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%'e present a microscopic theory of plasmon-phonon oscillations created by ultrafast optical excita-
tion in polar semiconductors. Our analysis is based on the equations for the optical lattice displacement
and the electronic polarization. For an idealized situation with homogeneous plasma density we 5.nd
that plasmonlike oscillations dominate the transient behavior after the optical excitation. However,
once the inhomogeneous density distribution is taken into account, only density-independent LO-
phonon oscillations are present in the transient optical response. By using a model of electro-optical
response that includes the inAuence of both the electric field and the lattice displacement on the refrac-
tive index, we achieve a quantitative agreement with the experiment.

I. INTRODUCTION

Recent experiments' have shown that ultrafast opti-
cal excitation can coherently excite optical phonon
modes in semiconductors. Oscillating changes in optical
properties have been observed in GaAs, ' Ge, and a
number of other materials. ' A thorough discussion of
the experimental techniques and a complete bibliography
can be found in a recent review.

In materials with low crystal symmetry phonon oscilla-
tions are caused by deformational electron-phonon cou-
pling which makes a finite value of the lattice displace-
ment energetically favorable after the excitation. The
sudden increase in the photocarrier density during the
femtosecond excitation makes the lattice oscillate around
the new equilibrium position. ' ' However, this "displa-
cive" mechanism can only work in materials where iso-
tropic electron density distribution can deform the lattice
along some preferential crystallographic direction, and
only 3, phonon modes that do not reduce the lattice
symmetry can be excited in this way. '

Coherent optical phonon oscillations are quite pro-
nounced in GaAs, ' where experiments suggest another
mechanism for coherent phonon excitation. It has been
shown experimentally that the amplitude of the oscilla-
tions in polar materials is related to the strength of the
electric field in the depletion region near the surface of
the sample. In a polar material, the electric field in-
teracts with both optical phonons and electrons. After
the optical excitation the photocarriers will separate in
the electric field, creating electronic polarization. This
polarization mill, in turn, affect the field and may cause
the lattice to oscillate.

Although the transient screening of the depletion field

by photocarriers has been unambiguously identified as
the driving force for phonon oscillations, ' ' ' it should
also drive plasmon oscillations even in a nonpolar materi-
al. In polar materials, where plasmons and LO phonons
combine into plasmon-phonon modes with density-
dependent frequencies, ' one can expect both modes to be
excited by ultrafast screening. %'bile experiments clearly
show oscillations with the LO-phonon frequency, it is

surprising that there is no trace of plasmon oscillations,
nor is there any density dependence of the observed oscil-
lation frequency at densities up to10' cm

The existing theoretical approaches neglect the
plasmon degree of freedom in their treatment of electron
dynamics. Scholz and Stahl' have considered the evolu-
tion of the depletion field after ultrafast photoexcitation
taking into account lattice polarization macroscopically.
Kurz and co-workers have performed numerical simula-
tions based on the drift-diffusion model ' which de-
scribes the slow component of the observed optical
response very well. However, neither of the models ade-
quately describes the experimentally observed oscilla-
tions.

In the present paper we develop a microscopic theory
of plasmon-phonon oscillations. The plasmon-phonon
equations for a uniform case are solved in Sec. II, where
we also discuss differences in the oscillatory behavior of
the electric field and the lattice displacement. In Sec. III
we consider the case of a nonuniform density distribution
which is more appropriate for the description of experi-
ments' performed with tightly focused laser beams, and
compare the results with experiment. We also discuss the
possibility of terahertz emission by coherent phonons.
The final section, Sec. IV, contains concluding remarks.

II. DYNAMICS OF PI.ASMON-PHONON MODES
FOR UNIFORM PHOTOEXCITATION

In this section we will study the plasmon-phonon dy-
namics for the case of spatially uniform density of pho-
toexcitations. This generic case of homogeneous density
and uniform applied field is important for understanding
the physics of the transient response, although it may not
be directly applicable to realistic experiments.

Our analysis is based on the well-known equations for
plasmon-phonon modes which in the time domain read'

t) 2 e %(r)P+y, ) P+cop)P= [E'"'—4~y, ~8'],' ()t " c, p

+yah +coL W= [E'"'—4trP j

0163-1829/95/51(12)/7555(11)/$06. 00 1995 The American Physical Society



7556 A. V. KUZNETSOV AND C. J. STANTON

Here, P is the electronic polarization and 8' is the nor-
malized lattice displacement (8 =&pu, where u is the
displacement of the optical mode and p is the reduced
density). In the absence of coupling, the polarization is
expected to oscillate with the plasmon frequency
co~&=+4~e Nle „p (N being the total density of carriers
and p the reduced electron-hole mass), while the frequen-
cy of lattice oscillations should be that of the longitudinal
optical phonon col . The coupling of phonons to the elec-
tric field is characterized by yiz=coTQ(EO —E )/4',
where Eo and c are the low- and high-frequency dielec-
tric constants, and co& is the transverse phonon frequen-

15

Note that, because both optical phonons and plasmons
are dispersionless, the equations are the same for all wave
vectors except q=O, where the uniform applied field E'"'
creates a driving force on the right-hand side of both
equations. If the field is nonuniform as is the case in the
surface depletion layers, the driving term will be finite
also in a small vicinity of q=O. However, the corre-
sponding range of wave vectors is of the order of the in-
verse depth of the depletion layer (about 100 nm), so that
it is very small compared to the size of the Brillouin
zone. Therefore we can restrict ourselves to considering
only the zero-wave-vector mode.

The decay of the oscillations is described by phenome-
nological relaxation terms in (1) and (2). The relaxation
constant for electronic polarization has the meaning of
the momentum relaxation time, which can be as short as
a few tens of femtoseconds. The constant that describes
damping of phonon oscillations is related to the anhar-
monic decay time for LO phonons (about 4 ps). '

These equations describe two coupled harmonic oscil-
lators. The frequencies of the normal modes of this sys-
tem are shown in Fig. 1 for GaAs parameters (so=12.9,
E = 10.9, vLo =8.76 THz, vTO =8.06 THz, and
@=0.06m, &) as a function of plasma density. At very low
densities the plasmon branch is overdamped, and the
phonon branch has the LO frequency. At very high den-
sities, the fast plasmon oscillations screen the longitudi-
nal field associated with the lattice motion, reducing the

EextI'=
4m

8 =0 (4)

after the excitation pulse has created a nonzero carrier
density in the sample. The system will react to the opti-
cal excitation by moving from one equilibrium position
(3) to the other (4). Because both the lattice and the elec-
trons possess a certain inertia represented by second-
derivative terms in (1) and (2), the system will oscillate
around the new equilibrium position. Both plasmon-
phonon modes shown in Fig. 1 should be involved in the
oscillatory transient.

Unfortunately, in general it is not possible to describe
this transient behavior analytically because of the way
the time-dependent carrier density enters Eq. (1): it
affects the source term in the right-hand side and the
plasmon frequency, so that solutions of (1) are nonlinear
in the density even in the absence of phonons [note that
the plasmon-phonon coupling is also proportional to the
density through the prefactor on the right-hand side of
(1)]. However, an approximate analytical solution can be
obtained in the limit of very low densities, where we can
leave out the coupling between the two equations, and
neglect the time dependence of the plasmon frequency.

We will describe the evolution of the density by a sim-
ple rate equation,

=NOI(t),dt

where No is the final value of the density, and I(t) is the
temporal profile of the excitation intensity normalized in
such a way that

phonon frequency to that of the TO phonon. The an-
ticrossing of both branches occurs at densities around
10' cm, where both modes become strongly damped.
Except for a small effect of damping on the frequencies,
Fig. 1 is identical to the we11-known results of Ref. 14.

In the presence of the external electric field, these
equations also have steady-state solutions:

I' =0 8'= T&2 Eext
2

COL E~

for zero density before the excitation, and

; LO f dt I(t) =I(co=0)=1 . (6)

TO

0.0 0.5 1.0
n'~~ (10' crn '~~)

1.5

FIG. 1. Density dependence of plasmon-phonon mode fre-
quencies in G-aAs. The two bottom curves with negative fre-
quencies show the density-dependent dephasing of both modes
calculated for y, ,

' =0. 1 ps and y~z' =4 ps. Vertical dotted lines
mark density values used in numerical solutions below.

This equation represents the process of optical generation
of carriers. We do not include recombination in (5) since
it occurs in a much longer time scale (tens of
nanoseconds).

In the low-density limit the equations are uncoupled,
so that we can solve the plasmon equation (1) first and
then substitute the resulting solution for the polarization
into (2). If we further assume that the excitation duration
is much shorter than the characteristic rise time of the
polarization (the plasmon period), we can neglect the
time dependence of the plasmon frequency on the left-
hand side of (1). Under these simplifications, we can im-
mediately write down the Fourier-transformed solution:
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(14)

(it is valid only after the pulse is over). Substituting (7) as
a source term into (2), we get for the Fourier transform of
the displacement,

2 Eext
W(o~) =— I(to)

(co+i5)(co„, to )(toL——o~ )

[the constant component (3) has been left out]. Again,
the denominator is a polynomial, so that in the time
domain the solution is a superposition of three oscillating
components:

W(t) =B(t)[ Wo+ W„, c sory„, t + W„h coscoL t ], (10)

with

2
GALEext

W, i
= WoI(~, i)

E, ~Q)L COL p

2
aplW h= —WoI(coL )

COL COpl

The denominator of (7) is a third-degree polynomial, so
that the solution has three poles in the frequency domain.
Consequently, in the time domain the solution will be the
sum of three oscillating terms with the frequencies 0 and
+co i (for simplicity, let us assume that the dephasing is
zero; finite dephasing will only add a small imaginary
part to the plasmon poles):

2 Eext
Ct7plP(t)= I 1 I(co i)—cos[co it][B(t)

According to (14), an oscillatory electric field at the pho-
non frequency produces a displacement which is about an
order of magnitude larger than the constant displacement
(3) caused by a constant field of the same magnitude.
Due to this resonant enhancement, the lattice displace-
ment (10) is no longer proportional to the electric field
(12) as is the case for constant (or slowly varying) field.

The above analytical results are of limited practical
value because the approximations we made are too crude
(e.g. , the results would diverge at the next step of the
iterative procedure because we have neglected mode cou-
pling). However, the qualitative trends that we have dis-
cussed in connection with this approximate solution are
borne out by numerical results that are presented below.

The system of equations (1) and (2) poses little compu-
tational challenge. We have solved it numerically for the
parameters of GaAs (see Fig. 1), assuming a Gaussian ex-
citation pulse with SO fs full width at half maximum
(FWHM), and the magnitude of the external dc field set
to 100 kV/cm (the results are linear in the dc field, so this
choice does not really matter). The solutions and their
Fourier transforms are shown in Figs. 2 —S.

Figure 2 shows the evolution of lattice displacement 8'
at different excitation densities; Fig. 3 displays the
Fourier transforms of these curves. At low densities, the

We see that the constant component exactly offsets the
initial displacement (3); the component at the plasmon
frequency is of the order of the initial displacement and
may even exceed that, while the component at the LO
frequency is small (quadratic in plasma frequency, i.e.,

linear in N, and further scaled down by the excitation
spectral density at the phonon frequency). In the same
approximation, we can write down for the electric field

E (t) =E'"' 4~P —y, 2
W—

=E'"' B(t)[E'"'+E~,—costs, t+E„„coscoLt]

(12)

7.5 &&1 0'~
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with

EextI ( pl

63—EextI( )
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ph 2 2
CO pl COL

(13)

N = 7x10»

2 3
Time (ps)

We see that both the lattice displacement and the elec-
tric field are superpositions of a constant background
with oscillations at plasmon and phonon frequencies.
However, the relative magnitudes of oscillations in these
two quantities are very different. Comparing (11) with
(13), we have

FIG. 2. Transient behavior of the lattice displacement after
ultrafast optical excitation at different excitation densities indi-
cated by dotted lines in Fig. 1. After the initial displacement
has been compensated, the lattice oscillates around W =0.
Note the mode beating at intermediate densities due to the pres-
ence of two plasmon-phonon modes.
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tice displacement than they are in the field dynamics, but
still they are weak compared to the plasmons, in agree-
ment with the analytical estimates (11) and (13). There
are two physical reasons for that: (a) LO phonons are
only present at low densities, where the rise time of the
polarization (the plasmon period) is long, so that the lat-
tice has time to adjust adiabatically to the time-
dependent field; (b) the factor I(col ) in (11) and (13) fur-
ther reduces the LO amplitude by a factor of 3 for a 50 fs
pulse.

This result apparently disagrees with experiment. In
the next section we will show how the experiments can be
quantitatively explained in spite of this apparent contrad-
iction.

III. COMPARISON TO EXPERIMENT

We will concentrate on the experiments conducted by
Kurz and co-workers. ' ' ' A typical set of experimen-
tal data is shown in Fig. 6, where the observed rejective
changes are plotted versus probe delay time for different
excitation densities. The change in the reflection
coefticient is thought to represent the time-dependent
electric field directly via the electro-optic effect. ' ' '

To begin with, let us point out three features of the ex-
perimental data that are most important for our analysis.
(1) The frequency of oscillations is independent of the
density and is equal to that of the LO phonon; (2) there is
no trace of plasmon oscillations in any of the curves, even
though they cover two orders of magnitude in the densi-
ty; (3) the amplitude of the oscillations never exceeds
10% of the overall reflective change. All three features
are in direct contradiction to the analysis of the preced-
ing section, where we have shown that the oscillation fre-
quency should be density dependent, the plasmons should
be more pronounced than the phonons, and the ampli-
tude of lattice oscillations can be of the order of the ini-
tial displacement.

In this section we are going to demonstrate that these
contradictions can be eliminated by taking into account
the differences between the realistic experimental situa-
tion and the idealized case considered above.

Inhomogeneous density distribution

In the experiment, high excitation densities are pro-
duced by tightly focusing the laser beam on the sam-
ple. ' Focusing does produce higher average densities,
but also makes it practically impossible to maintain con-
stant density across the i11uminated spot. As was pointed
out by Collins and Yu, ' this density inhomogeneity is
absolutely crucial to understanding the optical response.
In their Raman scattering experiments, they have seen
LO and TO scattering peaks instead of density-dependent
plasmon-phonon features. To explain their results, they
had to integrate the mode spectrum over a wide density
range. Because only density-independent features such as
LO phonons at low densities and TO phonons at high
densities can survive such averaging, the plasmon branch
is not observed due to this inhomogeneous broadening
effect. Let us stress that this does not mean that the
plasmons are not excited, it only means that they cannot
be detected because of the interference of plasmons with
different frequencies that contribute to optical response
from different points in the excited spot.

The situation of Ref. 17 is very reminiscent of the
coherent phonon results discussed here, where neither
plasmons nor the density dependence of oscillation fre-
quency is observed. The averaging over different densities
across the excited spot can be expected to suppress
density-dependent plasmon oscillations. The exact way
the density averaging should be performed depends on
the particular form of the density distribution across the
illuminated spot. If the reAectivity R is dependent on the
local value of the density n (r), the observed refiectivity
can be represented as'

R"'~ J 2rrr dr R (n [r])E "(r), (15)
0

where we have also taken into account the spatial distri-
bution of the probe electric field (since the reflected signal
is collected by a lens from its focal point, one has to sum
the fields and not the intensities from different points). In
the case when both the pump and the probe have Gauss-
ian spatial profiles, we can transform (15) into an integral
over the density:

R"'o- I dn —f (n) .
0 V'n

(16)
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Here, No is the maximum density at the center of the
spot, and the phenomenological form factor f (n) ac-
counts for deviations from the Gaussian profile (it is
equal to 1 if the distribution is exactly Gaussian). In the
numerical simulations below, we will assume that the
form factor changes linearly from 1 at n =0 (in the wings
of the distribution) to a finite value C ( 1 in the center of
the spot (C =0.2 unless stated otherwise). Even without
the form factor, it is clear from (16) that the low-density
wings, because of their greater area, give a much larger
contribution to the overall signal than the small high-
density region in the center.

FICx. 6. Experimentally observed reflective changes in @-
doped CxaAs at difFerent excitation densities. Reprinted with
permission from Ref. 10.

Hot-carrier eg'ects

Another deviation from the simple physical picture of
the preceding section is due to band structure effects in
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FIG. 7. Time evolution of the electron density in the L-valley

{dashed line) and the I valley {dotted line). The solid line

is the effective density X' =XI-+0.1'. Calculated according
to a rate-equation model of Ref. 18.

Field nonuniformity

In the preceding section we have assumed the applied
dc electric field to be spatially uniform. However, in real-
istic depletion layers the field penetrates only a short dis-
tance (some tens of nanometers) below the surface.

We have found that the nonuniform density distribu-
tion plays a decisive role in our model because the
response is nonlinear in the density. In contrast, the
nonuniform field distribution in itself does not affect any-
thing for the simple reason that the response is linear in

GaAs. Optical excitation at 2 eV creates electrons with
enough kinetic energy for intervalley transfer, so a sub-
stantial part of the total density will be transferred to the
L valley immediately after the excitation. Since the ratio
of L- to I -valley mass is about 10, the L-valley electrons
have much lower mobility and are much less effective in
screening of the applied field. This effect was shown to be
important for the description of the slow component of
the optical response. '

Following the approach of Ref. 18, we assume that the
total mobility is proportional to X' =%&+0.1XL due to
the above-mentioned mass difference between the valleys.
We have calculated the time dependence of the densities
in different valleys using the rate-equation model of Ref.
18 and used the time dependence of the effective density
rather than that of the total density in the subsequent cal-
culations of the optical response. The effective density
(Fig. 7) drops immediately after the excitation due to the
transfer of carriers to the L valley, and then approaches
the total density as the carriers transfer back to the I val-

ley with the time constant of about 3 ps. '

This effect brings the slow component of the calculated
response closer to the experimentally observed one and
also enhances the amplitude of the oscillations. We did
not include more complicated high-field transport effects
such as drift velocity saturation, ' which could have fur-
ther improved the slow response but are unlikely to affect
the oscillations which are our main concern.

Electro-optical response

We also have to consider how the experimentally mea-
sured quantity (the difference in reflection coefficients for
two orthogonally polarized probe components) is related
to microscopic quantities in our model. In steady state
(or for slowly varying fields) the difference in refractive
indices is determined by the electro-optic effect:

b.n = —,'nor, 4E(t), (17)

where r, & is the electro-optic coefficient (1.6X 10
cm/V for GaAs). '

However, the lattice displacement also affects the opti-
cal properties. We can quite generally write the follow-
ing phenomenological expression for the rejective
change

the field. However, the finite depth of the depletion layer
has an indirect effect on the optical response for two
reasons. (1) The depletion layer depth w is much smaller
than the absorption length /, (about 300 nm in GaAs at 2
eV). Since the oscillations will be affected by the screen-
ing transients only within the depletion layer, while the
probe reAection is determined by a much larger region of
the thickness I„ the transient response should be scaled
down roughly by a factor w/I, . A full electrodynamic
calculation (e.g., the transfer matrix approach of Ref. 10)
is needed to describe this effect quantitatively. (2) In an
infinite system, an arbitrarily small density of carriers can
screen any applied field by achieving large enough separa-
tion distance. However, for a system where the field is
present only within a narrow layer of the depth w, the
maximum field strength that can be screened by a given
density of carriers X is E „=4~eNm. At low densities
( ( 10' cm ) this value can be smaller than the de-
pletion field, so that not all of the available field will be
screened. This effect is evident in Fig. 6 where experi-
mental curves at lower densities clearly approach smaller
limiting values at long times, which seems to indicate
smaller overall field change, i.e., that the screening is in-
complete.

Both effects make it dificult to predict the absolute
value of the reflective changes due to the lack of reliable
information about the depth and field profiles of realistic
depletion layers. However, the first effect only scales the
response by a constant factor, while the second leads
mostly to a density-dependent scaling at low densities.
Including realistic field profiles is needed for the descrip-
tion of the slow component of the response, which is
determined by the balance of drift and diffusion Aow at
longer times. ' In contrast, for the oscillatory response
which is determined by a short-time dynamics, we can ex-
pect field inhomogeneity to be only marginally important.

In this paper we will treat these geometrical con-
straints simply by scaling the calculated optical response
so that it matches the observed limiting value of the
reflective change at long times. The scaling factor turns
out to be density independent at higher densities, and has
to be reduced at very low densities to account for the in-

complete screening in agreement with the above argu-
ment.



kR/R ~reE+r~

COHERENT PHONON OSCILLATIONS IN G A

(18)

7561

In the traditional lan ua e ofn
'

g ge o electro-optical phenomena,
e rst term in (18) ori inat'ginates from (fast) electronic

slower lat
'

on c arge" response, while the second is rel t d t
tice distortion process ("bond stretchin " . '

reae toa

In stead state th'
on s retc mg").

y s a e, this expression reduces to (17) with
r,4=r'+r, because in steady st t th d'a e e isplacement is
proportional to the field [E . (3)]. C
slowl var in

q. j~. onsequently, for
s ow y varying fields there is no need to distin uish b-

(17) can be
e isp acement, and the expression

However
can be used to calculate the optical rica response.
owever, as we have seen in Sec. II, the d nam'

different, so that the more 1 E .
e an t e displacement can be ververy

describe the
e more general E . |18' '

1 Eq. t,' is needed to
'

e e transient optical response. Bec fi '

cillations cause i
ecause eld os-

ment [cf. (14) the
cause isproportionately large lattice d' 1ice isp ace-

maril deter
e oscillatory optical response 'll b

'

y ermined by the second term in (18).
e wi e pri-

Below we will rpresent results calculated with r'=0 (the
response is determined by the displacement only), r =0
by the field only), and r'/r"= —2. 7 h' h

'

, w ichisapro er
choice for GaAs according to Ref. 19.

Numerical results

In our numerical simulation, we solve the plasmon-

(the value
phonon equations (1) and (2) for 100 dr ensity values from

e va ue shown on the curves) down to zero. The
time de endencp ce of the effective density is determined by
the rate-equation model of Ref 18 (F' .
same for all densities. Then

e . ig. 7) and is the

field an
en we integrate the calculated

e and the displacement accordin t (16)ing o to account
r e inhomogeneous density distribution. Th

in inte rateg
'

g a ed field and displacement are then d
ri u ion. e result-

evaluate the o tica
are en used to

e e optical response according to (18). The
curves are scaled to match th b
reAectivre ective change at long times. Finally, the results are
convolved in time with a 50 fs FTHM G
pulse to simulate the detection procedure.

s aussian probe

The results of th
' '

i s.the simulation are shown in Fi s. 8 —10
for three

igs.

Fi ure
ifFerent choices of the electr - t'o-op ic coefficients.

igure isplays the results for r'/r"= —2.7, which is
the value taken from Ref. 19. Thee agreement between

is set o data and the experimental curves shown in Fig, specially for the oscillatory part of
s own in ig.

the response. As we have mentioned earlier, the slow

la er and is
o e ep etion

y is much better described by the drift-diff
model of Ref. 10. Ho

e ri t- i usion
e . . owever, we are able to reproduce the

frequency, amplitude, and phase of the observed osci a-
tions reasonably well.

e o served oscilla-

In the recedinp
'

g section we have pointed out that it is
quite difficult to excite LO-phonon 11non osci ations in a spa-
ia y omogeneous situation. However we k LO

tions fromrom the low-density wings of the distribution have
a constant frequency and add up constructively durinUi ing

tions, which h
h g' g. n contrast, the plasmon oscilla-

have different frequencies at different densi-
ties, tend to cancel out in th de ensity integral, even

—0.5 0.0 0.5 1.0
Time (ps)

2.0 P.5

FIG. 8. Time dependence of the differential r
different excitation di a ion ensities calculated usin the
scribed in the text. 0

g e procedure de-

overla in .
e ext. ne of the curves is lifted b 0

pp'ng. The ratio of electro-optic co %
'

i e y .5 to avoid

r'/r = —2.7 whi
ic coe cients in (18) is

r = —. , which is the value given in Ref. 19 for GaAs

though at an iveny g' density they are stronger than th
phonon ones.

an e

Let us also mention that the densities we h
the simulation

*

ies we ave used in
a ion are systematically lower than th

dicated in Fi . 6 b
an e ones in-

in ig. by approximately a factor of 5. Th
may parti be duep y e ue to our simplified treatment of the h

0 . is

carrier trans ort.p r . For 2 eV excitation and stron dc
n o e ot-

fields, the effective mass of tho e carriers may be hi her
s rong c

which would have the same effectsame e ect as scaling up the densi-
ies. iso, t e experimental values of the do e ensities may

tion len th a
eres imated ue to the uncertainties in th bin e a sorp-
ng and the lateral dimensions of th
ig. we s ow the reAective response calculated for

r'=0, i.e., under the assumption that the res on
determined solel b 1e y y attice displacement. Figures 8 and
9 are almost identicaica', w"ich confirms our claim that the
displacement is primarily responsible for the oscillator
response. However, one can s th

igs. 8 and 9 have opposite phases. This is
fact that in Fi . 8 the

'
ric

and the dis lacem
ig. t e contributions of the electric fi ld

'

p ement have opposite sign. For the slow
ric e

2xl ot8

CO

O

0.0 0.5 1.0 1.5
Time (ps)

2.0

FIG. 9. D'ifferential reflectance calculated with r'=0
sumin

e wi r =, i.e., as-

onl .

'

g t at the response is affected b lay attice isplacement
on y. One of the curves is lifted by 05 t 'd '

g.o avoi overlapping.
The response is very similar to th t f F* a o ig. 8, but the sign of the
oscillatory component is reversed.



7562 A. V. KUZNETSOV AND C. J. STANTON

CD~ O

V

A

CQ

V

= 5x10»

cu
CO

—0.5 0.0 0.5

p~i O&s

1.0
Time (ps)

1.5 2.0 2.5

3 5,10io

FIG. 10. Temporal evolution of the density-averaged electric
field for the conditions of Figs. 8 and 9.9. The field is also con-
volved wit a s pr

'
h 50 f obe. The oscillations in the field are much

smaller than experimentally observed (Fig. 6).

2xl 0 &o

1x10'8

si n of the rejective change is determinedresponse, the ig
b the field contribution, which is larger y a
2.7. However, in t e osci ah 'll tory part the displacement

b a much larger factor due tocontribution is increased by a
f hd the overall sign o t eresonant enhancement, and

heres onse is reversed. In other words, the signs of t e
ff tive electro-optic coeKcients or ee eciv

As a result, the os-and for the oscillations are opposite. s a

and the oscillatory component have the same sign o t e
response.

nce of the11
' Fi . 10 we plot the time dependence

nal to theelectric field which would be directly proportiona
12 10 if we neglected the inauence

of the lattice displacernent. The amplitude o t e osci a-
F . 10 is clearly too small to explain the experi-tions in ig. is c e

n hase com-mental data, and they also have the wrong p a
pared to Fig. 8.

densitThese resu s emlt demonstrate that nonuniform en
'

y
o ti-d

'
role in the observed transient op i-eftects play a decisive ro e

'

b eliminating the plasmon oscillations acal response y e imin
dominate in the spatially homogeneous case. no
important 6nding is ath t the simplistic picture o t e

~ ~ ~electro-optic e ect aseb d on (17) is inadequate for this
d that in fact the lattice dynamicstransient regime, an

and not the electric e per1
'

fi ld per se determines the oscillatory
optical response.

1 2 3
Time (ps)

FIG. 11. Time derivative of the lattice
'

pdis lacement at high
densities. T e ea ing. Th b tin between LO and TO oscillations is clear-
ly visible, and the damping becomes density depen ent.

I

l

I

I I

N = 8

N = 5

Mode beating

The experiment also indicates t.. 'g~ ~

hat at hi her densities
both LO and TO oscillations are present in tt in the rejected

h' h results in a characteristic beating pat-slgnal, whlc i esu s
is the mosttern. ' e oTh bservation of LO-TO beating is e

eQ'ect.conclusive evi ence or'd f the inhomogeneous density eQ'
~ ~ ~ ~

s from Fi . 1 that longitudinal oscillations
with LO and TO frequencies cannot exist sirnu taneous y

sin le value of the density, so the only explanation
for their coexistence is the presence o i eren
in the region sampled by the proberobe beam. The mode
beating e ec isF t reproduced in our calculation if we in-

N = 2

N = 1

2 6 8 10 12
Frequency (THz)

FIG. 12. Fourier transforms of the cuurves shown in Fig. 11.
The TO mode is absent at low densi ', q

''ties but uickly becomes
i i h densities. Note that the relative magnitude ofdominant at ig ensi ies.

the two pea s ank d their damping (spectral width) are
dependent, but their spectral position is not.



COHERENT PHONON OSCILLATIONS IN GaAs 7563

Terahertx emission by coherent phonons

Rapid changes in current resulting from ultrafast opti-
cal excitation of dc-biased semiconductors lead to tran-
sient dipole electromagnetic radiation in the terahertz
frequency range, as was experimentally and theoretically
demonstrated in recent years. ' The radiation mostly
results from fast initial rise of the polarization. However,
as the above analysis demonstrates, there is also an oscil-
latory component in the polarization that in principle can
result in a quasimonochromatic electromagnetic radia-
tion at the phonon frequency.

Let us note that such radiation is very diA'erent from
conventional polaritons' which are transverse elec-
tromagnetic modes propagating inside the material. The
polaritons do not create macroscopic dielectric polariza-
tion of the material and therefore do not emit dipole radi-
ation. The electromagnetic transients we are concerned
with here are observed in the far-field zone outside the
material and are coherently produced by a collective
motion of particles in the excited spot. Although techni-
cally this radiation is produced by longitudina/ modes
which would have been impossible in an idealized homo-
geneous situation, longitudinal oscillations of the polar-
ization in a finite-size excited spot whose dimensions are
smaller than the relevant wavelength constitute an exper-
imental realization of a Hertzian dipole oscillator (see,
e.g. , Sec. 9.2 of Ref. 24) and can be treated accordingly.

In contrast to the electro-optic response discussed
above, the radiated electric field E" is directly related to
macroscopic polarization and hence to the time depen-
dence of the electric field E in the material:

+ )
sing Vd E

c2 ~ dt2
(19)

where P is the angle of incidence, V the radiating volume,

crease the densities by another order of magnitude.
In Fig. 11 we plot the time derivative of the lattice dis-

placement for densities ranging from 1 X 10' to 10X 10'
cm . We have taken the derivative to eliminate the
slow component of the response. Also, we concentrate on
the lattice displacement and do not calculate the ful1
response (18) because we expect the displacement to play
a dominant role.

In this numerical example, the densities in the center of
the laser spot are such that a well-defined longitudinal
mode with TO frequency can exist (cf. Fig. 1). This mode
competes with LO oscillations that are primarily pro-
duced at the wings of the density distribution. With
growing density, the TO oscillations become comparable
to the LO oscillations and eventually become dominant.
This is clearly seen in Fig. 12, where the Fourier trans-
form of the oscillatory patterns in Fig. 11 is plotted.

These results are qualitatively similar to recent experi-
mental results which confirm the above-described beat-
ing pattern. We would also like to point out that these
are not "true" quantum beats where the same mode oscil-
lates with two frequencies, but rather the result of in-
terference between oscillations that occur in difFerent
places of the excited region.

THz Emission

f

TO
'

CD

I

10 20 30
Frequency (7Hz)

2
Tixne (ps)

40

FICx. 13. Transient electromagnetic radiation for a high-
density excitation (N =8X10' cm; the top curve in Fig. 12)
calculated according to Eq. (19). The radiating volume is as-
sumed to be 10 cm, r =1 cm, and /=45'. The initial tran-
sient is stronger than the subsequent oscillatory feature by
about an order of magnitude even in this high-density example
where the oscillations are most pronounced. In the frequency
domain (inset), the LO and TO spectral features superimpose
with a broad (up to 40 THz) response from the initial transient
producing a peculiar dispersive shape of the overall signal. The
plasmons are responsible for a small bump at 23 THz. In the
time domain, fast plasmon oscillations are visible immediately
after the initial transient.

and r the distance from the sample to the detector. Since
we calculate the electric field dynamics in our numerical
simulations, we can easily evaluate the radiated signal.
According to Ref. 23, the eFect of "nonvertical transi-
tions" that are neglected in our model should be
minimal for the relevant case of high dc fields and 2 eV
excitation.

In Fig. 13 we plot the radiated field (19) for the case of
high excitation density where the phonon oscillations
(with the TO frequency, cf. Fig. 11) are most pronounced.
We see that the radiation is still dominated by fast initial
screening of the field, and the subsequent radiation at the
TO frequency is about an order of magnitude weaker.
The Fourier transform of this signal is shown in the inset.
Note that, while the lattice dynamics at this density (the
top curve in Figs. 11 and 12) is strongly dominated by TO
oscillations, the electric field and the radiated transient
contain LO, TO, and plasmon features.

Our results suggest that the role of phonon oscillations
in the terahertz emission is expected to be minor. While
in principle the magnitude of the oscillatory component
in the radiated field (about 1 V/cm) is detectable by the
dipole antennas used in terahertz experiments, ' it seems
unlikely that such oscillations can be measured by this
technique because the frequency response of the dipole
antennas is limited to about 2 THz. However, the pho-
non feature in the frequency domain can potentially be
detected by bolometric techniques which have wider
bandwidth.

Very recently, Dekorsy et al. have observed an elec-
tromagnetic terahertz transient from coherent phonons
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in Te, where the phonon frequencies (about 2 THz) are
within the spectral range of dipole antennas. This experi-
ment indicates that the terahertz emission from coherent
phonons is a quite general phenomenon and is not
specific to GaAs or any other material.

IV. CONCLUSIONS

In this paper we have studied transient processes that
follow ultrafast optical excitation of dc-biased polar semi-
conductors. By suddenly changing the dielectric proper-
ties of the material, optical excitation makes both the
photoelectrons and the lattice oscillate around their new
equilibrium positions. We have presented a microscopic
theory that describes this oscillatory transient in terms of
plasmon-phonon modes.

Our results can be summarized as follows. The physi-
cal quantities that perform the oscillations are the lattice
displacement of the optical mode and the electronic po-
larization which are coupled to produce the well-known
plasmon-phonon modes. The plasmons are much more
effective in screening of the applied field because the pho-
nons are relatively weakly coupled to the field. There-
fore, in a generic case of uniform plasma density, the
plasrnon oscillations are found to be much stronger than
the phonon ones.

However, the plasmon frequency is density dependent,
and in a realistic experimental situation the plasmon os-
cillations are very strongly inhomogeneously broadened
because regions of the excited spot with very different
densities will contribute to the response. The effect of
density inhomogeneity is to wash out plasmon oscilla-
tions while preserving density-independent LO-phonon
features, which is consistent with the experimental
findings. Although the plasmons do not show in the ex-
perimental curves, from the theoretical standpoint they
are still very important because the plasmon period limits
the rise time of electronic polarization and thus
effectively controls the magnitude of the oscillatory
response. A more careful experiment with controlled
density distribution should be able to reveal both
plasmons and phonons in the transient regime.

Although the inclusion of the inhomogeneous density
effect gives the correct frequency of the oscillations, we
were unable to reproduce the magnitude and phase of the
oscillations in the differential reAectivity under the as-

sumption that the reAectivity is directly related to the in-
stantaneous value of the electric field via the linear
electro-optic effect' [cf. Eq. (17)j. The amplitude of the
field oscillations turns out to be too small compared to
the applied field to explain the experimentally observed
oscillatory response. However, the oscillating component
in the lattice displacement is much stronger and is of the
order of the observed response. After the inAuence of
both the electric field and the displacement on the
reAectivity is taken into account, the amplitude of the
calculated oscillations becomes consistent with experi-
ment.

At higher densities our theory predicts mode beating
between LO oscillations from the fringes of the excited
spot and TO oscillations from the high-density region in
the center of the beam. Such LO-TO beating has been
observed experimentally, ' which decisively confirms
the presence of a wide range of densities in the excited
spot.

The coherent oscillations in polarization should be a
source for electromagnetic radiation at the phonon fre-
quency. Our calculation suggests that while this effect
is measurable in principle, it is small compared to the
broadband electromagnetic transient associated with
quick initial screening of the applied field. The detection
of such an oscillatory signal is also problematic because
its frequency (10 THz) greatly exceeds the possibilities of
conventional dipole antennas.

In conclusion, the coherent oscillations in GaAs can be
quantitatively understood in terms of a plasmon-phonon
picture. To describe the experimental data, the inclusion
of the inhomogeneous density effect and a more accurate
description of the electro-optic response are needed.
However, nonlinear transport effects such as drift veloci-
ty saturation' seem to play no role in the oscillatory
response.
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