340 x 10
5.010 x 10
1.552 x 10
1.962 x 10
8.425 x 10-'
1.850 x 10
1.242 x 10
1.511 x 10
7.535 x 10
7.530 x 10
7.420 x 10
1.220 x 10
1.840 x 10

24.9
43.9
14.2
38.3
9.7

16.8
32.8
31.9
10.4
4.8

26.6
4.0
3.5

12.5
11.6
2.7
7.4
7.0

12.0
5.6
9.5

18.6
5.1
5.1

10.0
8.6
5.5
2.6
5.3
4.8

14.8
4.8

7.0
7.5

13.4
4.3

9.1
6.2

12.0

7.0

4.9

U

8.44 x 10
1.20 x 10
2.42 x 10
7.33 x 10
1.06 x 10
2.60 x 10
1.11 x 10
2.03 x 10
3.44 x 10
1.03 x 10
3.14 x 10
2.01 x 10
2.18 x 10
5.44 x 10
4.74 x 10
5.86 x 10
2.47 x 10
1.81 x 10
1.04 x 10
8.31 x 10
1 58 x 10
1.47 x 10
1.52 x 10
2.57 x 10
1.15 x 10
3 68 x 10
1.12 x 10
5.04 x 10
4.66 x 10
3.28 x 10

2.21 x 10
5 90 x 10

2.97 x 10
3.40 x 10
2.66 x 10
2.40 x 10

2.37 x 10
2.05 x 10
332 x 10

7 11 x 10

1.19 x 10

1.349
1.427
0.882
0.912
0.672
0.644
0.564
0.449
0.374
0.360
0.396
0.334
0.294
0.257
0.258
0.118
0.210
0.212
0.611
0.179
0.183
0.172
0.167
0.137
0.257
0.131
0.134
0.131
0.317
0.113
0.091
0.118
0.092
0.096
0.200
0.092
0.094
0.093
0.034
0.130
0.079
0.088
0.189
0.059
0.097
0.117
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and I is an integer, which is the minimal divisor of the
number of particles (Ni, N2, ...) in the difFerent shells.
From expression (7), it follows that the Hamiltonian for
intershell interaction is periodic in 0. Moreover the pe-
riod O„as a rule, is less than the angular interparticle
distance within a shell. To evaluate the strength of the
intershell interaction energy, we deduct &om the Hamil-
tonian the following value:

N=20
dx [Bi + R2 + 2BiB2 cos (x —0), (9)

N=60

FIG. 4. Eigenvectors corresponding to the minimal fre-
quency for clusters with N = 19, 20, 39, and 60 particles.

intershell angular distance. The sum (6) over the two
indexes can be reduced to the sum over one index only,

I
II = - ) Bi + B2+2BiB2cos(i0. —0)]

(7)

where

k=4

h

h h

'I ~

p 7 ~ ~ ~ g g w t

+-

k=6

FIG. 5. Eigenvectors for the cluster with N = 151 particles
for four different values of the mode number k.

which is independent of 0. This result was obtained from
Eq. (7) by replacing the summation over k by an inte-
gration. We proved that the error we make in doing so
is proportional to 0, . Numerical summation of (7) gives
even a more weaker dependence of the interaction energy
on N for two ideal polygons. When we compare the com-
puted results for the barrier height for intershell rotation
with those found from Eq. (9), we found that Eq. (9)
gives a good qualitative description but quantitatively
the results are not satisfactory. Therefore we may con-
clude that for small eigenvalues, the exact value of the
barrier height is strongly inHuenced by the nonideality
of the polygons. Indeed in order to obtain Eq. (6), we
assumed that the particles were placed at the edges of an
ideal polygon. Because intershell rotation is a collective
phenomena, one can easily understand that the actual
barrier height is less than that given by Eq. (7) due
to the deformation of the polygons during the motion.
Indeed, during the rotational motion not only the inter-
shell distance changes but also the interparticle distance
within a shell is altered. This is illustrated in Figs. 3 and
4. Prom these figures, we notice that the eigenvectors for
the particles in the inner shell have practically the same
length and are orthogonal to the radius vector of the par-
ticle. For the outer shell the situation is diferent and the
eigenvectors have also components in the radial direction
and futhermore, the length of the eigenvectors are dift'er-

ent for the different particles (see Fig. 4). Therefore the
vibrations in the radial and axial directions of the outer
shell follow the intershell rotational Inotion of the parti-
cles. Only for clusters in which the number of particle on
the inner shell is a multiplicative integer factor of those
of the outer shell, i.e. , when a large intershell rotation
frequency is found, are the polygons almost ideal. This
can be understood &om symmetry reasons and &om our
numerical results. The characteristics and modeling of
the intershell rotation will be given in next section.

When we increase the number of particles, we found
that for N = 39 (see Fig. 4) the motion with the min-
imal eigen&equency no l.onger corresponds to intershell
rotation, but rather consists of rotation of diferent indi-
vidual regions of the cluster. For N & 60 (see Fig. 4),
the rotation of an innershell is followed by the rotation of
individual polygons at the periphery of the cluster. For
N & 115, we found that the minimal frequency cu;„no
longer corresponds to intershell rotation but corresponds
to the excitation of a vortex/antivortex pair (see figure
k = 2 of Fig. 5, which is for N=151). Higher excita-
tions (see Fig. 5 with k = 4 and k = 6) may consist of
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U, f 27r(p)
U = 1 —cos k~*)

(,
2)

'+ ~a' (14)

where U„and p, are the barrier height and the period,
respectively. The values for U, and y, are given in Ta-
ble I. The above procedure is not able to give the value
of the barrier height for the clusters % = 39, 42, 47, 51,
and 70. The reason is that for those clusters the mini-
mal eigenvalue does not correspond to intershell rotation.
Notice that the cluster with N = 40 has two minima in
the potential energy. One of this minima corresponds to
a metastable state. Of course, U, and p, in Table I are
determined by the global minimum and maximum. In
a few cases, the maxima in potential energy are sharper
than that given by expression (13). The reason is that
the energy for clusters with three and more shells are not
only a function of the angular position of the shell.

For clusters with two shells, the parameter p charac-
terizes the motion of the inner shell. The angle of rota-
tion of the outer shell relatively to the inner one can be
obtained from the condition of zero total momentum,

'~ 10-5

Q3
~ ~

10
a5

I I I I I I I I

~0-5 j 0-~

FIG. 8. Energy barrier of intershell rotation versus (wh)
where u = u;„ is the frequency for intershell rotation and 8
is the linear distance traveled by a particle over one angular
period.

where ¹,B, are the number of particles and the radius
of shell i, respectively. For clusters with two shells, the
value y, presented in Table I is correctly approximated
by taking the simple analytical formulas (8) and (14)
equal to each other.

The Hamiltonian for intershell rotation, taking into ac-
count the angular kinetic energy, can be written in the
form

The parameter b has a clear physical meaning: it is the
length which a particle travels within a shell when it
moves over the angle y, . The approximate expression
(18) is shown in Fig. 8 by the solid curve together with
the results of our simulation, which are given by the sym-
bols. Notice that Eq. (18) describes our numerical results
very well over an energy barrier height variation of more
than eight orders of magnitude.

For clusters with more than two shells, we can only pro-
pose phenomenologic generalization to expression (15).
Let us label (A,", i = 1, ..., %) the set of eigenvectors cor-
responding to intershell rotation. Then to first approxi-
mation the Hamiltonian for intershell rotation becomes

1, , 1 f2~y)II = —R, (p + —U, 1 —cos
i

2 2 (p, ) (16)

with

) Ir, x A I/r, ,

(18)

where the summation is carried out over the particles of
the shell, which has the maximum angular velocity. The
value of the parameter R, is also given in Table I. Once
we have the Hamiltonian it is not diKcult to find the
connection between the barrier angular value y, and the
characteristic &equency for intershell rotation,

VI. DENSITY OF STATES
AND VORTEX EXCITATIONS

Prom Fig. 2, we notice that the maximum &equency in
the excitation spectrum, on the average, slowly increases
with increasing number of particles. We can easily ex-
plain this with the aid of the theory of an infinite sys-
tem. As it follows from our calculations, and has been
mentioned in previous work, the minimal interparticle
distance decreases slowly with the growth of the cluster
size due to the compression of the inner shell by particles
placed at the periphery of the cluster. As a consequence,
the maximum value of the wave vector A:

—z/lp (lp is the
mean distance between the particles) and also the wave

frequency will increase weakly with the cluster size.
For large clusters, it is more interesting to consider the

density of states (DOS) of excitations (phonons), which
can be obtained by a summation of the energy levels,
displayed in Fig. 2, over a &equency interval which we
took bur = u „/40, where w „is the maximal eigenfre-
quency. The results for N = 80 and N = 300 particles is
shown in Fig. 9. A characteristic feature in the DOS for
all clusters is the occurrence of two broad maxima. Prom
earlier investigations1 of classical infinite 2D systems we
know that there are two types of waves in a 2D Wigner
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crystal: the lateral sound waves with dispersion relation
k and the longitudinal plasma wave with w ~k, in

the long-wavelength limit. Using an analytical approxi-
mation for the frequency of sound w1 0.00363~„k lo
and the plasma frequency w2 cu„klo(1 —0.181483klo),
taken from Ref. 18, it is possible to show that the po-
sitions of the broad maxima in Fig. 9 are in qualitative
agreement with the ones for an infinite crystal. In our
dimensionless units, wz

——2vr/plo. To obtain the value
of wz, we used the average particle density p = N/vrRO,
where Bo is the radius of the most outer shell. The max-
imum &equency of plasma like waves u2 1.17m„,
for the cluster with N = 80 equals 4.67, and for K = 300
is about 5.77. Let us assume that the maximum fre-
quency for sound waves is achieved at kjto ——7t. Then for
N = 80 we obtain ui 2.38 and for N = 300 we Bnd

—2.94, which are slightly larger than the position
of the Grst maximum appearing in Fig. 9.

Prom continuum elastic theory, a 2D electron crystal
can be considered as incompressible at low frequencies.
In order to check if this is still the case for the present
Gnite system, we consider the z component of the rotor
@„(k)= e, rot@(k) and the divergence 4d(k) = div4(k)
of the Geld of eigenvectors of mode k,

f r-e guency

4&(k) = —5 @~2,(k),

@,(k) = —) g„', (k) . (19b)

The values gg, (k), and g, , (k) for the ith particle are
given by

g&„(k) = (r, —r-
) [A, (k) —A (k)]/l&, —;l',

(20a)

@,;(k) = l(r, —i ) x [A";(k) —+ (k)ll/I""'

(20b)

where r are the coordinates of the neighbor particles
and A;(k) is the eigenvector of particle i for mode k. The
rotor and divergence of the eigenvector Geld are shown
in Fig. 10 as a function of the excitation frequency for
clusters of size % = 80 and N = 300. Notice that for
small values of the frequency, the rotor of the Geld of
eigenvectors is larger than the divergence. As a conse-
quence, in a Gnite system but with N suKciently large,
the system is incompressible and one can expect that
the low frequency excitation consists of vortex motion in
which the particle density is not disturbed. From our
computer calculations, we found that for N = 151 the
minimum eigenfrequency corresponds indeed to the for-
mation of a vortex/antivortex structure (Fig. 5). Since
the total angular moment has to be equal to zero, those
vortexes always come into pairs. With higher eigenval-
ues, the number of vortexes rises, although this function
is not necessarily monotonic (see Fig. 5). Thus when N
is suKciently large, the cluster of charged particles can
be described as a viscious noncompressible Quid in case
of small wave vectors. Vortex motion is only expected
for suKciently large N, because the velocity of dissipa-
tion of the vortex energy is inversely proportional to B,
where B is the characteristic radius, which increases with
increasing ¹

15 VII. MELTINC TEMPERATURES

10

1.5 4.5
fr e ~meme~

FIG. 9. Density of phenon states for clusters with % = 80
and 300 particles.

In Ref. 14, it was shown that the T = 0 ordered
state of the cluster is destroyed with increasing tem-
perature (T). The melting temperature for this order-
disorder transition was obtained by investigating the ra-
dial displacement, the relative intrashell and intershell
angular displacements as function of temperature. Here,
we will start &om the excitation spectrum of the zero-
temperature ordered state in order to calculate the melt-
ing temperature using the Lindeman melting criterion.
In the harmonic approximation the mean square displace-
ment is given by the following expression:
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and rotor (b,d) of the displacement field for
clusters with N = 80 (a,b) and N = 300 (c,d)
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T = pX ) l,. ) A; (k)/u)q (22)

where A;(k) is the displacement vector for the i particle
in mode k, and li is the mean interparticle distance for
the ith particle.

The numerical results are shown in Fig. 11. As we
expect there is a significant difference in the transition
temperature whether intershell rotation is taken into ac-

&om which we find the melting temperature T using the
relation (u ) = plo, where p = 0.10 for a 2D Wigner
crystal, ' and l0 is the mean interparticle distance. As
discussed in previous section, there exists a number of
configurations with u;„very small, which will give a
very large contribution to the sum (21). In order to see
what the effect is of these very low &equency excitations
on the melting temperature, we also considered the sum
without the first term. Then we will find the tempera-
ture for intershell diffusion. Because for large clusters,
the value of the interparticle distance around the cen-
ter and near the periphery can be considerably different,
therefore we will use the mean value of relative displace-
ment in order to define the melting temperature,

count or not. These results agree qualitatively with the
results of Ref. 14, where it was found that (i) for clus-
ters with a small number of particles the angular order
is destroyed at much lower temperatures than the radial
order, which agrees with the large difference in melting
temperatures shown in Fig. 11; (ii) for larger clusters
both temperatures are practically equal as is also appar-
ent in Fig. 11. Orientational order and radial order disap-
pear practically at the same temperature for N ) 40; and
(iii) the melting temperature at which intershell diffusion
sets in, is a decreasing function of the number of particles
in the cluster up to about N 20—40, beyond which it
starts to increase, which agrees qualitatively with Fig. 11.
The magnitude of the transition temperature found in
the present approach is slightly higher than found in the
Monte Carlo study of Ref. 14. This is a consequence of
the present harmonic approximation, which has a lim-
ited validity near the melting temperature. The melting
temperature for intershell rotation (top part of Fig. 11)
is strongly influenced by the value of u;„, which is pro-
portional to the rigidity of the cluster agains intershell
rotations. In fact, it is a measure of the stability of the
cluster against intershell rotations. As was mentioned
before the value of u;„, and also U„ is determined by
the configuration of the cluster. Clusters with a magic
number of particles have a large melting temperature for
intershell rotation. These fine details were not present in
Ref. 14.
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It is known that for an infinite crystal, the sum (22)
diverges logarithmically in the low-wavelength, which is
due to the presence of lateral sound waves. Therefore,
one uses the average square displacement of interparticle
distance in Lindeman s melting criterion. In our case,
such criterion gives the relation

1 2

s

N 2N M

T=&X ) t ) „-' ) ~, (k) —~ (k)
i=1 k=2 m=1

(23)

0 6

0 D

where the sum over m runs over the M neighbor particles.
The numerical results obtained using Eq. (23) is shown
in Fig. 12. These results are very close to those found
in Ref. 14 with the exception that here near N 150 a
maximum is found while the Monte Carlo results slowly
increases towards the % ~ oo value. We want to em-
phasize that if the number of particles is not too large,
the transition temperature obtained with the second cri-
terion (23) is lower than the one from Eq. (22). This
indicates that the particles mainly move towards each
other, and only for N & 200, the effect of small wave

with intershell r otation

10

100 1 50 ZOO 260
nu. la:z b er

FIG. 12. Melting temperature for large clusters as obtained
from Lindeman s Inelting criterion, excluding intershell rota-
tion, and incorporating the relative displacement of neighbor
particles.

vectors begin to appear. In the latter case the neighbor
particles move with the same velocity and the difference
in the value of critical temperatures obtained using the
spectrum of the eigenvibrations (Fig. 11) and the Monte
Carlo technique is very small.

CD

10 4
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CD
~ io-

10—&

20 SO 40 50
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without intershell rotation

VIII. SPECIFIC HEAT

Before we already mentioned that, in order to obtain
the ground state, we generated many initial configura-
tions and in so doing not only stable states but also
metastable states were obtained. Thus, if we also calcu-
late the spectrum of normal modes uI, for each local min-
imum, we can easily obtain the partition function within
the harmonic approximation and, consequently, all the
thermodynamic quantities like the Bee energy, the spe-
cific heat, . . . . Such an approach was followed in Refs.
23 and 24 for 3D clusters, where the inHuence of anhar-
monicity and saddle points on the partition function was
also studied. In Refs. 23, 24 only, the main character-
istics of the spectrum of normal modes was used. Here
we know the complete spectrum of our finite 2D system
and are, therefore, able to calculate the partition function
more correctly.

In the quasiclassical approximation, the partition func-
tion for a cluster with % particles is given by

Z(T) = (2eePe) f dqdpexp[ H(j, pg)/keT), (24)—
where q = (ri, ..., r~), p = (pq, ..., piv) are 2X-
dimensional vectors. The partition function can be writ-
ten as

10 RO BO 40 50
murray. b er o f p article s

FIG. 11. Temperature of cluster melting obtained using the
Lindeman criterion with and without intershell rotation.

Z(T) = ) exp( U /T)Z (T), —
m=1

where Z is the partition function of the mth metastable
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TABLE II. Shell configuration (Ni, N2, . . .) for some metastable states for a number of difFerent
clusters. U is the energy difference of the metastable configuration with the ground-state energy
and W = Q wq —i/ Q uzi, is the relative statistical weight.

N
9
25

Ng, N2, . . .
1, 8
3, 8, 14
4, 8, 13
1, 6, 11,16
1, 7, 11,15
1, 5, 11,17
6, 12, 16

U

5.526 x 10
5.308 x 10
1.013 x 10
9.114 x 10
1.003 x 10
1.581 x 10
].847 x ]0

3.14
0.81

22.70
15.91
79.70
7.22

60.60

state whose energy differs with the ground state by an
amount U . The dimensionless units for temperature
and specific heat are used here and below. In the vicin-
ity of this mth metastable state, the Hamiltonian is
quadratic in the normal coordinates. Because the en-
ergy barrier for intershell rotation is small, the e8'ect of
anharmonicity will already appear at low temperatures.
Therefore, we will integrate only over a small region of
particle motion

~
q, ~& /2U (k)/Tas, which results

in

the spectrum of the normal modes. At low temperatures
such that T (( (U (k), U ), the specific heat is only
determined by the ground state, and the efFect of anhar-
monicity is not essential. Consequently, C = 2N —1/2,
as is apparent in Fig. 13. Usually the barrier for inter-

+m —gm +rot
2N

~"2 +A:,m
erf(QU (Ic)/T), (26)

'~ P+H

where Z, i oc ~T is the part of the partition func-
tion resulting from the rotational degrees of freedom,
g = 2vr/0, is the degeneracy of the mth state, which
is determined by the number of particles occupying a
shell, U (k) is the barrier height for normal mode k, and
erf(x) is the error function. These parameters are given
in Table II for a number of metastable states.

For convenience let us consider only one normal mode.
At low temperature T (( U (k), expression (26) results
in the usual value for the specific heat for a harmonic
oscillator C = 1. For high temperature T (( U (k),
the specific heat equals 1/2 as for free motion. For the
intermediate temperature region T U (A:), expression
(26) gives an interpolation between these two limiting
cases. Unfortunately, we know only the value of the bar-
rier height for intershell rotation. For the remaining nor-
mal modes, we will use the analogy with the I indeman
criterion to write the phenomenological relation,

1S
1O—4

45
I

1o—4

1O 10—&

ter~iperatur e

1Ot e Lllp erature

U (k) =p„N (27)
ega

c BB

where Io is the mean interparticle distance, and p = 0.2—
0.3. The above expression is then used in the numerical
evaluation of the partition function (26) and (25). Below
we will mainly deal with the speci6c heat,

Be

0 20 lnZ
OT BT (28)

I

10—4 1O—&

terxi~ er a.tur e
10—i

which is shown by the solid curve in Fig. 13.
General features of the behavior of the specific heat

as a function of T and N can be predicted without de-
tailed information regarding the metastable states and

FIG. 13. Specific heat for clusters with N = 9, 25, and
34 particles, as a function of temperature. Solid lines are
the results as obtained from an approximate calculation of
the partition function, and the solid dots are results from the
Monte Carlo simulation.



7712 VITALY A. SCHWEIGERT AND FRANCIS M. PEETERS 51

shell rotation is the smallest energy, which is also smaller
than the difference in energy between the ground state
and the metastable states. In the temperature range
Ui(k = 2) « T « (Ui(k g 2), U ), the specific heat
will be constant and having the value C = 2N —1. Such
a small reduction in C is visible in Fig. 13 near T 10
With further increase of the temperature, the behavior of
the specific heat is determined by the competition of two
processes. On the one hand, transitions to metastable
states which lead to an increase of the specific heat, and
on the other hand, the effect of anharmonicity which will
reduce C. This interplay will lead to peaks in the specific
heat as is apparent in Fig. 13. Note that the position of
the peak does not equal the melting temperature.

In the order-disorder transition region the applicability
of the above approach is questionable. Therefore, we also
calculated the specific heat using the standard Monte
Carlo technique. As the initial state, we took the ground
state of our system. Then we fix the temperature and
execute 10 steps of the Metropolis algorithm to allow the
system to achieve equilibrium. Next about (4—10) x 10s
steps of the Metropolis algorithm are made in order to
reduce the statistical error. The specific heat is then
found using the following formula:

(29)

where E is the potential energy for the system with %
particles. In Fig. 13, we compare the results &om the
Monte Carlo simulation (full dots) with the above results
(full curve), which are based on the excitation spectrum
of the T = 0 stable and metastable states. Note that
for the small cluster with N = 9 very good agreement
is obtained. For the other two clusters, good quanti-
tative agreement is found at low temperature while at
intermediate and high temperatures only the qualitative
behavior is correctly described. Thus, for large clusters
the approximate model is not able to give a satisfactory
description of the effect of anharmonicity. Nevertheless
there is qualitative agreement in the position of the max-
ima. We have tried to vary the parameter p„and to
change the integration interval for the allowed particle

motion in Eq. (26), but we were not able to obtain any
better agreement.

IX. CONCLUSION

We have presented the results of a numerical simu-
lation of the ground state and the spectrum of normal
modes of classical 2D clusters with quadratic confine-
ment. The barriers for intershell rotation and the specific
heat are also obtained. The Lindeman melting criterion
in conjunction with the T = 0 excitation spectrum of the
ground-state configuration was used to obtain the order-
disorder transition temperatures for angular and radial
Inelting.

For systems with axial symmetry, and an intermediate
number of particles, the normal mode with the lowest
frequency corresponds to intershell rotation if there are
at least two shells. A low excitation energy for intershell
rotation is found for clusters which have a shell config-
uration such that the number of particles on each shell
have no common multiple. If the number of particles
in the outer shell is an integer multiple of the number
of particles in the inner shell, the cluster will be most
stable against intershell rotation, which define the clus-
ters with magic numbers. Such clusters also have a large
melting temperature for intershell rotation. Distortion of
the axial symmetry of the external potential, will lead to
a rise in the eigen&equency and in the barrier height for
intershell rotation. For large clusters, i.e., N ) 100, the
normal mode with the lowest &equency corresponds to a
vortex/anti-vortex excitation.
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