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X-ray diffraction from amorphous Ge/Si Cantor superlattices
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X-ray measurements on Cantor superlattices are reported. Indexing and scaling laws are derived for
the distribution of peaks in the diffraction spectra of perfect superlattices. The peaks are indexed by
three indices and the largest scaling exponents of the intensities are proportional to the fractal dimen-

sions of the Cantor sets. The theoretical indexing scheme of the peaks is confirmed by experiment. The
influence of the absorption and sample imperfections on the scaling of the peaks is investigated by means
of numerical simulations. A discussion of the nature of the diffraction spectra in the thermodynamic
limit is also included.

I. INTRODUCTION

There is a growing interest in the study of systems with
long-range order like quasicrystals, ' fractals, and
aperiodic superlattices. Although not periodic, these
structures are still deterministic in the sense that they do
not admit a stochastic description, and therefore, can be
considered as intermediate between crystals and disor-
dered systems. The investigation of quasicrystals and
deterministic aperiodic superlattices has pointed out the
necessity of alternative theoretical techniques for the
description and understanding of their diffraction spec-
tra. In the case of the deterministic fractals the
diffraction studies have been restricted until now to opti-
cal experiments' and numerical simulations. '" This pa-
per presents experimental and theoretical investigations
of the x-ray diffraction from a class of fractal superlat-
tices based on Cantor sets.

The diffractograms of the quasi-one-dimensional sys-
tems with aperiodic order investigated up to now are
characterized by specifying (i) the structure of the set E
of points in the reciprocal space that supports the distri-
bution of intensity maxima, and (ii) the dependence of the
intensity maxima on the system size. In the kinematic
formalism, the intensity diffracted by a sample of length
L reads

Il, (q) = IFL, (q) I'

where q denotes the scattering vector and Fz the Fourier
transform of the electron density. In general, it is as-
sumed that for large enough L the maxima scale with
the length of the system following a power law
IL(q) ccL ' ', where the exponent u 2. Experiments
and theoretical studies have shown that both the struc-
ture of the support E and the values taken by the ex-
ponent a strongly depend on the distribution of scatter-
ers. Accordingly, there are three different types of spec-
tra of finite-size one-dimensional systems.

(a) Spectra of Bragg peaks for which there is an indexa-
tion scheme and +=2. Such spectra are, for instance,
produced by periodic systems (where the set E is the re-
ciprocal lattice), incommensurate systems and the Fi-

bonacci superlattice.
(b) Diffuse spectra, in which no indexation of the peaks

is possible and the mean scaling exponent of the intensity
maxima is a=1. The classical example of diffuse spec-
trum is that of the amorphous solid, but one-dimensional
aperiodically ordered systems with spectra of the same
type are also known (e.g. , the Rudin-Shapiro chain' ).

(c) Spectra composed of peaks which are not Bragg
peaks (a(2) and for which indexation rules exist, like
the spectrum of the Thue-Morse system. '

It should be noted the role played by the large-system
limit process in the characterization of the spectra men-
tioned above. In case (b) the number of peaks increase
and their location changes with L„such that a simple
description of the support E is possible only in the ther-
modynamic limit (when E becomes an interval). On the
other hand, an increase in the number of the unit cells
does not affect the structure of the set E in periodic sys-
tems. Most of the spectra of the investigated determinis-
tic aperiodic systems exhibit a behavior in between the
two limit cases above, that is, additional peaks are gen-
erated when L grows but their location is stable and
governed by some indexation rules. Therefore, it is ex-
pected that the study of the nature of spectra of these sys-
tems in the limit of the infinite size will lead to qualita-
tively different results.

A convenient description of the diffraction spectra in
the thermodynamic limit can be made in terms of the in-
tegrated intensity, which is defined by

IL (q')
H (q) = lim f dq', (2)

L~co Q L
and represents the (normalized) distribution of the
diffracted intensity registered up to some point q in the
reciprocal space. ' The function H is an indicator of the
type of diffraction spectrum. If the system is periodic
there are intervals on the q axis, where IL (q)=0 and
which give no contribution to the integrated intensity,
that is on which H(q) is constant. These intervals are
separated by the points of the reciprocal lattice where the
Bragg peaks are located and where H (q) has finite jumps.
More generally, the integrated intensity of any system of
type (a) is discontinuous and the set E of its discontinui-
ties is at most countable. This can formally be written,
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H(q)= f gc,6(q' —q, )dq',
V

(3)

It is more diFicult to describe the function H in case
(c). It is generally expected that in the infinite limit the
diffraction maxima are more agglomerated than the
peaks are in case (a) but their support E is still very thin.
The function H is continuous, but the contribution of any
interval to H is not simply related to its length. The set E
is no longer composed of intervals and/or a countable set
of points as in the cases (a) or (b) above and its structure
is similar to that of a Cantor set, which is described in
Sec. II. In this case a finer characterization of the
diffraction pattern is required, which allows us to quan-
tize how much of the spectrum is supported by any set of
geometric points on the q axis.

A unified description of the spectrum which places the
tree cases above on the same footing can be made in
terms of the intensity measure, which is a non-negative
function of sets defined by

H(q)= I dp(q') .

The measure p attaches to any set of points on the q axis
a weight proportional to the diffracted intensity regis-
tered at these points. The intensity measures correspond-
ing to the cases (a) and (b) are qualitatively different. In
case (a) the weight of any set in the reciprocal space is
equal to the sum of those coefficients c from Eq. (3) for
which the scattering vectors q belong to the set. A mea-
sure with this property is said to be discrete 'In case (b. )

any single point in the spectrum has zero weight, while
the weight of any finite interval from E is strictly posi-
tive. This is the definition of an absolutely continuous
measure. '

The intensity measure is a good candidate for the
description of the structural complexity, being discrete
for strongly ordered systems (e.g., periodic) and absolute-
ly continuous for (quasi-) random systems. It is natural
to assume that some systems with degrees of order inter-
mediate between periodic and random could be charac-
terized by intensity measures which are neither discrete
nor absolutely continuous. A measure of this type is
called singular continuous (SC). By definition, a SC inten-
sity measure describes a spectrum which does not contain
6 peaks and whose support E is thin enough in the sense
that it can be covered by a system of open intervals with
arbitrary small total length. ' It is widely believed that
the intensity measures of many systems with exotic spec-
tra of class (c) are SC but very few proofs of this kind are
known. ' '

where the sum runs over some countable set of values, 5
denotes the Dirac's generalized function, and the
coeFicients c, & 0.

On the contrary, if the spectrum is diffuse then the
contribution to H of any interval on the q axis is roughly
proportional to its length. By making these intervals ar-
bitrarily small it can be seen that H(q) is continuous and
derivable, and then a positive function E exists such that

H(q)= J F(q')dq' .

The study of the systems whose physical properties are
described by SC measures has generated a considerable
interest. ' Recently, x-ray-diffraction experiments were
performed on a GaAs/Al Gai As heterostructure
grown according to the Thue-Morse sequence whose in-
tensity measure is SC. Nevertheless, to the best of our
knowledge, no experimental evidence of the features typi-
cal of SC measures has yet been found in diffractograms
from fractal systems. This could be motivated, in the
case of the two-component fractal systems like the Can-
tor superlattices, by the fact that the concentration of one
of the components goes to zero in the thermodynamic
limit such that the system looks uniformlike in a first ap-
proximation. Then the intensity measure is noninterest-
ing, being dominated by a trivial Bragg peak generated
by the majoritary component. However, here we prove
that besides the Bragg peak there is a finer peak structure
in the diffractograms which is exclusively due to the self-
similar distribution of both components. Thus, the inten-
sity measure as defined by Eqs. (2) and (5) does not satis-
factorily reAect the effect the Cantor distributions of
scatterers have on the diffraction spectra. Instead, the
fine structure of the spectra is shown to be controlled by
a different class of measures specific to these fractal sys-
tems, which are at least in one case singular continuous.

The outline of the paper is as follows. In Sec. II, the
generation of the Cantor sets (and the idea of modulating
superlattices according to them) is explained. In the next
section, diffractograms from low-resolution x-ray-
diffractio measurements and experimental details re-
garding the growth and the analysis of the superlattices
are presented. The expressions for the positions and the
scaling of the diffraction peaks are discussed in Sec. IV
together with results from numerical reAectivity simula-
tions of perfect Cantor superlattices. The derivation of
the indexing and scaling expressions is exposed in Sec. V.
In addition a measure-theoretical characterization of the
Cantor spectra is made. Finally, in Sec. VI the theoreti-
cal results are compared with the data from detailed
high-resolution x-ray-diffraction measurements.

II. CANTOR SUPERLATTICES

A Cantor set' is defined as what is left from a finite
segment after removing parts of it according to some
iterative procedure. For instance, the construction of the
well-known triadic Cantor set (or "Cantor middle third"
set) begins by taking a segment of unit length, dividing it
in three equal parts and removing its middle third
(without its endpoints). This results in the first-order ap-
proximant of the set, which contains two segments
separated by a gap [Fig. 1(a)]. The middle third parts of
the two segments from the first approximant are then re-
moved, giving the second-order approximant, which is
composed of four segments of length —,

' separated by the
gap generated at the first step and two gaps of length 9.
By extrapolating this iterative procedure to infinity the
triadic Cantor set is obtained, which is composed of
geometric points distributed such that each point lies ar-
bitrarily close of other points of the set. This set is self-
similar and has the fractal dimension' D2 =In(2)/In(3)



X-RAY DIFFRACTION FROM AMORPHOUS Ge/Si CANTOR. . . 7623

a) b)
r///xxrx / . ~/x///r//x . . ' r//xr//rxr x. . . ~///////////. .. ' ' x/xx//////x/ . ' ' //////// r. .. . xr ////x / ' ////////

xxxxxr. ~//xr/xx/x x X xx ////// // ~A r///////// ' ' r///////r~ ' 8'////////r. . ..
' xxx//rx/rx// ~x x/////xxx r// .. . . /////x////x rr

no 1 2 3 4+++

0 Material 1 Material 2

FIG. l. (a) The first four generations leading to the Cantor
middle third set (r=2). (b) A schematic drawing of a Cantor su-
perlattice built according to the fourth generation of the Cantor
middle third structure. The gaps and segments are represented
by two different materials.

=0.6309. . . .
Various Cantor sets can be generated by iterating the

more general operation that consists in the division of a
segment in s =2r —1 equal parts (r =2, 3, . . . ) and the
removal of r —1 of its pieces such that r disconnected
segments and r —1 gaps are obtained. These sets are also
self-similar and have the fractal dimensions,

1n(r)
ln(s)

(6)

I
~ r//xxr .. '' '// r/rr///x. .. . . . ' ' '/// r//////. / ./ . ' x//r x/ r. .. . ' ' / r ////r. . .xx. , . . ' '' xrx' //////////8
~ ~r/x/// r /// . .xr. . xxr/rxr//////xx/// rx . x . x/ x/////////. . .. . . ' ' ' ' ' r///x//////////. / ' ' x xxxxx//xxxr/xr///xx /xx ' rx " // //////x

I ~ ~ xxxrxx///r////r/r. .... . '. ~/xxrxxxxxr//r/xxx~" ac x xx/xxnr/xx/xr~; - r,/ x//r/r/x/r/r/x .x ~/xx/xxx/wrxx/xx/x/ / ~xxx/x

I
~ x r/r/rxx////rr/x/. . . . ~xxxxxxx///xumxrx/X. ' ' xx r/xx r/r r/////xx/. . . . ' ' xr/xr////r/x /r . / / ' ' ' ' ~x-xxrrxx///xxre ..x/~ /// /r r///

rxx//r / // wr/r////////////xx wN . . x/r/r/r//////xx/xx. .. .~ r///xx/////// x ./. . . xxr/xx///r xxx/////r X ~rxxrxxxx/xr////x/xrx

I xx/xx// . . ' //xxrr/x

I

~ ~ " " ', ' '', "'.' . '' ///rx'x

n () l 2 3

~ Material 1 Material 2

FIG. 2. (a) The first three generations leading to the Cantor
double fifths set (r= 3). (b) A schematic drawing of a Cantor su-
perlattice built according to the third generation of the Cantor
double fifths structure. The gaps and segments are represented
by two different materials.

Figure 2(a) shows the generation of a Cantor set, here
called the "Cantor double fifths" set, which corresponds
to r=3. At every step each segment is divided in five
parts of equal length. Two of these parts are then re-
moved, leaving three disconnected segments with a
length of one-fifth of the original segment. The continua-
tion of this procedure gives a Cantor set with the fractal
dimension D =in(3)/ln(5) =0.6826. . .

Superlattices can be grown by alternatively depositing
two kinds of materials such that their distribution along
the growth axis is identical to the distribution of seg-
ments and gaps in the finite order approximants of the
Cantor sets. The thickness a of the layers which
represent the segments should be large enough to give a
significant scattering contribution and small enough to
prevent excessive absorption in samples with many lay-
ers. For fixed a the thickness of each layer representing a
gap is chosen to be a times the ratio between the length of
the gap and the length of the segments (note that the
lengths of the segments and of the smallest gaps are
equal). In Figs. 1(b) and 2(b) the idea of building perfect
superlattices according to the finite order approximants
of the Cantor sets is presented.

The construction and the theoretical treatment of Can-
tor superlattices can be simplified if we observe that in
any finite order approximant of a Cantor set the lengths
of all gaps are integer multiples of the length of the small-
est gap. The superlattice can then be seen as being ob-
tained by deposing the two materials in layers of type A
and B with the same thickness a which are distributed ac-
cording to a well-defined aperiodic sequence. The seg-
ments correspond to single layers of type A, while the
gaps correspond to clusters (i.e., finite sequences) of lay-
ers of type B. For instance, the sequence of layers corre-
sponding to the second-order approximant of the triadic
Cantor set reads ABABBBABA.

This approach identifies the growth of the Cantor su-
perlattices with a process of inAation of the two types of
layers A and B. Starting from a layer of type A the se-
quence of layers is generated by successively applying the
concurrent substitution rules,

A —+ ABA. . .BA, S~SB. . .B, (7)

where the right-hand side of the first and second substitu-
tion contains r A's and s B's, respectively. That is, at the
first step the layer A (the "seed") is substituted by the
multilayer AB 2. . .BA (the first generation of the super-
lattice), which corresponds to the first-order approximant
of the Cantor set. The second-order generation is ob-
tained by substituting each A by AB A. . .BA and each B
by BB. . .B in the first generation. In general, the physi-
cal realization of the nth order approximant of a Cantor
set is the multilayer obtained from the seed A after ap-
plying the substitution rules (7) n times, and is called the
nth generation of the Cantor superlattice. For instance,
the first two generations of the sequence associated with
the double fifths Cantor set ( r =3,s = 5 ) read~ AB AB A —+ AB AB ABBBBBAB AS ABBBBBAB AB A.

Similarly, if the substitution rules are applied to the
seed B instead of A, a succession of growing clusters of B
layers is obtained which describes the growth of the gaps
in the approximants of the Cantor sets. The resulting
"superlattice" of B layers is below called a B system and
plays an important role in computing the Fourier trans-
form of the Cantor superlattices.

The substitution rules (7) allow us the derivation of
simple recurrence relations relating the thicknesses of the
successive generations of each Cantor superlattice and its
associated B system. They read
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grown to the 6th generation of the Cantor middle third
superlattice (r=2) is shown. The 3's (the segments) and
8's (forming the gaps) are represented here by layers of
a-Ge and a-Si, respectively. In the image only the first 5
generations are resolved. Further information concern-
ing the XTEM work can be found elsewhere.

Low-resolution 8-20 x-ray-diffraction (XRD) scans
were performed on a conventional Philips powder
diffractometer using Cu Ka radiation. For more detailed
0-20 XRD scans, using Cu Ka, radiation, a Philips Ma-
terials Research Diffractometer (MRS) equipped with a
four-crystal high-resolution monochromator in the Ge-
(220) setting and a —,

' degrees receiving slit was used. All
the diffraction peaks from the superlattices were found at
low scattering angles 2L9 due to the amorphous structure
in the layers. The low resolution and detailed measure-
ments gave 20 resolutions of 0.01' and better than 0.005',
respectively. Peak positions and intensities in the
diffractograms were examined using the Philips APD
software. The profile fit option in this software made it
possible to also deconvolute peaks that were not well
resolved in the diffractograms. The intensity in all exper-
imental diffractograms was normalized to the intensity at
the critical angle of the total external reAection Io near
20=0.5'.

Figure 4 shows a low-resolution diffractogram from the
6th generation of the Cantor middle third superlattice
(r=2). The a-Ge and a-Si layer thicknesses were nomi-
nally a=1.4 nm. A low-resolution diffractogram from
the 4th generation of the Cantor double fifths superlattice
( r = 3) with nominally a = 1.4 nm is shown in Fig. 5.

An examination of the diffractograms shows that the
peaks can be indexed with two integers (m, k) (the mean-
ing of the values taken by m and k is explained in the
next section). Both spectra display large oscillations in
intensity, apparently irregular, but there are roughly
similar groups of peaks, three carried by (1,1), (1,2), and

L„=rL„i+(r —1)l„ i, t„=sl„i, Lo =lo =a,

where L„and l„denote the thickness of the nth genera-
tion of the Cantor superlattice and B system, respective-
ly. According to Eq. (8) both systems grow like s".

III. EXPERIMENTS

Various Cantor superlattices were grown by dual tar-
get unbalanced dc magnetron sputtering at a base pres-
sure below 1.3 X 10 Pa (1 X 10 Torr). ' The A' s
and B's in the Cantor structures were represented with a
nm of amorphous germanium (a-Ge) and a nm of amor-
phous silicon (a-Si), respectively, deposited onto Si(001)
substrates with its native oxide. The sputtering of the Ge
and Si layers was done using targets 50 mm in diameter
with purities )99.99% in a high-purity Argon gas atmo-
sphere at a pressure of 6.7 X 10 ' Pa (5 X 10 Torr).
The target voltages were approximately 520 and 550 V
and the target currents 40 and 140 mA for Ge and Si, re-
spectively. This resulted in growth rates of approximate-
ly 0.1 nms ' as measured with a dual-head quartz-crystal
monitor. In order to obtain dense a-Ge and a-Si films at
ambient substrate temperature, a negative substrate bias
of 140 V was used during the depositions. ' The,
modulation of the superlattices was achieved with the aid
of two computer-controlled shutters in front of the Ge
and Si targets. In the controlling software, the Cantor se-
quences, among many others, can be generated with r, s, ,

and a as input parameters.
Cross-sectional transmission electron microscopy

(XTEM) was used to confirm the grown sequences and to
investigate the layer uniformity. These results showed
that the layers were relatively sharp and that individual
layers with thicknesses of less than 1.0 nm could be
grown. In Fig. 3 an XTEM micrograph of a sample
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FIG. 4. Diffractogram from a low-resolution 0-20 XRD rnea-
surement of the sixth generation of the Cantor middle third su-
perlattice (r=2). The a-Ge and a-Si layer thicknesses were
nominally a=1.4 nm. The 729 (s"=3 ) 2 and B layers in the
Cantor structure results in a total nominal thickness of 1020.6

FIG. 3. An XTEM micrograph of the sixth generation of a
Cantor middle third superlattice (r=2). The segments and gaps
are represented here by layers of a-Ge and a-Si, respectively. In
the image only the first five generations are resolved. nm.
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TABLE I. The diffraction peaks can be indexed with more than one set of p, m, and k, according to
Eq. (9). The table gives an example of how the indexing works in the Cantor middle third case (r=2)
for p=1 peaks. The values of k in the same column correspond to the same peak. In this study all
peaks have been indexed with the lowest possible p, m, and k, thus indicating their intensity behavior.

0
1 2
2 6 7 8
3 18 19 20 21 22 23 24 25 26

1
3

9 10 11 12
27 28 29 30 31 32 33 34 35 36

0.„(k, p)I„(q)=C(r,m;q)L„" ', n ))m, (10)

where the coefficient C (r, m;q} does not depend on the
generation number n, and a„(k,p))0. The maximum
value of the scaling exponent a„(k,p) is reached when

p = 1, and then it reads

a„(k,p =1)=2D„.

tally resolve peaks with m) 4. Some of the peaks with
m=4 can still be identified as the nonindexed shoulders
of the stronger peaks in Fig. 4 and are resolved in the de-
tailed measurements treated in Sec. VI.

Figure 6 also shows, besides the peaks indexed with
two integers, some weaker maxima indexed with three in-
tegers @=2, m, and k, in the neighborhoods of which the
spectra are not self-similar. A theoretical investigation,
to be presented in the next section locates all the peaks
among the values of the scattering vectors given by

2m k
q(p, m, k)=

s (s~ —1)

where p ~ 1, 0 ~ m (n —1, and k takes any integer value.
(When p= 1, its value is not specified in diffractograms. )

The intensities of the peaks indexed with @=2 in Fig. 6
are sta, tionary (that is their heights do not grow with n),
and their distribution is governed by simple quasiextinc-
tion rules to by derived in Sec. V. All the peaks are in-
dexed with the lowest possible p, m, and k. (This ex-
plains why the multiples of three and five are absent in
the values taken by k in Figs. 4 and 5, respectively. } An
example is given in Table I of how the indexation works
and how the peaks with different m and k are generated.
The values of k in the same column correspond to the
same peak.

As seen in Fig. 6, the peaks indexed with p = 1 have the
same rate of growth with n, while the intensity of the ob-
served @=2 peaks is stationary. In Sec. V, it is shown
that for large enough n )m the intensity of the peaks in-
dexed with (p, m, k) scales with the width L„ofthe super-
lattice following the power law,

dimension Dz replaced by the approximants Dz"', which
can be computed from the ratios of the intensities of the
same peak at two successive generations (I„/I„,). In
Table II it can be seen that the sequence of the approxi-
mants D 2"' rapidly converges to the limit value
Dz=0. 6309. . . with increasing n, with a difference less
than 1.1% at the 6th generation. Equation (10) was de-
rived by assuming nonadsorbing layers. Data from a
simulation in which absorption is taken into account are
also included in Table II. In this case, the approximants
D2"' start to decrease after a few generations, as expected.
In conclusion, the absorption is expected to induce strong
deviations from the scaling law Eq. (10) in the experimen-
tal diffractograms.

The intensity and the resolution of the diffraction
peaks in a real superlattice are inAuenced by, for instance,
instrumental limitations and sample imperfections such
as layer thickness Auctuations, interface roughness
(which give rise to a diffuse scattering ), and correlated
roughness. In the samples used in this work small layer
thickness fIuctuations and interface roughnesses are
present, but no indications of correlated roughness have
been observed by XTEM. To investigate the inhuence of
the present imperfections, the diffraction from the 5th
generation of a distorted Cantor middle third structure
(r=2) was calculated. An offset in the deposition rates

TABLE II. The scaling of the diffraction peaks are directly
related to the fractal dimension D„ofthe Cantor sets according
to Eqs. (10) and (11). For the Cantor middle third set (r=2), the
fractal dimension is D2=0. 6309. . . . From the intensity ratios
of the same peak at two successive generations (I„/I„,), ap-
proximants of the fractal dimension D2"' were calculated. The
table shows data for the peaks with (p, m, k) =(1,0,1) and (1,0,3),
in a Cantor middle third structure (r=2). The numerical calcu-
lations were made with and without absorption. In the case of
no absorption the approximant D', ' rapidly converges to the
limit value D~, while the calculations with absorption shows
that D2" starts to decrease after a few generations.

Equation (11)directly relates the scaling of the diffraction
peaks of the perfect Cantor superlattices to the fractal di-
mension D„ofthe Cantor sets defined in Eq. (6).

The asymptotic expression (10) was tested by using the.
simulated intensity data for the triadic Cantor superlat-
tice (r=2) from Fig. 6. Both Eqs. (10) and (11) were as-
sumed to hold even for small n & m, but with the fractal

(1,0, 1)

0.3992. . ~

0.5650. . .
0.6026. . .
0.6171. . .
0.6240. . .

D(n)
2

{1,0,3)

0.5228. . .
0.5780. . .
0.6036. . .
0.6175. . .
0.6240. . .

0.3958. . .
0.5561. . .
0.5778. . .
0.5487. . .
0.4420. . .

0.5228. . .
0.5717. . ~

0.5973. . .
0.5935. . .
0.5582. . .

D2"' (absorption)
(1,0, 1) (1,0,3)
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was simulated by making the A layers (a-Ge) in the mod-
el 0.1 nm thinner and the B layers (a-Si) 0.03 nm thicker,
such that the total thickness differed by less than l~o
from the thickness in the perfect case. In addition, a
Debye-Wailer interface roughness of 0.1 nm was intro-
duced. The resulting diffraction pattern in Fig. 7 can be
compared with the diffraction pattern from the corre-
sponding perfect Cantor structure in Fig. 6(b). It is seen
that while the peak positions are practically the same, the
peak intensities are strongly influenced. Beside a general
decrease in peak resolution it is observed that the peaks
with smaller m can become dominated by some neighbor-
ing peaks with larger m, as, for instance, in the case of
the couple (2,8), (3,25). This can explain the deviations
seen in Figs. 4 and 5 from the general rule regarding the
relative intensities of neighboring peaks which was stated
in Sec. III. Other simulations in which the deposition
rate offset was replaced with statistical errors of the layer
thicknesses showed similar results.

V. THEORY

The theoretical model is a superlattice composed of
layers of type 2 and B with thickness a arranged along
the growth axis in a Cantor sequence. The distribution of
the scattering density inside each layer is uniform. The
interfaces are assumed perfectly sharp and the coordinate
of the left end surface of layer j is denoted by z . . The dis-
tribution of the scattering density is the convolution of
the distribution of the electron density in the single layers
A and B with the distribution of coordinates zj (which is
a sum of 5 functions). Then the Fourier transform of
generation n reads

the values f~ (q) or f~(q) if the layer j is of the type 2 or
B, respectively.

According to the formalism outlined in the introduc-
tion, we are looking for values qo of the scattering vector
for which, (i) ~F„(q)~ has a maximum at q =qo for any
large enough n, and (ii) ~F„(qo)~

grows with n as a power
of I.„.In the theory of diffraction from crystals the in-
tensity maxima (Bragg peaks) originate from the con-
structive interference of contributions coming from iden-
tical units (planes of atoms), which repeat periodically.
Similarly, the intensity maxima of the Cantor superlat-
tices are due to some clusters of layers that repeat along
the growth axis.

The main maximum appears at q=0, when each layer
3 or B gives the same contribution to the Fourier trans-
form. It is a Bragg peak which grows exponentially with
n with a scaling exponent +=2.

Other peaks with exponential growth appear from the
contributions of clusters which repeat aperiodically. At
each fixed generation n, o, the repeating clusters are all the
previous generations with n &no, plus r —1 gaps. [This
can be seen from the substitution rules (7), which define
each (n+1)th generation as the union of r copies of the
nth generation separated by the new gaps of the genera-
tion n+1.] Then the scattering amplitude F„+,is the
sum of the Fourier transforms of the copies of the nth
generation multiplied by factors which describe their
shift along the growth axis, plus the contribution of the
gaps. This gives a system of coupled recurrence relations
between the Fourier transforms of the successive genera-
tions of the Cantor superlattice and the B system (which
describes the gaps). In a two-dimensional vectorial nota-
tion the recurrence relations read

n

F„(q)=g e 'f.(q),
j=0

(12) F.+ i(q) F„(q)
( )

=M(qL„,ql„) B ( )
(13)

where f (q) is the Fourier transform of layer j and takes

q(A )

0.18 0.19 0.20 0.21 0.22 0.23 0.24
10
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23 k= 34

2.8 3.0 3.2 3.4

FIG. 7. Calculated diffractogram from the fifth generation of
the Cantor middle third structure (r=2). The structure is dis-
torted by making the A layers (a-Ge) 0.1 nm thinner and the B
layers (a-Si) 0.03 nm thicker. In addition, a Debye-Wailer inter-
face roughness of 0.1 nm is introduced. The calculation should
be compared with the corresponding perfect Cantor structure
seen in Fig. 6{b). The peak positions are practically not affected,
while the peak intensities are strongly inAuenced.

where B„is the scattering amplitude of the nth genera-
tion of the B system. The matrix M of argument (x,y)
reads

M(x,y) = S„(x+y) [S,(x +y) —1]e
0 S,(y) (14)

where S„(t)denotes the trigonometric sum QJ 0
e'1'.

The above equations show that the contribution to
F„+,from the Fourier transforms F„ofthe r copies of
the previous generation is maximum when they are added
(that is when the shift factor S„reaches its maximum r)
The same statement holds regarding the contribution to
F„+,coming from B„(thatis from the r —1 new gaps).
To have a maximal exponential growth of ~F„~with n the
factor S„(qL„+ql„)should keep the same value r when n

grows. Since the function S„(t)is periodic in t, the values
of the argument q (L„+l„)that correspond to different n

should differ only by integer multiples of the period. The
condition is trivially satisfied by the argument when q=O.
Then the contribution to F„+&coming from the gaps
dominate [because S,(0)=s ) r] and ~F„~~L„,giving the
above-mentioned Bragg peak. (In fact in this case
e '~=1, that is, E„andB, add in phase such that all lay-
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ers give the same contribution, as expected. )

The case when the scattering amplitude is not dominat-
ed by the contribution of gaps is investigated below. The
dependence of the argument of the matrix M on n is con-
trolled by the recurrence relations (8) and can be written

ql
„

U„+i=M(0, 0)U„, U„=n qI
(15)

According to Eqs. (13) and (15) the variation of ~F„(q)~
with n for a fixed q value is governed by the product
P„=M(U„,)M(U„2) M(UO). As suggested
above, steady growth with a maximal rate is possible
when q takes such a value that the components of all the
vectors U diAer only by integer multiples k of the period
2'. This means that Uo is a fixed point of the map (15) in
which the variables are now considered as being defined
modulo 2m in both components. Then the product ma-
trix reads P„=[M ( Uo ) ]"and ~F„~can grow exponential-

ly with n with a constant rate if at least one eigenvalue of
the matrix M(UO) has an absolute value greater than
one. A simple computation gives the values of the
scattering vectors that correspond to the solution of the
fixed-point equation q =2k'/[a (s —1)], where k is an
arbitrary integer.

The discussion above describes the case when each
copy of the first generation along the chain gives the
same contribution to the scattering amplitude of the gen-
erations n) 1. The same reasoning can be applied to a
situation when all the copies of the mth generation along
the chain give identical contributions. Then the initial
condition Uo of the map (15) is such that the fixed point
is reached at the mth iteration, and this happens when

q (k, m) =2k~/[a (s —1}s ], where I ~0. When
m =mo is fixed and k runs over the set of integers,

q (k, m ) reproduces all the values corresponding to
m & ma and arbitrary k, but new values appear each time
when k is not a multiple of s (m +mo). These new

values of q(k, mo) correspond to the cases when the
copies of the moth generation give identical contributions
while the copies of the generations n & mo do not. Then
the product matrix at any generation n )I ( =m o ) reads

P„=[M(U )]" M(U, )M(U ~) M(UO),
(16)

which means that steady growth with a constant rate
could be reached beginning with the mth generation only.
This explains why in di6'ractograms the peaks with small-
er m are more intense than neighboring peaks with
higher m values.

A further generalization can be done by allowing
periodic repetitions with period p ) 1 in the sequence of
arguments U~ (the fixed point case corresponds to p= 1).
For instance, the sequence of arguments corresponding to
some initial condition for which a periodic subsequence
with period p =2 begins at the mth generation
reads UOU&. . . U iU U +iU U +i, . . . , where
U XU +, (modulo 2~). This again leads to the ex-
ponential growth of ~F„~,if there is an eigenvalue of the
matrix M ( U + i )M ( U ) with a modulus greater than
one.

In conclusion, the general expression of the scattering
vector q (p, m, k) given by Eq. (9) is derived by imposing
to the map (15) the condition to produce a periodic se-
quence of arguments with period p ~ 1 starting with the
mth generation. These values of q correspond to the lo-
cation of di8'raction peaks which eventually grow as
powers of I.

„

if and only if, (i) at least one eigenvalue of
the matrix M =M(U + i) . M(U +i)M(U ) is

greater than one in absolute value, and (ii) the Fourier
transforms f„(q),fbi(q) are not zero.

The violation of one of the conditions (i) or (ii) above is
equivalent to the quasiextinction of the peaks, that is, in
these cases the scaling exponent 0. is zero. The violation
of condition (ii) gives trivial extinctions at values of the
scattering vectors q =(2ln/a), lXO. The discussion of
the condition (i) requires an investigation of the matrix
M . An inspection of the values taken by the entries
m;. (p) of M when q =q(p, m, k) and k&0 indicates that
m2, (P) =0 and the eigenvalue m2z(p)=1 for any p ~ l.
This shows that, at variance with the case when q =0, the
contribution ~B„~of the gaps to the scattering amplitude
ceases to grow with their length beginning with the mth
generation, that is their inhuence in the spectrum is di-
minished. The contribution of the gaps with n )m is fur-
thermore reduced to zero if k is an integer multiple of
s~ —1, when B +I =0 for any I)0.

The second eigenvalue m» (p } of M is a product of
factors S„[2s'2k~/(si'—1)], l =0, 1, . . . ,p —1, and,
therefore, is zero whenever 2rk is an integer multiple of
s~ —1 and 2k is not. Then ~F„~=~B

~

for any n &m,
which implies o.=0. En this case the peaks are entirely
due to the B component, but their intensities no longer
grow with the thickness of the superlattice for genera-
tions greater than m.

When p= 1 and k is a multiple of r —1 then m ii(1)=r
and m (il2)=(r —1)e '" ~'" ". Then the condition (i)
holds and Eq. (16) indicates that after some transient
behavior up to the (m —1)th generation the peak begins
to grow with L„accroidngto Eq. (10), with the scaling
index given by Eq. (11). (The contribution of the tran-
sient regime to intensity is encoded in the coefficient C
and its infiuence decreases with n. ) Taking into account
the fact that r is the maximum possible value of S„and
the values taken by U in a period p are by definition not
equal (modulo 2m }, it follows from Eq. (13}that the max-
imum value of the scattering exponent a(k,p) is only
reached when p= 1.

When p = 1 and r —1 is not a divisor of k, there are two
possible cases. The above discussed quasiextinctions
(S„=O)appear when rk is a multiple of r —1. Otherwise
mii(1) =1 and mi2(1)=0, and this represents a di(ferent

type of quasiextinction, where F„=Ffor any n )m.
It is instructive to see how the features predicted by

the general theory appear in the numerical simulations
from Sec. IV and the diffractograms from Figs. 4 and 5.
In the case of the triadic Cantor superlattice (r=2), all
the peaks with maximum growth rate (p = 1) and
m ~ n —1 are seen in Fig. 6. The intensity extrema in-
dexed with p=2 can be observed whenever they are not
covered by the much stronger p=1 peaks. The only pre-
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dieted quasiextinctions with m=2, which exist in the q
range of Fig. 6, are for k=34,38. The intensities are
indeed stationary at q(2,2,34) and q(2, 2,38) when n grows,
as expected. In Fig. 6 another set of quasiextincted peaks
corresponding to p=2, m=3 and even k can be seen
when n ~5. The instrumental broadening of the main
p=1 peaks precludes the detection of the p ~2 extrema
in the conventional diffractograms from Figs. 4 and 5.
Nevertheless, the quasiextinction of' the @=1 peaks with
odd k predicted by the theory in the case r =3 can clearly
be seen in Fig. 5. For 20 values below 2' the quasiextinct-
ed peaks with odd k are visible but are, in general, less in-
tense compared with the peaks with even k values. This
explains why the (1,0, 1) peak is dominated by the (1,2,24)
peak as mentioned in Sec. III. At higher 20 values, the
peaks with odd k values are not observed.

In what follows we brieAy discuss the nature of the
spectra in the thermodynamic limit. The Fourier trans-
form of the Cantor superlattice can be split in a contribu-
tion B„coming from the B system plus a term propor-
tional to the Fourier transform F„ofthe distribution of
3 layers as follows:

sity measure by

h„(q)=J dp„(q') . (20)

VI. DETAILED DIFFRACTION ANALYSIS

A detailed analysis of the spectra was performed in or-
der to confirm the theoretical results. To accurately pre-
dict the position of the peaks, Eq. (9) had to be corrected
to take into account the deviation of the refractive index

g, from unity. Then the peak positions in 20 are given
by

It can be shown that' p„are probability measures' [i.e. ,

J 0 'dp„(q)= I], and moreover that p2 is purely singular
continuous. According, with growing n the self similar
parts of the (appropriately normalized) spectra of the triad
ic Cantor superlattice re&lect, with increasing precision, the
main features of a singular continuous measure. Extrapo-
lating this result, we can expect that the similar genera-
tion of peaks observed in the cases with r )2 is associated
again to SC measures, but a proof of this conjecture
remains to be derived.

F„+8„, 1/2
2

2a sin(e) 1+
sin (8)

k

s (si' —1)
(21)

where E„"(q)=II". OS„(2qs~). As discussed above, the
only peaks the B system generates in the large n limit are
the 5 peak at q =(2n. /a) and the quasiextincted peaks
corresponding to S„=O.Therefore the main information
regarding the fine peak structure of the Fourier spectrum
is encoded in F„.This allows us to formally neglect the
8 component by taking its scattering power zero. (As a
secondary consequence all the quasiextinct peaks with
S„=0 will really become extinct, but this does not
significantly change the aspect of the spectra for large n. )

Then H(2m/a) becomes strictly subunitary and the in-
tegrated intensity as defined by Eq. (2) loses its meaning
of a normalized intensity distribution. This happens be-
cause the component A (which is responsible for the self-
similar structure in diffractograms) occupies a fraction of
the total thickness of the system that becomes negligible
in the thermodynamic limit, and thus the peaks grow too
slow with L, to ensure normalization. Consequently, the
intensity measure p is irrelevant for the description of the
fine spectrum. Nevertheless, physically relevant quanti-
ties can be defined by normalizing the intensity to the to-
tal thickness of the layers of type A. The renormalized
scattering amplitudes read

0.05
40 —

i

0.07 0.08 0.09

third-

10—

(%)

where k is the wavelength of the x-ray radiation. The
values of a and q were achieved by linearizing Eq. (21). '

To resolve the @=1 peaks with m=4 and 5, which can-
not be seen in the low-resolution measurement presented
in Fig. 4, a detailed x-ray-diffraction scan was conducted
on the same sample in a smaller-angle region. Detailed
measurements were also made for the 5th generation of
the Cantor middle third superlattice (r=2) with nominal-

ly a=1.55 nm. The detailed diffractograms from the 5th
and 6th generations of the Cantor middle third superlat-
tices are reproduced in Figs. 8 and 9, respectively. In
Fig. 8, all the @=1 peaks with m ~4 and some p=2
peaks are resolved. Also included in Fig. 8 is a dynami-

IL„(q)
ar"

(18)

and are known as generalized Riesz products. ' The
spectra are then described by functions analogous to the
integrated intensity, which read

h„(q)= lim f R„"(q')dq' . (19)
n~oo 0

In the infinite n limit the Riesz products generate positive
measures p„which act on sets of points in the reciprocal
space. These measures are defined similarly to the inten-

0.1
I I I I I I I I I I I

0.7 0.8 0.9 1.0 1.1 1.2 1.3
~~( )

FIG. 8. Diffractogram from a detailed 0-20 XRD measure-
ment on the fifth generation of the Cantor middle third super-
lattice (r=2). The a-Ge and a-Si layer thicknesses were nomi-
nally a=1.55 nm. The 243 (s"=3') 2 and B layers in the Can-
tor structure results in a total nominal thickness of 376.6 nm. A
numerical simulation is also included.
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FIG. 9. Diffractogram from a detailed 0-20 XRD rneasure-
ment on the sixth generation of the Cantor middle third super-
lattice (r=2). The a-Ge and a-Si layer thicknesses were nomi-

nally a= 1.4 nm. The 729 s"=3 ) A and B layers in the Cantor
structure results in a total nominal thickness of 1020.6 nm.
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FIG. 10. Diffractogram from a detailed 0-20 measurement on
the fourth generation of the Cantor double fifths superlattice
{r=3). The a-Ge and a-Si layer thicknesses were nominally
a=1.4 nm. The 625 (s"=5 } 2 and B layers in the Cantor
structure results in a total nominal thickness of 875 nm.

cal calculation from a Cantor profile with the same
thicknesses as the measured superlattice. The simulation
curve fits the measured curve very well regarding peak
positions and a similar structure of peak intensities can
be seen. The fit could probably be improved with a better
model of the interfaces in the film. In Fig. 9 all the p=1
peaks seen in Fig. 8 can be observed. Since the measure-
ment is made on a superlattice grown to the 6th genera-
tion, p= 1 peaks with m =5 are present. The most pro-
nounced of these peaks are indexed in Fig. 9.

Another detailed diffracto gram, obtained from the
same sample as presented in Fig. 5, is shown in Fig. 10.
Peaks with m = 3 are resolved in between the peaks with
m ~2, as predicted by theory. The quasiextinction of
odd p = 1 peaks, already seen in Fig. 5, is obvious in Fig.
10, where the only detected odd peaks are (1,3,45) and
(1,3,55).

Although the amorphous superlattices are of good
quality with well defined layers, they contain imperfec-
tions such as small layer thickness fluctuations and some
interface mixing. In Sec. IV it was shown that such im-
perfections mainly influences the peak intensity, whereas
the relative peak positions are much less affected. There-
fore the difference between the intensities in the numeri-
cal calculation and measurement in Fig. 8 is expected
since a perfect structure with ideally sharp interfaces was
used in the model. However, the general features regard-
ing the peak intensities mentioned in previous sections
can be seen. For instance, the fact that peaks with small-
er m should be more intense than neighboring peaks with
higher m values is in general true. This simplifies the
procedure of indexing the numerous peaks in the Cantor
diffracto grams.

When comparing the diffractograms with the analyti-
cal expressions and numerical calculations, a very good
agreement regarding peaks positions is found. The a
values achieved from the linearizations differed with less
than 3%%ug from the nominal values. The refractive index
values were found to deviate from unity with approxi-
mately 1X10 . For the detailed scans, the measured
and predicted 20 peak positions deviated with a max-
imum of l. l%%uo.

VII. CONCLUSIONS

In this work, the x-ray diffraction from superlattices
modulated according to Cantor sets was investigated
both theoretically and experimentally. Expressions for
the positions of the diffraction peaks and scaling laws for
intensities were analytically derived. Accordingly, the
peaks were indexed by three integers and the largest scal-
ing exponents were found to be proportional to the frac-
tal dimensions of the associated Cantor sets.

The theoretically derived position of the peaks were in
a very good agreement with the results of the diffraction
experiments and numerical calculations. However, nu-
merical simulations showed that the scaling laws predict-
ed by theory for perfect Cantor superlattices are actually
strongly affected by absorption and imperfections in more
realistic sample models.

A theoretical investigation of the nature of the
diffraction spectra in the thermodynamic limit revealed
some aspects which are specific to the fractal systems. It
was shown that a correct global description of the self-
similar part of the spectra can be achieved if the
diffracted intensity is normalized to the total thickness of
the layers representing the minoritary component in the
superlattices. This is at variance with the full system size
normalization previously used for the characterization of
the spectra of nonfractal systems. The correctly normal-
ized intensities of the Cantor superlattices were shown to
be described in the large system limit by generalized
Riesz products. Moreover, the spectral measUre associat-
ed to the self-similar part of the diffraction pattern of the
perfect triadic Cantor superlattice was found to be singu-
lar continuous.

We believe the above results could stimulate the in-
terest in the structural investigation of fractal superlat-
tices and the characterization of the measures which
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govern the distribution of the intensity maxima in their
spectra. In particular, it would be interesting to study to
what extent these measures can be used to qualitatively
distinguish between spectra of fractals with various de-
grees of complexity, in a similar way as the intensity mea-
sure is used in the characterization of the degree of order
for nonfractal systems.
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