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Stopping power of a two-dimensional electron gas for heavy particles
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The velocity dependence of the stopping power of a two-dimensional noninteracting electron gas for
heavy in-plane ions is calculated. The transport cross section required in the kinetic treatment is deter-
mined for a bare Coulomb potential. Detailed analytical and illustrative numerical results are derived.
The problem of screening is also discussed.

I. INTRODUCTION

Electronic excitations play an important role for the
energy losses of particles moving through an electron gas.
Note that if the stopping medium is in thermal equilibri-
um, a particle slows down until its kinetic energy ap-
proaches the equilibrium value. If the incoming particle
has a large mass, the description of the motion of the
heavy particle in terms of a classical trajectory presents a
reasonable approximation. Here we assume a straight-
line trajectory for the heavy ion, which means that its
kinetic energy must be larger than the equilibrium value
of the stopping medium. The electrons are treated as
noninteracting. We study the steady-state limit, i.e., we
do not investigate the transient behavior after switching
on the potential of the incoming ion.

In the frame of reference of the heavy projectile the in-
dependent electrons are scattered by a fixed potential. In
this kinetic treatment the average momentum transfer
suffered by the scattering electrons is the source of the re-
tarding force (stopping power) experienced by the projec-
tile in the slowing-down process. This force is a basic
quantity in various solid-state physical problems, too. '

A nice example is the phenomenon of quantum dissipa-
tion.

A dielectric treatment of the retarding force, for a
two-dimensional system, was presented by Bret and
Deutsch using the random-phase approximation (RPA)
for the linear response function. In this perturbative
mean-field method the system constituents respond to the
sum of the external and induced fields as free particles.
The retarding force is calculated from the induced elec-
tric field at the site of the perturbing particle.

We have to emphasize that the connection between the
kinetic and the dielectric treatments is not trivial. One
might give explicit statements only a posteriori, i.e., per-
forming calculations in both approximations. The kinet-
ic approximation is a nonperturbative method for
electron-hole excitations while the dielectric approach,
although it takes into account plasmon excitations, corre-
sponds to a first-order Born approximation. The plasmon
channel gives negligible contributions in two-dimensional
systems according to the RPA.

There is a steady interest in the two-dimensional elec-
tron gas since it has been demonstrated how to realize ex-
perimentally this system confined to a plain with a con-

II. THE STOPPING POW'ER

For an external potential with inversion symmetry
moving through a noninteracting electron gas of dimen-
sion (D) two or three, one obtains the following expres-
sion for the stopping power:

2 vqvS(D)= f d pf(e~)u„o.„(D,u„) .(2'�) U
(2. l)

Here f denotes the Fermi function, e~=p /2 are free-
electron energies, and v, =v —p is the relative velocity

u„=(u +p —2up cosy)' (2.2)

The integration over the isotropic electron velocity
spectrum is carried out using the standard method"

2 D 1f d pf = KD, f dpp 'f—f dy(sing)

in which KD has the following form:

KD =2' 7r ~r(D/2}~

(2.3)

(2.4)

tinuously varying density. A kinetic treatment for stop-
ping allows a diagnostic tool for two-dimensional elec-
tron systems in many fields of applications. Metal-oxide
semiconductor devices are good, real examples. The
descriptions of scattering, ' projectile screening, ' and
thus expressions for the stopping power depend
significantly on the dimensionality of the target. An in-
vestigation for two-dimensional system is, therefore, of
interest from obvious theoretical and experimental
points of view.

The paper is organized as follows. In Sec. II, we give a
short but self-contained formulation of our kinetic frame-
work appropriate for two- and three-dimensional (3D)
electron gases. The heavy ion is characterized solely by
its velocity U. The basic expression of the transport cross
section in 2D for a bare Coulomb potential is given in
Sec. III. Analytical and numerical calculations of the
stopping power for 2D, together with possible applica-
tions, are presented in Sec. IV. Finally, we summarize
our results in Sec. V. We use Hartree atomic units
throughout this work.
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It is easy to show that

vqv
=U p cosg .

U
(2.5)

2 2

o „,(2D, v„)=Z,
Ur

while in the opposite, i.e., classical limit (Zi /u„~ ~ )

(3.5)

The momentum-transfer (or transport) cross sections
(o„) in Eq. (2.1) are given in partial-wave representation

12

o,",(2D, u„)= iZ,
Ur

(3.6)

o„(3D,v„)= g (I+1)sin [5,(u„)—5, +,(u„)],4m

U) 1=0

for 3D, and"

(2.6)

and

o „(2D) ~ a.„,(2D )

is the appropriate expression. By simple comparison, we
can conclude

00

o„(2D,v„)=—g sin [5 (v„)—5 +,(u„)],
r ~=0

(2.7) cr„(2D) ~ o't,'(2D), (3.7)

for 2D, where 6's are the scattering phase shifts.
To implement the above-formulated approach,

knowledge of the scattering potential is essential. The 3D
case is well documented, ' ' therefore it appears of in-
terest to investigate the retarding force S for an in-plane
projectile, i.e. , for 2D. Using Eqs. (2.1)—(2.5) we can
write

S(2D)= f dppf (p /2)
1

for arbitrary scattering velocity U„.

IV. RESULTS

A useful expression can be obtained for the stopping
power if we use o„(2D,u„). The result will be quantita-
tively appropriate for a high-density electron gas and ar-
bitrary velocity of the projectile. With cr„(2D,v„) in Eq.
(2.8) the angular integration is straightforward and reads

X f dp(u —p cosy)u„cr„(2D, u„) .
0

(2.8)

r

v —p coscp m. u for p u &1,
z0 U +p —2pu cosy 0 for p u ) 1

(4.1)

III. cr„(20,v, ) FOR COULOMB
POTENTIAL

Applying the well-known' result for scattering
Coulomb wave functions in 2D, we can write

Zi
5 (v„)—5 +i(u„)=tan v„m+ 1/2

(3.1)

We continue with standard expressions of trigonometry

X 2

sin'(tan 'x)=
1+x

(3.2)

The aim of the present investigation is to focus on the ve-
locity dependence of the stopping power in 2D. In order
to obtain results for comparison with subsequent calcula-
tions this paper is devoted mainly to a bare Coulomb po-
tential V (r) = —Z, /r. Here Z, denotes the charge of the
heavy projectile.

n = ln(1+ei' "
)

kT
(4.2)

as follows from the norm integral. Here T is the temper-
ature and k is the Boltzmann constant. The Fermi veloc-
ity is defined as pF =(2+no)'~ .

Introducing the new variable u in the Fermi function
via

pkTP 2
(4.3)

and taking into account the constraint of Eq. (4.1), to-
gether with p from Eq. (4.2), the integration over the
electron velocity spectrum in Eq. (2.8) becomes simple.
We arrive at the desired analytical expression

The electron density (no) determines the chemical poten-
tial (p) in a standard way for 2D:

S(2D)=Z, kT[(a, +a2) —ln(e '+e ' —1)], (4.4)

1 mytanh
=0(2m+1) +y 4y

(3.3)

By using Eqs. (3.1)—(3.3) in Eq. (2.7) we arrive at

cr„(2D,u„)=Z, tanh
2~
Uy

7TZ j

U
(3.4)

The exact cross section is independent of the sign of Z, .
In contrast to the 3D case the transport cross section in
2D is a finite quantity even for bare Coulomb potential.
In the first-order Born approximation (Zi/u„~O) one
obtains

Z&mv for u &pF,
S(2D)= '

Z&2m n0/v for v )pF . (4.5)

where a, =u /2kT and a2=p~/2kT It is easy to sho. w
that S(2 D) ~0 for arbitrary velocity which is due to the
infinite mass (M~ &a ) assumption for the projectile.
Practically, Eq. (4.4) is valid if Mu /2)) max(kT, p„/2)

In applications to solid-state physical problems, like
friction, orthogonality (or overlap) exponent for deplac-
ing a potential by a short distance (a), and quantum dissi-
pation, ' T=O is the usually considered limit. From
Eq. (4.4) we obtain
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This equation confirms the expected asymptotic
behaviors of S(2D) at zero temperature

"oops o «(2D, ps ) for v «ps,
S(2D)= '

nov o „(2D,v) for v )&pF, (4.6)

S(2D)=Z, nov .'kT (4.7)

Of course, the high-velocity form in Eq. (4.5) holds at ar-
bitrary temperature if the velocity is high enough
v )&max(&kT, ps).

The asymptotic forms given by Eq. (4.6) are useful with
cr«(2D, v„) of Eq. (3.4) and o«(2D, v„) of Eq. (3.6), too.
Particularly, the classical expression cr,",(2D) gives a con-
stant value for S(2D) at high velocity of the incoming
ion. With Eqs. (3.4) or (3.6) one has to perform numeri-
cal integrations to obtain the detailed velocity depen-
dence of S(2D). In the following we present results ob-
tained at T=O, for a fixed density of the system pF =2.
Figure 1 shows our numerical results as a function of the
projectile velocity v, for ~Z, ~

=1. The curve, based on
application of the first-order Born approximation has a
marked peak at v =pF; see Eq. (4.5). The curve which is
based on the classical approach tends to a fixed asymptot-
ic value. Finally, the curve which is based on the exact
Coulomb expression of the transport cross section has a
plateaulike maximum, and, in agreement with the con-
straint of Eq. (3.7), is below the other ones. Even for a
high density of the system (pF=2) the exact result is
smaller than the first-order Born result, and the two
curves merge only asymptotically for U )&p~.

As we have stated in Sec. II, the knowledge of the

which are simply obtained from Eq. (2.8) for well-
behaved cr„(2D,v„).

For a high-temperature 2D plasma if kT»(v /2,
pF /2) a series expansion of Eq. (4.4) gives

V(r) = — 1 — [Ho(cr) —Fo(cr)]
~cr

(4.8)

where Ho and Fo are Struve and Neumann functions, re-
spectively. The screening constant c has a simple form:
c =2(1—e '). The transport cross section, at a v„
scattering velocity, is given by

4~Z ) Z'
o„(2D,c v„)=

3
dz

(z+P)' 1 —z' (4.9)

in which P=c /2v„. The integration in Eq. (4.9) is

straightforward and we obtain

o «(2D, c, v„)

2 2 2 2
Zz 1

P
1

P F(P)v„~ 1 —P v' 1 —p~~

scattering potential is essential in our theoretical frame-
work. Because of the electron time delay in scattering
there is induced electron density or hole around the pro-
jectile depending on the sign of its charge. In other
words, in further accomplishments of the theory one
must take into account the question of self-consistency.
In the 3D case the answer to this question is well docu-
mented. ' ' In the remaining part of this section, as a
first step, we incorporate the screening using linearized
Thomas-Fermi theory in 2D. Then, to remain consistent,
we apply a first-order Born approximation for the scatter-
ing amplitude to describe scattering by the screened po-
tential. Therefore, this treatment is appropriate for a
high-density 2D gas and for low-velocity repulsive in-
truders. The problems of nonlinearity' (therefore the
charge sign, i.e., Barkas effect' ) and bound states' are
left for further investigations.

The screened potential in a static, linearized Thomas-
Fermi theory is the following

S(a.u.) where the function F is the following:

(4.10)

A

.I X.

I
I

+(p) = In[(1++1—p )/p] for p&1,
(m/2) —sin '(1/p) for p) 1 .

(4.11)

v (a.u. )

For high densities (pF &) 1, thus p~O) we recover our
previous result given by Eq. (3.5). The above result may
be applicable in the first expression of Eq. (4.6) to obtain,
i.e., the overlap parameter K=[S(D)/v]a /(2m. ). At
high velocities (v„=v) the screening (and plasmons ) does
not play a significant role in 2D for stopping calculations.

FIG. 1. Stopping power S of a 2D zero-temperature electron
gas for heavy unit charges as a function of the projectile velocity
U: First-order Born approximation (dash-dotted curve), classical
approximation (dashed curve), and exact treatment (solid curve)
for a bare Coulomb potential. The density of the system is fixed

by pr =2.

V. SUMMARY

We have presented a treatment of stopping power in a
two-dimensional electron gas. We started with the kinet-
ic theory of slowing-down processes. Then we described
the transport cross section for a bare Coulomb potential.



80 I. NAGY 51

%'e derived detailed analytical and illustrative numerical
results for the stopping power. Finally, we discussed the
problem of screening. To achieve a full self-consistency
of screening and stopping of heavy ions in a 2D electron
gas further developments are needed.
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