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Superradiance of Frenkel excitons with any degree of excitation prepared
by a short-pulse laser
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Collective spontaneous emission from a one-dimensional mesoscopic exciton system interacting via
static dipole moments is investigated by virtue of the analogy to the quantum XXZ spin chain. The
rigorous expression for the initial state is obtained at any degree of excitation from the ground state
by a short intense laser pulse. The emission profile from the initial state with partial population
inversion exhibits oscillations and very rapid decay in comparison with that from the completely
inverted state. The time-resolved emission spectra are also discussed.

I. INTRODUCTION

When a collection of dense atoms (or molecules) are
prepared in the upper level of an electric transition,
it starts to radiate spontaneously and coherently with
much shorter-pulse width than the emission of indepen-
dent atoms. This phenomenon is called superradiance
and has been studied both experimentally ' and
theoretically ' since the pioneering work of Dicke. He
investigated the spontaneous emission from an ideal gas
system composed of N two-level atoms and predicted
this efI'ect as the collective spontaneous emission due to
a spontaneous phase locking of atomic dipole moments
throughout the medium as long as the system size is
small comparing with the relevant wavelength of the ra-
diation. It is a quantum mechanical phenomenon in the
sense that its intermediate transient states are described
by the superpositions of the classical states of individual
excitations. This is easily seen from the collective emis-
sion of two particles. We denote the upper (lower) level
of the ith atom by le, ) (lg;)). The two-particle excited
state is expressed as ei) C3 le2). Classically it decays into
either lgi) S le2) or ei) lg2), while quantum mechan-
ically any superposition of these two states is admissi-
ble and, in fact, it decays into the symmetric state:

(I») Ie.) + lei) I»)).
In order to describe the N particle (two-level atomic)

system, it is convenient to use the analogy between a
two-level atom and a quantum spin, that is, we regard
the upper state of the ith atom le, ) as the spin-up state
I t) of the ith 1/2 quantum spin, and lg;) as

I $). Corre-
spondingly, if we define the (pseudo-)spin operators,

the interaction Hamiltonian H;„tare described with these
operators as

N

Hp —) h, (dps . = A,cdpS
i=1

N

H;„,= —) (E p, s+ +E' p,*s,—)
j=1

=——E pS+ —E~ p* S

where E is the electric field operator and p, denotes the
expectation value of the atomic dipole moment. If the ini-
tial state is in complete-population inversion, it is given
by

N N= S= —M=— )2' 2

where S(S + 1) and M are the quantum numbers of the
total spin operator S—:2(S+S + S S+) + (S')2 and
S', respectively. Since S commutes with both Hp and
H;„t,the quantum number S, which is called the cooper-
ation number, is a conserved quantity during the super-
radiant process so that the system evolves in the N + 1
eigenstates:

I 2, 2 ), I 2, 2
—1), . . .,

I 2, —
2 ). The emis-N. N N. N N. N

sion rate TVN is given with the spontaneous emission rate
of an atom p by

W~ = p(S+S ),

s; —=
2 (le*) &e*l —Ig') &g'I) (2)

they satisfy the usual commutation relations as

[s+, s, ] = 26, ,s;, [s,', s,+] = +6, ,s,+.

The system Hamiltonian of the two-level atoms Ho and

which scales as N at the initial and final stage, while
it scales as N at M 0. This squared N dependence
of the radiation rate results in the "ideal" superradiance.

In realistic systems, however, the interaction be-
tween constituent atoms suppresses the superradiant
processes. Dipole-dipole interactions cause the dephas-
ing of the symmetric states and frequency chirping of the
emission light. In the spin language, the total spin
S is no longer a conserved quantity and smaller spin
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states participate in the superradiance. Frenkel exciton
is the quantum for the coherent propagation of an ex-
citation in an insulating or a molecular crystal. The
excitation transfer is induced by the dipole-dipole in-
teraction between the transition dipole moments of the
molecules. Since the excitation (electron-hole pair) is lo-
calized at the molecular site and has no inner structure
in contrast to Wannier exciton, we can adopt the system
of two-level atoms with strong dipole-dipole interaction
for the model of Frenkel excitons by regarding the con-
stituent molecules as two-level atoms. Thus, the system
of Frenkel excitons under strong excitation is equivalent
to the two-level atomic system with population inversion
and it will exhibit superradiance. This superradiance of
Frenkel excitons in a linear system from the complete-
population inversion has been investigated in detail in
Refs. 7 and 8. Here, frequency chirping and slow emis-
sion tails due to the excitation transfer have been clarified
by means of the numerical calculation of emission profile
and time-resolved emission spectra.

The symmetry of the charge distribution of a con-
stituent molecule in the excited state is, in general, dif-
ferent from that in the ground state and a static dipole
moment is induced at the molecule. These static dipoles
strongly affect the nature of Frenkel excitons at high ex-
citation. For an example, excitonic strings which are the
bound states of more than two excitons are generated
due to the attractive interactions between them. The
superradiance of Prenkel excitons will also be inHuenced
by them.

The recent development of laser technology has made it
possible to generate short intense laser pulses of the order
of 10 10 femtoseconds. If we use such short pulses, we
may generate rather dense and coherent Frenkel excitons
instantaneously. The emission from them is collective
spontaneous emission if we can neglect reabsorption of
emitted light and we may observe the specific nature of
superradiance of Prenkel excitons described above. In
the actual experiments, especially for the aggregates of
dyes and conjugated polymers, which are potentially the
candidates of highly excited exciton systems, it would be
almost impossible to excite the systems in the complete
population inversion. The initial states of them would be
in the partially excited states. Hence it seems important
to clarify the features of collective spontaneous emission
from the system of incomplete population inversion.

In the present paper, we wish to clarify how the static
dipole moments modify the superradiance of Frenkel exci-
tons and to investigate the e8'ects of partial excitation by
short intense laser pulses by giving the rigorous expres-
sion of the initial state. Some results about the former
subject have already been published. We shall give more
detailed results and supplementary remarks. In Sec. II,
we derive the master equation for a model system of
Frenkel excitons under an external electromagnetic field
by eliminating the radiation field operators from the sys-
tem of atoms and radiation field. The elimination of low
frequency modes and that of near-resonant modes yield,
respectively, the static dipole-dipole interaction between
atoms and the propagation of excitation through transi-
tion dipole moment, while that of the just resonant modes

II. SUPERRADIANCE MASTER EQUATION

We start from a collection of N identical nonoverlap-
ping two-level atoms, at positions r1, r2, , r~, coupled
to a radiation field. The treatment presented here is sim-
ilar to the previous works by many authors, except for
the existence of static dipole-dipole couplings and an ex-
ternal electromagnetic field.

The total Hamiltonian is written as

a~.t = 00+ H. a+ v

N

IIp = h(dp) s. ,
2=1

(6)

farad —= h~k+k ~+k, g)

k, e

V = —) [E+(r,) P(r, ) + E (r, ) Pt(, )],

where

E+(r~)—:(—i) ) cap, exp[ik . r~],
hc/k/

k, e
2eo0

and

P(r,.) = V, (s+. + s, )+ ~'(s,' + I). .

Here, a&, (ag, ) is the creation (annihilation) operator
for the plane wave mode of the radiation Beld with wave
vector k and unit polarization vector e, and. p, = pe =
(ez ~er~gz) and gs' = p'e' = (ez ~er~ez) are, respectively,
the transition dipole matrix element and the static dipole
matrix element. Although these values depend on the site
index j in general, we assume, in this paper, that they do

gives the coherent decay. The effective Hamiltonian for
the atomic system is shown to be equivalent to that of
quantum XXZ spin model. We calculate the ini-

tial state distribution prepared by the short intense laser
pulse in Sec. III. A rigorous expression of the density ma-

trix for an arbitrary pulse is obtained in the short-pulse
limit. In Sec. IV, we give the expressions of emission pro-
Ble and that of time-resolved emission spectra. We dis-
cuss some important features of them and mention the
methods for actual numerical calculation. The results
of numerical calculations for one-dimensional mesoscopic
systems are also shown. The drastic change of the emis-
sion profile and spectra due to the static dipole moments
is presented. Pulse profile of the superradiance from par-
tial degree of excitation is derived in Sec. V, where rapid
decay and oscillation of the emitted pulse from the par-
tial excitation is also found. Section VI is devoted to
concluding remarks.
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not. We choose p =
~ p~ and p' = ~gd~ to be real, which is

always possible by an appropriate gauge transformation.
Thus we have Pt = P. In the expression of E+(r~), 0 is
the quantized volume of the radiation field, which is much
larger than that of the atomic system. The pseudospin
operators s+. and 8' are already defined in the Sec. I.

2 2
Let p& t be the density matrix of the total system,

which obeys the evolution equation:

d 1

d Pto~(t) = h[K ~, P~.~(t)].

Transforming it into the interaction representation:

ptot(t) = exp[i(Ho + H, ~)t/h]pt t(t)
x exp[ —i(HO + H, d)t/h],

V(t):—exp[i(Ho + H, ~g)t/h] V(t)
x exp[ —i(HO+ H, d)t/hj,

we get

1

dt p,ot (t) = —. [V(t), p, o, (t)].

Iterative integration of Eq. (iO) leads to

(io)

1
pt.~(t+ &t) = A.t(t) + —.

ih
1

«[V(r) Pt-~(t)] +,h, dr2[V(ri), [V(72), p, t(t)]j + . . (ll)

The reduced density operator for the atomic system is defined (in the interaction representation) as

p(t) = Tr, g[p, ,(t)j. (i2)

First, we consider the case of no external electromagnetic Geld. Under the superradiant configuration, that is, when
the system size is small enough to neglect reabsorption of emitted photons and reflection at the edge of the system,
we can approximate

p(t) = Tr, g[p, , (t)~vac)(vac~].

Here, ~vac) denotes the vacuum of the photon field. By the second Born approximation, we get

d p(t + At) —p(t) i
dt At ih 'At
—p(t) . 2 dri dr2(vacua [V(ri), [V(r2), pto&(t)]]~vac) (i4)

where Lt is the coarse graining time, which is much
longer than the time interval for light to pass through
the sample and much shorter than the typical atomic re-
laxation times. Then we can regard the evolution on the
atomic system as a Markov process by treating the effect
of spontaneous emission as fluctuation of the atomic sys-
tem (Markov approximation). Practically, this approxi-
mation is to replace the integral & J dri J dr2 int+b t 71

Eq. (i4) by f d(ri —r2). After some algebra, 4 we obtain
the evolution equation:

d- 1
p(t) = —[H p(t)j + rp

dt ih (i5)

where the first term includes the static dipole-dipole in-
teractions and the transfer of Frenkel excitons, coming
from the elimination of the low frequency modes of the
radiation field and from that of the near-resonant modes,
respectively. The second term describes the collective de-
cay of the system and is obtained from the elimination
of the just resonant modes. They are explicitly given as

Hxxz —= ) .(0, , (s+s, , + s, s+) + 0;,, (s's', )),

(2
0

16~3so
dkk F'(kr~, ~ )p

p2I 3. 'hF(k«", )8' 2ep A,

F(kr, , )—: dSI, (e s) exp[ik. (r, —r, )],

F'(kr, , ):— dSg(e s') exp[ik (r~ —r, )],

OO 1
cdr exp +i(k —ko)cr = vrh(k —kp) Rip

A: —kp'

where r~ ~
=

~r~
—r~. ~, ko = coo/c and we neglect small

energy shift of the atomic excitation energy and several
off-resonant terms. In deriving the above expressions, we
replaced the summation over k by the integral over k in
Eq. (i4), i.e.. Pk ~ V/(2m) J' k dk f dSA,. and utilized
the identity:

P0-.
16x3op

1
dkk F(kr~, ) p

0

1rp:———) p, , [s s , p —2s ps, +ps. s, ], .

2)2

where p denotes a principal value. If we take the off-
resonant terms into account, H~~z contains the term

Since we are interested in the linear mesoscopic sys-
tem, whose length is small compared to an optical wave-
length, we can take the limit kpr~ ~~,' 0 in the above
equations. We also keep only the nearest neighbor inter-
actions, for the dipole-dipole interaction is short-ranged.
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Then, transforming to the Schrodinger representation,
Eq. (15) reduces to

1—p(t) = —. [Hp+ Hxxz, p(t)] + I'p(t),
dt ih

tion field prepared by the external Geld, which remains
unchanged after the coarse graining time At just as the
vacuum state in Eq. (13). The reduced density operator
P(t) is to be approximated as

p(') = T -~[p - (t) IK(t)) (K(t) I] (2O)
N

Hxxz —= h)—.fJ.(s+s, +, + s, s++, )+2J,s;s,+,),
i=i

where IK(t)) is the coherent state with respect to the
applied radiation modes but the vacuum state for the
other modes:

(17)
K'(r)IK(t)) = K. (r t)IK(t)). (21)

I'p —= ~(s+ s p+ p-s+s-) + ~s ps+,-
2

where

p2 3(e a) 2

4&COG Q

3(s' a) 2

d 1—p(t) = —. [Ho + Hx~z + Vi(t), p(t)] + I'p(t),
dt ih

where

(22)

Note that Eq. (13) is a special case of Eq. (21), where
K,i(r, t) = 0, i.e. , IK(t)) = Ivac). Then the master equa-
tion becomes at the same level of approximation as in
the case of no applied Geld:

and V,)(t) = —) [K,)(r, , t) + K;,(r, , t)] P(r, ). (23)

kopy:
371'60 h

where a is the primitive vector of the one-dimensional
lattice and a—:Ial. Hx~z is exactly equal to the Hamil-
tonian of spin 1/2 quantum XX'Z spin chain. , which is
one of the quantum many body systems, whose proper-
ties have been understood in full detail. ii (If we include
the ofF-resonant terms, the Hamiltonian becomes XYZ
Hamiltonian in the interaction representation. ) Since
Ho describes the interaction energy between the exter-
nal magnetic Geld parallel to the z axis and the quan-
tum spins for the spin system, we can conclude that
"the Prenkel exciton system is equivalent to the quan-
tum XXZ spin system under the magnetic Geld. "

One may think that, because of this equivalence, we
can immediately observe in Frenkel exciton system the
same thermodynamic features as those of quantum XXZ
spin, but this is not the case. The excitation energy h, wo
is usually much larger than the transfer energy Ih Jl and
interaction energy Ihj, l. This is also the condition that
the ground state of the Frenkel exciton system is sta-
ble. As a spin system, this condition means that it is
in a strong external magnetic field. The thermodynamic
properties of such a spin system are simple and we can-
not expect a sign of any noble feature of a quantum spin
chain. Under the strong excitation, however, some ther-
modynamic properties of quantum spin systems appear
in the optical spectra. Superradiance starts from the
initial state with considerably dense excitons and decays
rapidly to the ground state. It is neither stationary nor
in thermal equilibrium. Thus we may characterize the
superradiance of Frenkel excitons as an appearance of
nonstationary and nonequilibrium properties of quantum
spin, which are known very little for the actual spin sys-
tems.

Now we derive the master equation in an applied elec-
tromagnetic field. The effect of an applied field K,i(r, t)
can be represented by the coherent state of the radia-

We shall use Eq. (22) to obtain the initial state in the next
section. Then, according to the superradiance master
equation, Eq. (16), we shall calculate the time evolution
of the system.

III. INITIAL STATE
BY SHORT-PULSE EXCITATION

The initial state of the superradiance can be prepared
with a short intense laser pulse. Since the atomic system
is in the ground state before the application of the pulse,
we have to solve Eq. (22) for the external field K(r, t),
starting from the ground state distribution pp = Ig)(gl.
The ground state Ig) is equal to IS = 2;M = —2)
in the spin state description. It is fairly dificult even
for numerical calculation to solve Eq. (22) for a general
case. When, however, the duration of the pulse tf is short
enough to satisfy: tf (& p, J,J, the evolution of
the system is well approximated by

d 1—p(t) =
—,. [Ho+ V~(t) p(t)1.dt ih (24)

p(t) = I@'(t))(@(t)I

I+(t)) —= +(t) lg)

(26)

(27)

F(t) = T exp d~( —iu)ps'+ i[E(~)s++E*(~)s ]j

(28)

Neglecting the spatial change of the electromagnetic Geld
over the mesoscopic system and denoting E(t)—:&ps .

K(r~, t), we get from Eq. (23) and the definition of P(r~),

Hp + V,i(t) h(ups' —h[E(t)S+ + E*(t)S ). (25)

Then the reduced density operator at time t is given as
a pure state:
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where T denotes the time ordered products. We wish
to reduce P(t) to a simpler form. Using the commuta-
tion relations of the spin operators, we can easily prove
the following useful equalities for an arbitrary complex
variable A:

type equation, Eq. (33).
When we can approximate E'(t) as a real function

Ep(t) up to an unimportant constant phase factor, we
can solve Eq. (33) explicitly as

exp[ —AS') S+ exp[AS'] = e+"S+,
t

X(t) = tan dTEp(T)
0

(38)

exp[ —AS+] S exp[AS+] = —A S+ —2AS'+ S

exp[ —AS ] S+ exp[AS ] = —A S + 2AS'+ S+,

This essentially corresponds to the rotating wave approx-
imation. By denoting 8(t) = j d7Ep(T), we get from
Eqs. (35) and (38),

exp[ —AS+] S' exp[AS ] = +AS+ + S'. (29)
A(t) = —2 ln

I
cos 8(t) I.

Substituting Eqs. (38) and (39) to Eq. (37), we find

(39)

With an initial condition E(0) = 1, E(t) satisfies the
differential equation:

—P(t) = (—ild S' + i[E(t)S+ + E*(t)S ])P(t).dt
(3o)

We find from the equalities (29) that the operator G(t)
= exp[icdptS ] I' (t) satisfies

—G(t) = '[E'(t)S++ E' (t)S ]G(t) (31)

where E'(t) = E(t)e' ' . Furthermore, the operator
H(t), G(t)—:exp[iX(t) S+]H(t), satisfies

N/2

e(t)) = Icos 8(t)l" )
M= —N/2

, (i tan 8(t))
(M + N/2)!

M —1+N/2

x PV —k)' jk+ 1) —;M).
A:=0

(4o)

For an arbitrary shape of a pulse, we have to solve the
nonlinear equation (33). This is not difficult because we
can transform it into a second order linear di8'erential
equation by changing a variable from X(t) to u(t):

—H(t) = [2E'*(t)X(t)S'+ iE'*(t)S ]H(t), (32) X(t)—: E* (t) ——ln u(t),
dt

(41)

if X(t) is the solution of the following equation with the
initial condition X(0) = 0:

with the initial condition u(0) = 1 and & u(0) = 0. Then,
by defining P(t):—& ln E'*(t),

E'(t) ——X(t) + E' (t)X(t) = 0.
dt

(33) d
u(t) + p(t) dt

~(t) + IE(t) I'u(t) = o. (42)

Finally we find the operator K(t), H(t)—:e ! l K(t),
obeys

dt
—iC(t) = 'E'*(t)."!'lS-k(t),

where

(34)

dT2E'*(T)X(T).

By integrating Eq. (34) and fram the definition of K(t),
H(t), and G(t), we get

F(t) = exp[ —iwptS'] exp[iX(t) S+]
x exp[A(t)S'] exp[iB(t)S ], (36)

where B(t) = J' dTE'*(7)e ! l. Thus, we find l)1I(t)) is
given by

I @(t)) = exp[ —iwpt S'] exp[iX(t) S+] exp ——A(t) Ig).
2

(37)

Since A(t) is determined by X(t), we can obtain the con-
crete expression of the initial state by solving the Riccati-

IV. SUPERRADIANT PULSE PROFILE
AND TIME-RESOLVED EMISSION SPECTRUM

The characteristics of superradiant pulse from the
highly excited system of Frenkel excitons can be under-
stood from its time dependence of the emission intensity
[emission profile I(t)] and that of the frequency decompo-
sition of the emitted light [time-resolved emission spec-
trum I(u, t; At)]. They are defined, respectively, as

I(t)—:——Tr [Hp p(t) ]dt
= p(up Tr[S+S p(t)],

dT, (S+(t + 7.i)

(44)

Here and hereafter we take h = 1. The derivation of
I(w, t; b, t) is described in the Appendix.

For the numerical calculation, we utilize the fact that
S commutes with H0 and H~~z so that we can choose
the simultaneous eigenstates of S and H~~z as the basis
functions. We denote them by (lv )), where subscript m
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is the eigenvalue of S'. We employ a periodic boundary
condition for simplicity. Although we can obtain the ex-
act eigenstates of H~~z by Bethe ansatz or quantum in-
verse scattering method, for the practical reason, we take
Iv ) to be the simultaneous eigenstates of the translation
operator, the re8ection operator and the Ising model (the
Hamiltonian for J = 0). For an example, if we denote

li 2 4& =— lei) le2) lgs& le4) I») I«)

an unnormalized basis function for six particles is

I 1, 2, 4)):
ll 2 4)) = II 2 4) + 16 5 3)

II» 4) = ll- 2 4& + I» 3 5& + 13 4 6&

+I4, 5, 1) + I5, 6, 2) + I6, 1, 3&. (46)

The time evolution of the matrix elements of the density
operator is written down with these bases as

d, &v-l»(t)lv' &
=

2 ).&v-IS+S lv" &&v" l»lv'
&

—
2 ).&"-Ipl"-" )&"-" IS+S lv-'

&

II V II

+p ) ).(v IS Iv +i)(v +ilplv ', +i)(v"', +ilS Iv', )
II III
m+1 m'+1

+—. ) .(v IHxxzlv" &(v"
I
plv'

&
—) .&v Ipiv" &&v" ~ IHxxzlv'

V I

(47)

We find from this expression that the equation of the
matrix element (v Iplv', ) is linear and couples with a
matrix element (v"

„

I
plv"'„,) only if m —m' = m" —m"'.

Therefore, we can write
II III

( l»(t+ )I
' )=).).0.™'.™„',"( )

II III
m' m'+I

x(v" I» (t) lv"' ) (48)

where 0 . (r) is a function of ~ determined by Eq. (47).
Similarly, we can express the emission profile as

I(t) =~~.).):) (v-IS'lv' i)(v' ilS lv")
rn —1

x(v" I» (t) Iv-). (49)

To calculate the time-resolved emission spectrum, we
have to evaluate the time correlation function (S (t +
r) S+(t)). For that purpose, we use the quantum regres-
sion theorem which can be stated as followings. If an
expectation value of an operator A is expressed as

&B(t)&(t+ )) =).& ( )(B(t)f (t)).

Using Eq. (48), (S (t + r)& is written as,

(S-(t+ r))—:T [S-p(t+ r)]
=) ) (v', IS Iv )(v lp(t+r)lv'

I
m —1

=).):) ):(v' ilS lv-)
v I I I I I

II III
' '( )( "- l»(t)l '"- ).

Therefore, by the identification,

A=S-, B=S+,

I If 1II
9 ( »&& m —i'& m& & m' —i) &

6 = lv"'-i&(v' ilS lv-&(v"
I

(51)

(52)

&&(t+ )) = ).@ ( )(f (t)) (5o)
Q„(r)= 0„', '(r),

then the correlation function &B(t)A(t + r)) is given by we obtain

(S'(t)S-(t+ )) =) ):):
I II
rn —1 m

Vm V

x (v', iS

).0. '. ' '(r)&S'lv"'-i)&v' ilS lv-)(v" l&~
III
m —1I

).):0.-.'-' (-)(.- iS'i."',)
II III
ml rnl —1

v-)(v" l»(t)lv- ). (54)

Prom these expressions (53) and (54), we find that only
the block diagonal matrix elements of the density oper-
ator with respect to m are necessary for the emission
profile and the time-resolved. emission spectrum. One
important consequence is "both of emission profile and

I

time-resolved emission spectrum are independent of the
(block) off-diagonal matrix elements of the initial state. "
In this respect, we cannot distinguish a pure state from
mixed state by the emission profile and the time-resolved
emission spectrum.



SUPERRADIANCE OF FRENKEL EXCITONS WITH ANY. . . 7661

In this section, we show the numerical results for the
superradiance from complete-population inversion sys-
tem. We take 1/10 times spontaneous emission time, i.e. ,
1/10 x p i, as a unit of time. Hence 10hp corresponds
to the unit of the energy. The emission profile and the
time-resolved emission spectrum have been studied un-
der the constraint J + J = 4 with this unit. We note
that the emission profile is invariant under the transfor-
mation: (J,J,):(—J,—J,). This feature is easily
proven from the fact:

I(t) =I(t)*
= purDTr[S+S p(t)]*
= pcs 0Tr[S+S p(t)t]
= per Tor[S+S p(t)t], (55)

2

FIG. 1. The values of J and J we adopted for the nu-
merical calculations are shown in the J —J plane. I, H, and
X correspond, respectively, to Ising, Heisenberg, and XX0
models.

and p(t)t obeys the same equation as that of p(t) with
Hxxz + —Hxxz The similar arguments lead to ihe
fact that the time-resolved emission spectrum is also in-
variant under (J,j„w—wQ) ( j J MQ M).
Thus we restricted ourselves to the values for J & 0.
They are schematically shown in Fig. 1. The points l,
H, and X correspond, respectively, to the Ising, Heisen-
berg and XXO models as quantum spin systems. The
emission profile I(t) for several values of J and J, are
shown in Figs. 2(a)—(h). The system size N = 8. They
show the appearance of slow emission tails except for the
Heisenberg case (J = J,). In fact, as we prove in Ref. 9,
the superradiance from the Heisenberg case is exactly
equal to the Dicke's superradiance (J = J = 0). In the
Ising case (J = 0), we observe the oscillating nature.
The period of the oscillation, Lt, depends on a value of

~

J,
~

as is shown in Fig. 3. This oscillation in At = 2vr/2 J,
comes from the interference of the two transitions with
frequency difFerence 2J, because the transition dipole
moments in the Ising limit have only three frequencies,
~0 and ~0+ 2J..'

The time-resolved emission spectra corresponding to
the cases of Figs. 2(a)—(f) have already been reported
in Figs. 2(a)—(f) of Ref. 9. Here, we only show a stere-
ographic presentation of the XXO case in Fig. 4. The
chirping eÃects clearly appear in these spectra. In the
Ising case, the peak shifts from low frequency to high

frequency side. On the other hand, it shifts from high to
low frequency side in the XXO case. In general, we ob-
serve blueshift to redshift for J ( J and the opposite for
J & J . The reason is the following. When we reduce
one exciton from the system with high density of exci-
tons, except for the atomic excitation energy hu0, the ki-
netic energy due to the excitation transfer (—5J 8 s +i
+ H.c.) becomes lower, for the other excitons can trans-
fer more easily. On the other hand, the energy due to
the interaction between excitons ( hj, i—'s'+i) becomes
higher. Because, in the spin state description, the num-
ber of the down spin states increases by one in the system
where most states are in up spin state and the number of
adjacent pairs with di8'erent spins increases. At low den-
sity of excitons, the situation is just the opposite. Hence
we observe above features of emission frequency.

V. SUPERRADIANCE
PROM PARTIALLY EXCITED SYSTEN

We discuss the emission profiles from the system par-
tially excited by short intense laser pulse. We adopt the
initial state given by Eq. (40) which is completely deter-
mined by the Bloch angle O(tf). The results for XXO
model (J, = 0) are shown in Fig. 5, where the Bloch
angle O(tf) = (a) 7r, (b) 0.8vr, (c) 0.67r, (d) 0.5vr, (e)
0.4a, and (f) 0.2a. The other parameters are the same
as those in Fig. 2(e). The peak of the emission inten-
sity appears at the beginning for O(tf) 0.5vr, which
is higher than that for the complete inversion 8(tf)
7r. This is because the initial state for H(ty) = 0.5a
has the largest total transition dipole moment with co-
operation number S = 2N, which gives the emission in-

tensity proportional to N just as in the Dicke's case,
or the Heisenberg case, whereas the peak emission in-
tensity of XXO case is proportional to % / when p is
considerably small. The initial state prepared by the
short pulse pumping is described mainly as a superposi-
tion of jhow/8, +3vr/8j and (her/8, j57r/8) for the case
of (d) O(ty) = 0.5'. Here, 16k, +A, ' ) means that four
fermion states with wave numbers +A:, +A." are occu-
pied and others unoccupied as in Ref. 8. For the case if
the excitation degree (e) O(tf) = 0.47r, other configura-
tions (0, kn /4) and (0, +3m/4) are also superposed on
the above configurations. The emission intensity from
the excitation m = 4 to m = 3 comes from two con-
figurations of (+sr/8, k%r/8), and 16m/8, +5m /8), with
the energy difference of 2J x 2(cos(3n/8) —cos(57r/8))

2J x 1.44. They interfere constructively at At =
2'/2. 88J 1.1 and destructively at At' = vr/2. 88j
0.55 in our time unit. For the transition from m = 3 to
m, = 2, the emission intensity interferes with the energy
difference of 2J cos(m/4) 2J x 1.41, i.e. , in time At
= 2vr/(2J x 1.41) 1.1. Under the full inversion O(ty)
= 7r, a single initial state (+a/8, +3m/8, +5vr/8, +7m/8f
is prepared and the emission process with the largest co-
operation number is dominant. As a result, we have no
interference for the case (a) 0 = vr. For larger K, the
distribution of the frequencies of transition dipole mo-
ments becomes continuous and the interference smears
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FIG. 2. Emission profile I(t) of the super-
radiance from the initial state with complete
population inversion. N = 8 an = 0.1. a
J = 0, J, = 2.0; (b) J = 0.765, J, = 1.85;
(c) J~ = 1.41, J~ = 1.41; (d) J~ = 1.85, J~ =
0.765; (e) J~ = 2.0, J = 0; (f) J~ = 1.85, J,
= —0.765; (g) J = 1.41, J, = —1.41; (h) J
= 0.765, J, = —1.85. The dashed lines are
the emission profile of Dicke superra &ance.
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out except for the Ising case, so that this phenomenon
is due to the finite size effect and disappear inin the limit
N —+ oo. Therefore once the oscillation is observe, we
can estimate the effective coherence length of the actua
system by this oscillation.

The difference of the emission profile for several mod-

els are shown in Fig. 6. Here we choose O(tt) = 0.5 vr

and denote (a) the Ising case, (b) the Heisenberg case,

conspicuous in ethe Isin~ case. The emission ines in this
case consist of three lanes wp, an p + 2J an inter-
fere constructively in every time interva t=2vr 2J
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FIG. 3. The emission profile of the Ising case (J = 0).
(a) J = 0, (b) J, = 0.5, (c) J, = 1.0. The oscillation period
is 7r/ J~.
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FIG. 6. Emission profile from the partially excited system
for O(tf) = 0.5. (a) Ising case, (b) Heisenberg case, (c) X'XO
case, and (d) J =—J .
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FIG. 4. The stereographic presentation of the time-
resol~ed emission spectra I(u, t; At) from the initial state with
complete-population inversion for the KXO case. These spec-
tra correspond to Fig. 2(e).
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FIG. 5. Emission profile from the partially excited system
of the JCXO case. O(ty) = (a) 7r, (b) 0.8s', (c) 0.67r, (d) 0.5s',

(e) 0.47r, and (f) 0.2vr. N = 8, p = O. l, J = 2.0, and J, = 0.

1.57 in our time unit. No oscillation is observea in the
Heisenberg case, for the dipole moments have a unique
frequency uo. One important feature is that the initial
emission decay of the Ising, XXO, and J = —J cases
is more rapid than that of the Heisenberg case, which is
equal to the Dicke superradiance. This is due to the de-
structive interference around At = 71 &, . 9. . 9 for the
Ising model and at Dt' = n/2. 88J 0.55 for the XXO
model. As a result, the emission intensity looks to decay
very rapidly at the initial stage.

We have calculated the time-resolved emission spectra
for superradiant processes from the state 0(tf) = 0.5vr.
Figures 7(a), (b), (c), and (d) correspond, respectively,
to the cases of Figs. 6(a), (b), (c), and (d). The slit-
time width to observe the time-resolved emission spec-
trum was chosen to be Lt = 2.56, so that it is larger
than the oscillatory periods 1.1 for the XXO model and
1.57 for the Ising model. As a result, the oscillatory in-
tensity observed in Fig. 6 has been partially smeared out
in the time-resolved emission spectra of Fig. 7. In these
cases, the time-resolved spectra under e(tf) = 0.5n are
very similar to those at the latter half in the superradi-
ant pulse under the full population inversion. That is, for
the Ising model of Fig. 7(a), the emission intensity on the
high energy side decreases gradually in time while that
at the central frequency is rather strong at the beginning

l ofand decays more rapidly. For the Heisenberg mo e o
Fig. 7(b), the initial decay at O(tt) = 0.5vr is strongest
reHecting the Dicke's superradiance. The observed spec-
tra for the models of XXO [Fig. 7(c)] and J~ = —J~
[Fig. 7(d)] are very similar to those at the latter half un-
der the complete population inversion.

On the other hand, the time-resolved emission spectra
observed more carefully, e.g. , at shorter time-intervals
even with the same time-slit width Lt = 2.56, are found
to oscillate in time as shown in Fig. 8 for the Ising model.
This oscillatory behavior comes from the same origin as
in Fig. 6. As a conclusion of this section, we will be able
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superradiance phenomena described in this paper. Exci-
tons in J and H aggregates of dyes have been well de-
scribed as one-dimensional Frenkel excitons. There
are many kinds of dye molecules. These molecules consti-
tute J aggregates in some cases and others do H aggre-
gates. We can change the sign of J, the exciton-transfer
matrix elements in our model. The actual magnitude
of wo, J, and p in Kq. (19) for BIC or PIC-Br J ag-
gregates are hwo 2.0 eV, hJ 100 meV, and p

500 ps. ' In addition to this, decorating the dye
molecule by many kinds of radicals, we can control the
induced static dipole moment within the molecule. Con-
sequently, we can change not only the sign but also the
magnitude of J the exciton-exciton interaction. In fact,
the value of

l
J

l

is greater than that of J
l

for most J and
H aggregates, but PIC-Br J aggregates is known to have
much larger

l
J,

l
than

l
1 l. Therefore, it looks interest-

ing to study experimentally the superradiant pulse profile
and the time-resolved emission spectrum from the par-
tially excited J or H aggregates of dyes. These observa-
tions will be used to check the present model and will be
useful in determining the electric structure and dynamics
of elementary excitations in aggregates of dyes. Another
candidate is a weak charge-transfer exciton system such
as anthracene-PMDA (pyromellic acid dianhydride),
where hJ = 5 6 meV, hJ, = 12 18 meV, and

0.1J . The magnitude of J can be controlled by
an application of static electric field, so that we can ex-
pect fruitful emission spectra discussed in the present
paper. From these numerical values, the superradiance
pulse from these excitonic systems is estimated to have a
pulse width of several tens of a picosecond for the system
with coherent length of ten molecules or molecule pairs.
Therefore, we need the pumping lasers with shorter than
several tens picosecond to observe the superradiant emis-

sion. However, we must use the much shorter-laser pulses
as a pumping source in order to satisfy the condition in-
troduced in Sec. III, i.e., the pump pulse width tf ((

, J, and J . Therefore, we need several tens of a
femtosecond pulses to pump the excitons in anthracene-
PMDA and several femtosecond pulses for the excitons
in dye aggregates.

The static dipole moment induced in the excited state
comes from the different electronic distribution with-
out any lat tice deformation in the J and H aggre-
gates of dyes. In the case of charge-transfer exciton,
such as in anthracene-PMDA, the exciton formation
and the induced static dipolemoment are carried out
instantaneously just by photon absorption without lat-
tice deformation. When these two or three excitons
are created in the neighboring unit cells, two-, and
three-excitonic strings are formed by these static dipo-
lar interactions. ' After the charge-transfer exciton is
formed, the lattice may be deformed so that the eigen-
energy of the exciton as well as the magnitude of induced
static dipole moment are a little modified. This eKect is
observed as appearance of the emission line with a small
Stokes shift in addition to that of the original charge-
transfer exciton. As a result, the static dipole moment
as well as the dipolar interaction works just after the
formation of the Frenkel as well as charge-transfer exci-

tons. This may be shorter than a picosecond when we use
the femtosecond laser pulses to prepare the initial state.
On the other hand, the superradiant decay time will be
longer than a picosecond. As a result, we may expect the
present theoretical predictions to be observable.
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AP PENDIX: TIME-RESOLVED EMIS SION
SPECTRUM

In this appendix, we derive Kq. (44), the expres-
sion of the time-resolved emission spectrum I(w, t; At).
The time-resolved emission spectrum I(u, t; At) mea-
sures the photon energy with the angular frequency be-
tween u —A~ and w+ L~, observed for the time interval
from t —At to t+ At. Here A~ is the resolving power of
the device for the measurement, so that At must satisfy
the inequality AuLt & vr due to the uncertainty prin-
ciple. If we regard the radiation Geld at the position of
device r as a classical field E,~(r, t), the time-resolved
emission spectrum I(w, t; At) may be considered to be
proportional to lE,&(r, t) l, where E,&(r, t) is a Fourier
component of E,~(r, t):

E„(r,t) —=
At/2

At/2
(Al)

2 t/2
d71

At/2
dr2K,*,(r, t

—at/2 —Wt/2

+r, )K,)(r, t + r2) e (A2)

I((u, t; At) = C x
—At/2

at/2

d71

de(E (r, t + ri)E+(r, t + T2))

(A3)

Since the radiation field obeys adiabatically equations
of motion for the electronic system in the superradiant
configuration, it is intuitively obvious that (E (r, t +

)Ei+(r, t + r2)) is linearly proportional to the corre-
lation function of the electronic polarization operators
(S (t+ 'T] )S (t + r2)). 'The derivation of this fact is,
however, not so easy. Here we adopt the approach devel-
oped by Bonifacio et al. , and give a forrnal proof.

Since the measurements are quantum mechanical ones,
we have to replace E,*&(r, t + ri)E,~(r, t + r2) by the
time correlation function of the field operators (E (r, t+
7.i)K+(r, t+r2)), that is, the time-resolved emission spec-
trum I(w, t; At) can be written except for some constant
C as

At/2
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A time correlation function can be obtained from equal
time correlation functions by virtue of the quantum re-
gression theorem as is described in Sec. IV, so that it
is enough to obtain the expression of the equal time cor-
relation function of the 6.eld operators:

((E-( t)) (K (,t))')

which satisfies

Pptot = po (t),
&p(t) = (1 —P)«oi(t)( = Q«oi(t)).

We also define I iouville operator —L as
A

f—L —= —L0 —L

(A7)

= Tr[(E (r t))™(K'(rt))'pt-i(t)]
= TrÃE (r t)) (K'(r t))'&p(t)].

Here, b, p(t) is defined as

(A4)

A ]
Lop—= —[Ho + H, g, p],

Z

A 1—L'p—:.
&

[&, p],
2h

(A8)

&p (t)—:p~ ~ (t) —po (t),
p. (t) = 1»c)(vacl p(t). (A5)

where Ho, H, g, and V are defined in Eqs. (6)—(8) in the

text. By noticing the equality I opo—(t) = 0, we obtain

(A6)

In deriving the superradiance master equation (16) for
the atomic system, we could neglect this deviation Ap(t)
of the density operator p(t). We need, however, Ep(t)
for the calculation of the evolution of the field.

We de6ne the projection operator P:
P = ~vac) (vac~ Tr, g,

&p(t) =— dse i ' (1 —P)Lpo (t —s) . (A9)

Thus, we can express Ap(t) in terms of po(t).
If we define U(s)—:exp[ —(1 —P)Los], Eq. (A9) can be

expanded as

&p(t) = ) (—1)
j=0

d$y
S&

ds~ U(s —si) QL'U(si —s2) QI '
U(s~ i —s~) QL' U(s~) QL' po(t —s).

(A10)

With this expression of Ap(t), the time correlation function Eq. (A4) is given as

~ ~ ~d
OO t S Sj

((E (r, t)) (E+(r, t)) ) = ) (—1)~+ ds d$2
q=0 0 0 0

x Tr[(E (r)) (E (r)) U( —,)QL' . U(, , —,)QL'U( )QL'p (t — )]. (All)

Since (E (r)) (K+(r)) is a linear combination of the operators with ma", and ta, and Tr[OiL'02] = —Tr[(L'Oi)02],
we can show the lowest m+ t terms in the expansion Eq. (All) vanish. Therefore, by taking the largest contribution,

(m + t —1)th term, in that expansion and denoting n—:m + / —1, we obtain

Sn —1

((K ( t)) (E'( t)) ) = (—1)"" d$y

x Tr[(K (r)) (E (r)) U(s —si)QL' U(s„ i —s„)QI.'U(s„)QL'po(t —s)]. (A12)

In this expression, Q = 1 —~vac)(vac~ 8 Tr,~z can be replaced by 1, because any term with ~vac)(vac~ vanishes. For
the same reason, U can be replaced by U0.

Uo(t) = exp[ —Lot].

Thus, Eq. (A12) is written as

(A13)

((E (r t)) (E (r t)) ) = ( 1) ] 0 ~ ~ n —1d$n
0

x Tr[(K (')) (E (')) Uo(' —'i)L Uo('- —i —' ) Uo(' )L'«(t —')].
Using the interaction representation as in Sec. II, we rewrite Eq. (A14) as

$] 0 ~ ~

t 8 Sn —1

(( ( )) ( +( ))') = (—)"+' cl$~
0 0 0

~ f f ~ f +
x Tr[L (t —s)L (t —s+ s ) L (t —s+ si)(E (r, t)) (K (r, t)) po(t —s)].

(A14)

(A15)

Here, we used the relation p(t) = Uo( t) p(t). —
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Because Tr[. po(t)] = Tr~k~~ [Tr,~s lvac)(vacl] p(t)], we first evaluate

~ / ~ / ~ / +
Tr,~d[L (t —s)L (t —s+ s +i) . I (t —s+ si)(E (r, t)) (E (r, t)) Ivac)(vacl]

~ / -/ -+
= {vaclL (t —s)L (t —s+ s +i) L (t —s+ si)(E (r, t)) (E (r, t)) lvac). (A16)

Substituting the concrete expression of V(t) and the formula L(t)X =,& [V(t), X], Eq. (A16) is rewritten as

(, I "+'

(h
~ +

(—1)') ) IP (r, t —s+s ( ))
21 )22) ' )2n+1

P (r, , t —s+ s (p))
@=m+1

x vac
m -+ +

E (r, , t —s + s ( )) (E (r, t)) (E (r, t))
ex=1 P=m+1

n+1
K (e,„t—s+ s, (pt) vec), (A17)

where we neglect the off-resonant coupling between the field and the polarization, and P denotes all the permutation

under the constraint: o(1) ) cr(2) ) . . ) tT(m) and 0.(m+ 1) & (r(m+ 2) « o(n+ 1), and P (r), t) is the
interaction representation of the jth polarization operator p, s+-.

2
The field operators satisfy the commutation relation:

[E (r, t), E (r', t')] = ) ee e'"!'=+ = —,, hck

k, e

Hence Eq. (A17) is transformed by the Wick's theorem to

(A18)

(—1)'I!m! ) ) P+(r, )
$1)$2)''')gn+1 k1)61)k2)62)'' kn+1)6n+1 &X=1

m n+1
xexp twc (m —t)(t —s)+) s i t

— ) s tpt)
ex=1 @=m+1

m n+1
xexp —ic) k (—s+s i t)+ic ) kp( —s+s tttt)I

n=l P=m+1

ep P (r)t) )
P=m+1

«1~2 ' ~n+1
(2EO)

n+1 m n+1

k) exp i ) k (r —r~ ) — ) kp(r —r~s) . (A19)
j=1 m=1 P=m+1

We take the origin of the coordinates at the center of the system and assume, as in the text, that the length of the
system is short in comparison with the relevant wavelength of the radiation field, i.e. , we take r —rz r. Then, using
the second Born and Markov approximation just as in Sec. II and neglecting a time delay Irl/c, we obtain

((E ( t)) (E+( t)) ) =&o( )
21 )22 ) .. )2n+1

Tr[P+(r, , ) . P+(r, )P (r, , ). P (r, , )p(t)].

(A20)

Here, P+(r~) = ps+. and Co(r) is a constant which is
essentially the product of the strength of the radiation
from the total transition dipole moments at the position
of the device r. We, however, do not need its explicit form
here. The important result is that the field-field correla-
tion function ((E (r, t)) (E+(r, t)) ) is proportional to
((S+(t)) (S (t)) ). From the quantum regression theo-
rem, we can easily show the time correlation function of
the field (E (r, t+ ri)E+(r, t+72)) is also proportional
to {S (t + ri)S (t + 72)). Thus we find

I(~, t; At) (x d71
At/2

dr2(S+(t + ri)

I(t) = lim
At~0

d(uI((u, t; At). (A22)

Thus, finally, we obtain the expression of I(w, t; At) as
Eq. (44).

xS (t+r2))e ' ! ' ' . (A21)
The proportional constant should be so chosen that the
following relation holds:



7668 TOKIHIRO, MANABE, AND HANAMURA 51

R.H. Dicke, Phys. Rev. 93, 99 (1954).
N. Scribanowicz, I.P. Herman, J.C. MacGil. ivra, and M.S.
Feld, Phys. Rev. Lett. 80, 309 (1973).
Q.H.F. Urehen, H.M.J. Hikspoors, and H.M. Gibbs, Phys.
Rev. Lett. 42, 224 (1979).
M. Gross and S. Haroche, Phys. Rep. 98, 301 (1982).
R. Bonifacio, P. Schwendimann, and F. Haake, Phys. Rev.
A 4, 302 (1971); 4, 854 (1971).
F. Friedberg, S.R. Hartmann, and J.T. Mnassah, Phys.
Lett. 40A, 365 (1972).
E. Hanamura, T. Tokihiro, and Y. Manabe, in Science and
Technology of Mesoscopic Structures, edited by S. Namba,
C. Hamaguchi, and T. Ando (Springer-Verlag, Heidelberg,
1992), p. 434.
T. Tokihiro, Y. Manabe, and E. Hanamura, Phys. Rev. B
47, 2019 (1993).
Y. Manabe, T. Tokihiro, and E. Hanamura, Phys. Rev. B
48, 2773 (1993).

H. Ezaki et al , S. olid State Commun. 88, 211 (1994).
As an example see R.3. Baxter, Exactly Solved Models in
Statistical Mechanics (Academic Press, London, 1982).
H Suzuur a

&
T Toklhlx o

&
and Y 0hta& Phys Rev B 49

~

4344 (1994).
For an example see R.H. I ehmberg, Phys. Rev. A 2, 883
(1970); 2, 889 (1970). See, also, Ref. 4 and references cited
there.
M. Lax, Phys. Rev. 172, 350 (1968).
H. Fidder, 3. Knoester, and D.A. Wiersma, 3. Chem. Phys.
98, 6564 (1993), and references cited.
A.E. 3ohnson, S. Kumazaki, and K. Yoshihara, Chem.
Phys. Lett. 211, 511 (1993).
K. Misawa, K. Minoshima, H. Ono, and T. Kobayashi,
Chem. Phys. Lett. 220, 251 (1994).
M. Kuwata-Gonokami et al. , Nature 367, 47 (1994).
D. Haarer, C.P. Keijzers, and R. Silbey, J. Chem. Phys. 66,
563 (1977).


