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Nature of the insulating state in the three-band Hubbard model:
A tight-binding approach
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We study the three-band Hubbard 'model, commonly used to describe the copper-oxygen planes
of high-T superconductors, from the point of view of electronic properties. Utilizing perturba-
tion theory around the atomic limit to evaluate finite-temperature Green s functions, one-particle
densities of states are calculated in some simple approximations. Both metallic paramagnetic and

insulating antiferromagnetic solutions are obtained, depending on the hole concentration. We dis-

cuss the overall scenario obtained here in comparison with experimental results and other theoretical
approaches.

I. INTRODUCTION

A great deal of theoretical work has been devoted to
studying electronic properties of the CuO2 planes that
are a common feature of high-T superconducting mate-
rials. It is accepted that the relevant orbitals are 3d 2 y2

for copper and 2p or 2py for oxygen. Based on this,
three-band models have been proposed that vary in gen-
erality depending on the choice of parameters such as the
on-site Coulomb interactions, the charge transfer (CT)
gap between copper and oxygen levels, the hopping ma-
trices, and a nonlocal Coulomb interaction.

It is still a matter of controversy whether or not
the low energy excitations of such multi-band models
can be reproduced by an eKective one-band Hubbard
Hamiltonian. Also, the role of charge and spin degrees
of freedom in determining the nature of the ground state
has yet to be clarified. Starting from the atomic limit,
with a Coulomb interaction at copper sites much larger
than the bare CT gap, it is obvious that the ground state
for one hole per Cu02 cluster has this hole occupying
the copper site, while all oxygen orbitals are empty. The
lowest lying excitations are clearly of charge transfer na-
ture. Corrections to second order in the copper-oxygen
hybridization yield an antiferromagnetic (AF) insulat-
ing ground state, with the hole still at the copper site,
and the oxygen orbitals providing a superexchange mech-
anism for the AF interaction. On the other hand, band
structure calculations and Hartree-Fock treatment of
the Coulomb interaction show the hybridization lead-
ing to formation of bandlike (extended) states. In this
case, the nature of the AF state also changes towards a
bandlike character, and the AF gap no longer coincides
with the CT gap as in the localized description.

In order to further investigate this controversial point,
i.e., the nature of the insulating AF state in the three-
band Hubbard model, we utilize a tight-binding approach
that, although starting from the atomic limit, is able
to obtain the exact band structure in the uncorrelated
limit. We treat the hopping (hybridization) as a pertur-
bation, employing a regular Inany-body perturbative ex-

pansion with a diagrammatic representation to calculate
one-particle Green's functions. From these, the density
of states is obtained and analyzed with respect to the
presence and position of gaps, spin polarization, and de-

gree of p-d admixture as the total number of holes in the
system is varied. In this paper, we remain in the simplest
approximation scheme, closely related to the Hubbard I
decoupling of the equations of motion for Green's func-
tions in the single-band Hubbard model.

Our results indicate that there is an important trans-
fer of spectral weight from the almost empty (and, thus,
weakly correlated) p band to the lowest lying band, which
was originally of pure d character. This can yield a metal-
lic ground state if a paramagnetic solution is imposed.
However, an insulating AF solution is obtained close to
the stoichiometric concentration, with a gap opening in-

side the lowest lying band. We will discuss in some detail
the relation between these results and those obtained by
the Hartree-Fock approximation, slave-boson theory,
and the local moment approach, as well as a possible
relationship with spectroscopic measurements.

The paper is organized as follows. In Sec. II we in-

troduce the model Hamiltonian and the relevant Green's
functions, describing the perturbation method. In Sec.
III we describe the approximation we will adopt, and
calculate the Green's functions and densities of states for
the paramagnetic case. The antiferromagnetic solution
is presented in Sec. IV. Our main results are discussed
in Sec. V.

II. THE MODEL AND PERTURBATION
APPROACH

The usual three-band Hubbard model for the Cu02
planes of high-T superconductors is described by the
Hamiltonian
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H = (sd —p)) d; d, + U~) n, zn",z
is the Fourier transform of the retarded (real-time)
Green s function. Similar relations hold for pg (w), in
which case one has to sum the contributions from p and
p„orbitals.

III. PARAMAGNETIC CASE

where sg (z„) is the atomic energy of copper (oxygen)
sites, p is the chemical potential, Ug (U„) is the on-site
Coulomb repulsion between two holes in the same copper
(oxygen) site, and t denotes the hopping matrix between
neighboring copper and oxygen sites. We are working
in the hole representation. Thus dt (p". ) creates a hole
with spin cr at the corresponding copper (oxygen) site. It
is important to keep track of the kind of oxygen orbital
(p or p„) that corresponds to a given site. We do not dis-
tinguish between them in the Hamiltonian for economy
of notation. We will not consider here the presence of
a nonlocal Coulomb interaction between holes in nearest
neighbor atoms as well as a direct hybridization between
oxygen orbitals.

The relevant temperature (Matsubara) Green's func-
tions are, for example,

Gdd,
( )

g~(~~)
1 —g" (a „)gg (cu„)pk

PP = I' gg(a„)G .( -) =g".( -)+ (7b)

In order to calculate Green's functions through Eq. (3)
we utilize a diagrammatic representation for the pertur-
bation series, similar to the one that has been presented
by Metzner for the one-band Hubbard model. In the
present case, all possible local Green's functions may ap-
pear at each vertex. Selecting only chainlike diagrams,
which can be summed up by means of a Dyson's equa-
tion, we obtain the simplest approximation, in which the
diagonal Green's functions, for the paramagnetic case,
assume the form

G~~ (~) = —(T d,. [r)di, (0)), (2) where

where the angular brackets indicate ensemble average,
and T is the time-ordering operator, here referring to
the imaginary time w, which is defined in the interval

[
—P, P], with P representing the inverse of the tempera-

ture. There are definitions similar to Eq. (2) for G,. ".

Applying the usual formalism of perturbation theory,
we consider the local part of H [see Eq. (1)] as the unper-
turbed Hamiltonian Ho, and the hopping term is taken
as the perturbation Hz. Equation (2) then becomes

, (,k a, Aya)
pg = 4t

i

cos + cos
2 2

a being the lattice parameter. The lower case g's that
appear in the above equations stand for the zeroth order
(atomic) Green's functions, which read

g (~„)=. + i~„—c —U +p '

where o. = —o. and o. = d, p. The average number of
particles in both d and p atomic orbitals is determined,
together with the chemical potential, through the self-
consistency relation

with (n )= lim —) e*" ) k (~„). (so)

P
d 'T1 dr„T H, (r, ) Hg (r„) .

p "((u) = ——Im G",," (cu),

where

The subscript zero on the angular brackets indicates that
the averages are taken with respect to the unperturbed
Hamiltonian. In Eqs. (3) and (4) the "time" dependence
of the operators is also given by IIo, in contrast with Eq.
(2).

The density of states is obtained through

In this section we consider only the paramagnetic case.
We thus set (n ) = (n ), and full translation invariance
has been used in deriving Eqs. (7a) and (7b).

The chain approximation introduced above is equiva-
lent; to the so called Hubbard I decoupling scheme when
the equations of motion for the Green's functions are
utilized. This approximation becomes exact in the non-
interacting limit Ud ——U„= 0. The one-particle density
of states for this case is shown in Fig. 1. There, the po-
sitions of the original atomic d and p levels are shown by
arrows. We can see that the hybridization gives rise to
three bands (bonding, nonbonding, and antibonding), in
agreement with band structure calculations. The charge
transfer gap A is not renormalized with respect to the
atomic value L = e„—rd. The nonbonding band, of zero
width and p character, is due to the combination of p



7510 A. BEATRICI AND M. A. GUSMAO

3.0

2.0 2.0

1.0 1.0

0.0
-3.0 -1.0 1.0 5.0

0.0
-2.0

~ I

2.0 4.0
co/t

6.0 10.0

FIG. 1. Density of states in the noninteracting limit for the
Cu02 structure (with A/t = 2.8). We also show separately
the contributions from d (dotted) and p (dashed) levels. The
arrows indicate the positions of the atomic levels.

and py orbitals that do not hybridize with the dz2 y2 or-
bital. This band is related to the isolated g" that appears
in Eq. (7b).

When Coulomb interactions are taken into account,
the bands are split, similar to what occurs in a strongly
correlated single-band system. The positions of the new
subbands depend on the relative values of the energy
parameters. Their widths depend also on the over-
all filling factor, i.e. , the total number of particles in
the system. We have chosen our parameters such that
4/t = 2.8, Ud/t = 8, and U„/t = 2.4. These values lie in
the range generally considered as consistent with exper-
imental observations. The resulting density of states
is shown in Fig. 2 for the stoichiometric situation (one
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FIG. 3. Same as in Fig. 2, except that now U„= 0.

hole per unit cell). In the absence of hybridization one
would have only b functions in the positions indicated by
arrows in the 6.gure. The outer ones would have purely d
character while the inner ones would be purely of p char-
acter. In this case, one would have the leftmost "band"
completely filled (one hole per copper atom) while all the
others would be empty. With the hybridization included,
we can see from Fig. 2 that the chemical potential (dot-
ted line) falls within the lowest lying band. The other
bands are still empty. However, the occupied band is
not completely ulled. There has been a transfer of spec-
tral weight from the upper subbands to the lowest one.
This is due to the fact that the p levels in the atomic
limit would be empty, which strongly diminishes corre-
lation effects on oxygen sites. This can be seen by the
narrowness of the band that lies close to 8'p + Up while
the rest of the density of state (DOS) does not differ sig-
ni6cantly with respect to the case U„= 0, shown in Fig.
3. This weakly correlated nature of the p orbitals yields a
hybrid band whose character is intermediate between the
strong correlation limit (one particle per subband) and
the uncorrelated limit (two particles per band). Only
for a strongly hole doped system (n 1.27) do we find
a CT insulator, with the chemical potential lying inside
the first gap.

This picture is very different from what we would ex-
pect on the basis of experimental results. However, we
must look for magnetic solutions before we can compare
our results with experiment.
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FIG. 2. Density of states in the chain approximation for
the paramagnetic case and zero doping (n = 1). The arrows
indicate the positions of the atomic levels, and the dotted
vertical line shows where the chemical potential is. The values
of the parameters are A = 2.8, Uq ——8, and U„= 2.4, in units
of t.

IV. ANTIFERROMAGNETIC SOLUTION

In order to look for an antiferromagnetic solution we
divide the lattice in two sublattices, A and B, such that
copper atoms nearest to each other belong to different
sublattices. Next we impose the antiferromagnetic con-
dition, i.e. , that the average number of holes in a given
site of sublattice A. with a given spin orientation is equal
to the corresponding average for sublattice B with oppo-
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site spin. We also consider that there will be no moment
formation on oxygen sites, imposing the average occupa-
tion of these sites for both spin orientations to be the
same. With these conditions, all equations of the chain
approximation can be written in terms of quantities re-
lated to only one of the copper sublattices.

The Green's functions are again obtained by summa-
tion of all chainlike diagrams. In contrast to the para-
magnetic case, these functions are now spin dependent.
There are two copper sites (A and B) and four oxy-
gen sites per unit cell. It is convenient to perform a
partial renormalization that takes into account all possi-
ble hybridization processes between a copper site and its

neighboring oxygens. These partially renormalized local
Green's functions are

With this, the total Green's functions are given by

1 —G (~„)tgg~((u„)G- (cu„)tg g~(~„)
(12)

for copper sites belonging to sublattice A, and

G"„"(~„)= 2g" (cu„) +
2g".(~-) + 4t', g".(~-) IG."(~-) + G."- (~-)j g".(~-)

1 —Gg((u„) tg gg(~„) G~ (~„) tg gg((u„)

which includes the contributions of all four oxygens in
the unit cell. Here we have defined

A: a kya
tg = 4t cos cos

2 2

The self-consistency process [see Eq. (10)] involves ad-
justing (n&), (n&), and (n")—:2(n"), together with the
chemical potential p, for a given total number of holes
n = (n&) + (n&) + 2(n"). We reproduce the paramag-
netic so ution obtained before if we impose the equality

(n&) = (n&) at the start of the self-consistency process.
However, depending on the total number of holes, this
solution may be unstable, in the sense that an arbitrarily
small difference between the two initial occupation num-
bers for diferent spin orientations will lead to a magnetic
solution ((n&) g (n&)) when self-consistency is achieved.
In this case, a gap opens in the density of states around
the chemical potential as well as in the other subbands,
as shown in Fig. 4. The spin polarization is evidenced in

the detailed plot of the low energy region shown in Fig.
5.

In Fig. 6 we show the variation of the sublattice mag-
netization m = (n&) —(n&) as a function of the total num-
ber of holes. We can see that the stability region of the
AF solution lies asymmetrically around the stoichiomet-
ric condition n = 1, in (at least) qualitative agreement
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FIG. 4. Density of states in the chain approximation for the
antiferromagnetic case and n =1, with the same parameters
as in Fig. 2.

FIG. 5. Low energy part of the DOS in the AF state, show-
ing separately the contributions from d levels with up (dotted)
and down (dashed) spins, and from the p levels (continuous
line) .
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FIG. 6. Copper sublattice magnetization as a function of
the total density of holes in the AF solution.

V. CONCLUSIONS

We have presented here one-particle densities of states
for the three-band Hubbard model described by Eq. (1),
utilized as a model for the Cu02 planes of the high-T,
superconductors. These densities of states have been ob-
tained from the corresponding Green's functions, which
have been calculated through perturbation theory around
the atomic limit, in the simplest approximations.

We wish to emphasize some points concerning the re-
sults presented here that may differ from current expec-
tations. Starting from the uncorrelated case, one would
have a lowest lying (hybrid) band that can hold up to two
holes. Qualitatively, one could think that a Hubbard-like
splitting of this band due to correlations would yield an
insulating state when this band was half filled (n = 1).
However, as we have shown, the fact that this is a hy-
brid band, and that correlation effects are different on
the two kinds of initial orbitals, makes the effective cor-
relation weaker than in the single-band Hubbard model.
The result is that the lowest lying band can hold more
than one hole, even after correlation effects have been
taken into account. Nevertheless, an insulating antifer-
romagnetic state is obtained for a hole density close to 1,
with a gap opening inside the lowest band.

The picture we have is, thus, the following. For a small
number of holes (strong electron doping), the lowest band
is partially filled and the system is metallic. When the
number of holes approaches unity (from weak electron

with the experimentally observed asymmetry of the AF
stability region under electron or hole doping. Also, the
value of the copper moment at n = 1 is quantitatively in
close agreement with observations. Furthermore, ana-
lyzing the behavior of the magnetization as a function
of temperature we obtain a mean-field-like curve with a
Neel temperature that points to a value of the effective
exchange interaction of about 1400 K. This is very close
to current estimates.

doping up to a little above the stoichiometr'ic situation)
an antiferromagnetic gap opens inside the lowest lying
band, giving rise to a magnetically ordered insulating
ground state. When the number of holes is further in-

creased the AF state becomes unstable, the gap closes,
and we go back to a situation in which the lowest lying
band is partially filled, yielding a metallic state. Only
for strong hole doping do we reach again an insulating
condition, now due to the presence of the CT gap.

We would like to mention an important point related to
experiment that can possibly support these results. Pho-
toemission studies show that the Fermi level for both
electron or hole doping remains in the same energy re-

gion, close to the value that one would expect from band
theory calculations, and the original gap is completely
filled when the AF order disappears. This is in qualita-
tive agreement with our calculations. In contrast, it could
not be understood in terms of an effective Hubbard-like
one-band model, where a jump of the Fermi level across
the correlation gap should be expected when going from
hole to electron doping.

In a certain sense, our results agree with those ob-
tained by the Hartree-Fock (HF) approximation, s at least
with respect to the nature of the insulating state, which
presents a bandlike AF gap that does not coincide with
the CT one. However, in the HF solution the AF in-

stability of the paramagnetic (PM) solution is due to a
perfect nesting property of the Fermi surface, which can
be viewed as related to the van Hove singularity of the
DOS. This is not the case in our treatment, although
the form of the DOS could suggest an interpretation on
the same lines. We checked this point by repeating the
calculations with a model (rectangular) density of states.
Despite the absence of the two-dimensional van Hove log-
arithmic singularity in this DOS, we still obtained the AF
state. It is important to mention that the same approxi-
mation is not able to find the AF phase in the half-filled
single-band Hubbard model. Thus in the present case
the method incorporates correctly the role of p orbitals
in a superexchange mechanism that explains antiferro-
magnetism in high-T compounds.

A metallic character of the paramagnetic solution has
also been found in a slave-boson treatment of the problem
by Riseborough and Hanggi. They actually suggest that
the insulating behavior could be due to the opening up
of an AF gap at the Fermi surface, as obtained here.
In addition, it has been argued that it is possible to
explain effects of diamagnetic substitutions on the Neel
temperature of La2Cu04 by the assumption of a metallic
state in the PM phase.

A comparison with local moment approaches, in par-
ticular the Zhang-Rice picture, is not as easy. Although
our starting point is the same (the atomic limit), and the
effective Heisenberg exchange interaction that we found
is in the expected range, as we mentioned in the end of
Sec. IV, the charge transfer nature of the ground state
seems to be preserved in the Zhang-Rice results. In con-
trast, we find that the holes in the stoichiometric case do
not reside on cooper sites, but present a hybrid nature,
with an important admixture of copper and oxygen levels
in the occupied part of the spectrum. We could suggest
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that our partial renormalization of the local Green's func-
tions that led to Eq. (11) contemplates, at least in part,
the hybridization mechanism that leads to formation of
the so called Zhang-Rice singlet. However, our decou-
pling of the local averages contributing to these Green's
functions is probably the weakest point of the present
treatment, and may explain the weak-coupling-like char-
acter of our final results. An extension of the work to
include many-loop corrections to the local Green's func-
tions is now in progress.

A complete three-band model for the copper-oxygen
planes of high-T superconductors should contain direct
hybridization between oxygen orbitals, as well as nonlo-
cal Coulomb interaction between holes in nearest neigh-
bor atoms. We have investigated the efFect of including
a hopping term connecting oxygen sites within our ap-
proach. Preliminary results indicate that the main efFect
is a broadening of the nonbonding band, with consequent
reduction of the CT gap. A nonlocal Coulomb interac-
tion is not easy to include in our formalism because, in
contrast to the local one, it has to be treated as a per-
turbation. Thus we are faced with a double perturba-

tion expansion, with respect to both hopping and nonlo-
cal interaction. Work on these lines is also currently in
progress.
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