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Effect of strong electromagnetic radiation on the screening of the Coulomb potential
in a quantized magnetic field
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We study the inhuence of strong electromagnetic radiation and a quantized magnetic field on the
potential of a point charge screened by a nondegenerate electron gas in the ultraquantum limit. We
find that the presence of radiation in the frequency region far from the cyclotron resonance leads to
the appearance of the screening breakdown terms (in addition to the screening potential), which for
quantized magnetic Belds retains the same structure as for the classical case. The screening potential
for such a system has an oscillatory structure in the direction transverse to the magnetic field and
an exponential decay in the longitudinal direction. The frequency regime close to the cyclotron
resonance is also considered.

I. INTRODUCTION

Screening of a Coulomb field by an electron gas in
the presence of intense electromagnetic radiation (EMR)
and jor a constant magnetic field has been studied by a
number of authors. The interest in this topic is par-
ticularly due to the fact that the potential of the static
charge, screened by free carriers and subjected to exter-
nal fields, manifests an essential modification. For ex-
ample, the presence of a high-frequency electric field can
cause the screening breakdown (SB), whereby the po-
tential of a point charge does not decay exponentially
with the distance (r), but, in accordance with a power
law, in the same way that the potential of a quadrupole
behaves. The SB is a universal phenomenon that can
be observed (for example, by NMR methods) both in in-
&ared and ultrahigh regimes as long as the frequency of
the EMR (0) exceeds the characteristic frequency of an
electron gas. The magnitude of the SB is determined by
the amplitude of the electron oscillation in the field of
the EMR (n) and in its lowest order this effect is pro-
portional to a . The above-mentioned modification of
the Coulomb field has many different consequences, e.g. ,
it affects Mott transitions and results in the reversal of
the anisotropic photoconductivity and the sign change of
the odd magnetoresistance in semiconductors, when elec-
trons are scattered by the charged impurities. This effect
may also be pertinent to the diffusion of the impurities,
with the Coulomb interaction.

On the other hand, it is known that in the absence
of EMR a strong quantized magnetic field also modifies
the screening of the Coulomb potential (note that this
does not happen in the classical case). In particular, it
was shown that the presence of the quantized magnetic
field results in the renormalization and spatial anisotropy
of the static shielding law, which explains the anoma-
lous dependence of magnetoresistance in the strong mag-
netic fields. Let us note that the knowledge of how the
Coulomb field is spatially distributed may be also rele-
vant to the problem of the binding of two heavy fermions
with a third different particle.

II. SCREENED COULOMB POTENTIAL
IN THE PRESENCE OF EXTERNAL FIELDS

We shall assume that the energy of the incident pho-
tons exceeds the average kinetic energy of the electrons
(0 ) T; h = I; k~ = I) and is such that only intra-
band transitions are induced. Then utilizing the standard
dipole approximation for the field of the EMR [F(t)
Fo sin(Bt)j, and considering the unknown Coulomb po-
tential p(r, t) as a perturbation in the first order, the
wave function takes the form
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where

In view of these effects we proceed with the further
study of the screening of the Coulomb field by the free
carriers in the presence of an intense EMR as well as
a constant quantized magnetic field. The statement of
the problem adopted here combines the two cases men-
tioned above, and considers the simultaneous inBuence
of both external factors. However, some results, particu-
larly the spatial distribution of the Coulomb potential in
the quantized magnetic field, have not been discussed in
the literature and therefore are considered in this paper.
The following analysis, including the numerical data and
estimates, is based on the solid-state plasma model, but
these results may also be applicable for the gas plasma.
It should be mentioned. that the classical version of the
similar effect was studied in Refs. 3 and 4, where depen-
dence of the SB on the direction and the absolute value
of the magnetic field was demonstrated.
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P(k, w) = f dt's(k, t)e
screened Coulomb potential, given by the Poisson equa-
tion:

4' p(k) 4' 8p(k, t)
(4)

P(k, t) = p(k, t) exp ia —k„cos At + k sin At0

a =
~

~

', &, l ~, ~, = eH/(mc) is the electron cy-
C

clotron frequency, p(k, t) is the Fourier transform of
y(r, t), (@i „„~e' '~@i„„),t is a matrix element with
respect to the stationary Landau states, and e and
m are the charge and the effective mass of the carri-
ers. vtri is the exact unperturbed solution of the(o)

tJ 'tr )I x

Schrodinger equation for an electron in the presence of a
high-frequency electric field (F~~x) and a constant mag-
netic field (H~~z), applicable only for the collisionless
electron plasma (~ur, —A~a; Aw; od, r && 1, 7 is the mean
free tiine of the electron between collisions).

Using (1) we find the linear response of the elec-
tron density [h)o(q, t)],i2 which, in turn, determines the

(p(k) =

where

4vrp(k) ~. ( A )
ok

n(k, A)
cpk~

(5)

Here p(k) is a Fourier component of the density of the
static charge and eo is the dielectric constant. Let us note
that this approach is self-consistent. On the one hand
the distribution of the electron density is caused by the
external potential and on the other hand the screening
of the Coulomb field is defined by the electron density
(4). The solution of (4) is a set of harmonics with the
&equency O. However, in this paper only a stationary
component of the Coulomb potential will be considered:

f(t' p. +k. ) —f(t p )
dp~

I 2 2

+~ (t' —t) + sA2m 2m

is the polarization function,

~;, (-) = —,~ (- ) '-'[,'-'(*)1' («')
Q( ( (x) = (—1)' '

Qi ((x) (l & l'),

J„(2:)is the Bessel function of the real argument, L (()
1

is the Laguerre polynomial, lH = (mw, ) 2 is the rnag-

netic length, k~ = k2+ k2, and f(t, p, ) is the distri-

bution function of the electrons on the nth Landau level.
Let us note that in the absence of the EMR (a = 0) ex-
pression, (5) takes the familiar form given in Refs. 6
and 7. Result (5) is obtained in a quite general form
and further calculations of the spatial distribution of the
Coulomb potential require some specifications. We shall
study the field of the point charge [p(k) = q] screened
by the nondegenerate electron gas in the ultraquantum
limit (od, /T = ( » 1). The frequency of the radiation
is supposed to be sufBciently high to cause the SB, i.e.,
A » uzi (u&i is the plasma frequency, which is the char-
acteristic frequency of the electron gas for collisionless
electrons). We also confine ourselves to the consideration
of the two &equency regimes: far from the cyclotron reso-
nance (~niA + n2~,

~
&& u~), ni g n2 g 0, ni and n2 6 Z)

and close to the cyclotron resonance (~od, —A~ && ui, )).
A. Nonresonance frequency regime

With these assumptions the polarization function (6)
may be simplified:

(k, sA) = ——exp( —2l~k~) P(k AT) bs, o t (7)

where

P(y) = dx
1 exp[ —(z + y)'] —exp( —2.")

~sr 2.2 (~ + y)2

n is the carrier density, and Az = 1/+2mT is the thermal
length. Considering the nonresonance &equency region,
we also suppose that the amplitude of the electron os-
cillation is much less compared to the Debye screening

length (sea « 1, a. =, & is the reciprocal of the De-

bye screening length). This condition allows us to neglect
the effect of the EMR on the screening of the Coulomb
field and to take into account only the influence of radia-
tion (up to a ) on the nonscreened part of the potential,
which is independent of m. Then, substituting (7) in (5)
and Fourier transforming the result, we get

p(r) = V, (r) + V,.(r),
OO

ys(r) = dkiki Jo(kiri)
XE'p p

cos(k, z)
o 'k2+ se2 exp( —zlHk~2)$(k, Az)

(10)
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Here o. is the angle between r~ and the x axis. The
resulting potential (9) is obtained as a sum of two terms:
the screened part of the Coulomb potential pg(r), which
under condition Bea « 1 does not depend on the EMR
and a term characterizing the SB (ll). Let us note that
the SB [p»(r)] in the quantized magnetic field preserves
the same structure as in the classical one, which is one
more illustration of the universality of this phenomenon.
Expression (10) is different from its classical counterpart
in that the magnetic and the thermal lengths occur along
with se and in the limit selH, H.'Az —+ 0, (ps(r) assumes
the standard form of the Debye screened potential. The
low-wave-number description of (10) (which corresponds
to sel~', s Az & 1) results in the appearance of quantum
corrections, which, in turn, lead to the modification and
spatial anisotropy of the static shielding law.

We analyzed (10) numerically for arbitrary values of
a.lH, including a.lH ) 1 (this also implies a.Az ) 1, since

Ar/ta = g(/2, ( )) 1). In the direction along the
magnetic field, the potential retains an exponential de-
cay with the eff'ective screening length a. & (see Fig. 1),
which at a.A~ & 1 turns out to be a linear function of
the magnetic length. This circumstance justifies the re-
sults of Ref. 13, where the the conductivity parallel to
the magnetic field was calculated by employing a cut-
oK of the Coulomb potential at r = l~. In the direction
transverse to the manetic field the potential (10) acquires
an oscillatory structure at aelH & 1. This kind of os-
cillation of the Coulomb potential and their impact on
the distribution of the second moments were noticed in
Ref. 6; however, in that paper the author did not con-
sider the nondegenerate electron gas. In order to illus-
trate this oscillating behavior of the screened potential we
present in Fig. 2 the positions of the first minimum ~&um
lower curves) and the maximum (r& ", upper curves) of
pg(r~, z = 0) as a function of the magnetic length. Fig-
ure 3 shows the minimum value of the Coulomb potential
[(pg(r~'") = "pg(r~'", z = 0)] as a function of lH and
the inset exhibits the exponent for the decaying ampli-
tude:
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FIG. 2. The location of the potential's extremes is shown
as a function of l~ for different ( = u /T; lower curves cor-
respond to the minimum of the potential, upper curves to its
maximum.
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The oscillating Coulomb potential is also shown in Fig.
4 (~see solid curve, corresponding to the absence of the
EMR). These numerical results demonstrate the lin-
ear dependence of the location of the extremes on l-xnin

es on
whereas y& does not change in an essential way for a
wide range of 3 l~ & 4. The inset of Fig. 3 shows that for
eel~ & 4 the exponent of the decaying amplitude of the
Coulomb field is close to 3, which on the one hand makes
the screening potential comparable on the large distances
with the SB, and on the other hand points out an anal-
ogy with the Priedel oscillations. Numerical estimates
indicate that the condition a.lH & 1 is quite realistic, i.e.,
i pn-GaA Ts=2K, n=5.6x10 crn (=5 (H 4
T), the electron gas is nondegenerate (47r / nA&/( « 1),
and 8 l~ ~ 3.
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FIG. 1. Th 4$he effective screening length ae & in the direction~ —1 ~

along the magnetic Beld is illustrated as a function of l~ for
different ( = cu, /T.

FIG. 3. The minimum value of the Coulomb potential
[ps(r&'")] is illustrated as a function of l~ for different

u, /T. The inset shows the exponent of the decaying
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FIG. 4. The spatial distribution of the Coulomb potential
in the direction transverse to the magnetic Beld is shown for
di8'erent values of a. The inset is to demonstrate the oscillat-
ing structure of the potential [P(r~)]; ( = 3.

B. Frequencies close to the cyclotron resonance

V'(r) = dk~kg Jp(k~rg) dk, cos(k, z)

1 J2(akim)
k2 + p„a.2Q2 p(2l~2k~2)p(k, AT)

Here p = (1 + 8 p)/2. In the limit a lJI, seAT -+ 0,
expression (13) can be integrated analytically up to the
second order in the amplitude of the electron oscillation
(a2), and the result in the quantized magnetic field again
coincides with the classical case. Consideration of the
low-wave-nuinber description in (13) leads to the quan-
tum corrections that renormalize the length scale, but in
the Anal analysis results only in small corrections.

Qualitative changes in the structure of the Coulomb
potential appear at arbitrary values of ml~ and a'.AT,
which requires a numerical analysis of (13). In Fig.
4 we show the modification of the oscillating potential
[g (r~) = "p(r~, z = 0)] —for a:le = 5 and ( = 3
under the in8uence of the EMR. It illustrates that the
presence of the EMR tends to destroy the screening
of the Coulomb field at the distance r ( a, i.e. , for
a a = 10, P(5a i) is just a factor of 5 smaller than the
nonscreened potential, whereas the Debye screening po-
tential is 30 times less. This result reBects the destruc-
tion of the halos of charge on a distance of order a in
the vicinity of the static charge. Figure 4 also demon-
strates that the oscillating structure of the Coulomb field
is suppressed in the presence of the strong EMR, i.e. , at

Close to the cyclotron resonance ([w, —O~ && wi, i) we
still assume the collisionless conditions ([w, —A[a » 1),
which allows us to employ the same approach as in the
nonresonance case. Then, taking into account only the
the resonance terms in the polarization function (6), the
Coulomb potential for the arbitrary values of a has the
form

FIG. 5. The location of the potential's minimum (r~'") is
shown as a function of a for different values of l~, ( = 3.
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FIG. 6. The dependence of the minimum value of the
Coulomb potential [g&(ri '", z = 0)] on the amplitude of the
electron oscillation (a) is shown for diferent l~, ( = 3.

a.a 5 there is only the minimum of the potential, while
the maximum has disappeared (see curves correspond-
ing to a'.a = 5; 10). In Fig. 5 we present the depen-
dence of the location of the potential's minimum as a
function of the amplitude of the electron oscillation. It
is interesting to note that the position of the minimum
is deGned by the larger of the two length scales: a;l~,
when a & lH, aea & 1 depends linearly on a. In the
case of o, & l~ the EMR does not affect the position of
the minimum, but does change the value of the potential
[g(r&'")], which is illustrated in Fig. 6. At ma; a:l~ & 1
Fig. 6 does not show the substantial value of the po-
tential in its minimum, which on the one hand is due
to the absence of the oscillatory behavior (see Fig. 3),
and on the other hand reHects the fact that the SB is
not essential at 3 a ( 1. It is worth mentioning that at
a.lH ——5 the value of the potential does not depend on
a for a.a & 7 (see Fig. 6), whereas the position of the
minimum is a linear function of a (Fig. 5). In the case
of a.l~ = 10 the situation is different: &p(r&'") depends
on a, but the location of the minimum does not.
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III. CONCLUSION

In this paper we have demonstrated that the structure
of the Coulomb potential screened by the nondegenerate
electron gas in the ultraquantum limit is defined by the
magnetic field orientation, i.e., along the magnetic field
the potential decays exponentially and in the direction
transverse to the magnetic field the potential oscillates
when a.lH & 1. The eKect of the strong EMR in the
region far oK the cyclotron resonance frequency is the
appearance of the SB, whereas in the regime close to the
cyclotron resonance the oscillating structure of the poten-

tial is suppressed at 3 a )) 1. Generally we may conclude
that in such a system the screening is determined by the
largest of the lengths (a, lH, a).
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