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Hydrodynamic model for the degenerate free-electron gas:
Generalization to arbitrary frequencies
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The hydrodynamic model for the degenerate free-electron gas has been generalized for arbitrary
frequencies. The result for the longitudinal dielectric function is e(cu, q) = 1 —ui [ar(ur+iv) —P q ]
where u is the circular frequency, q is the wave vector, cu& is the plasma frequency, v is the collision
frequency, and P = vs, (-cv + siv)/(ar + iv), where vF is the Fermi velocity. This interpolation
formula for P reduces to the well-known low- and high-frequency limits. The derivation is based
on comparison, for small q, with the Boltzmann model for e(ai, q); however, modified to include the
Mermin correction for relaxation to the local equilibrium. The bulk plasmon dispersion relation
for this model is also found, and it includes collision-modified Landau damping (that is absent for
~ (( v and iv )) v).

I. INTRODUCTION

Since its inception 60 years ago, the hydrodynamic
model has proved to be very useful in describing electrical
transport and optical properties of conductors. The main
advantage of this model lies in the simplicity of account-
ing for nonlocality or spatial dispersion, as manifested
in the wave-vector (qg dependence of the dielectric func-
tion e(io, qg. Of course, precisely because of this simplic-
ity, the model fails when sophistications such as Landau
damping and band-structure effects are present. Then
one has to resort to more advanced treatments, such
as the Boltzmann model or the Lindhard, random-phase
approximation (RPA) model. Very recently the hydro-
dynamic model was applied to two-dimensional electron
gases, to small spheres, to one-dimensional quantum
wires, and to the derivation of additonal boundary con-
ditions at the interface between two conductors.

The hydrodynamic model, as applied to the degener-
ate free-electron gas, has a serious shortcoming, namely,
it is valid only for frequencies ~ that are either very small
or very large in comparison to the collisional frequency
v. For u (& v collisions predominate and thus a conduc-
tion electron possesses three degrees of freedom. In the
opposite limit, w )& v, the influence of collisions is negli-
gible and the particle motion is essentially limited to the
direction of the electric field. . This then corresponds to
one degree of freedom, rather than three. One wonders,
how many degrees of freedom does an electron have for
an arbitrary ratio io/v'? Is the hydrodynamic model ap-
plicable at all if ur/v is neither very small nor very large?
In the past such queries were ignored and the model was
frequently used, on the basis of some phenomenological
argument, as reasonable for any value of the frequency.
In particular, the well-known P parameter (see below)
was considered as a fitting parameter, which in prin-
ciple can be determined from comparison with experi-
ments for any value of a. In this communication I wish
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The parameter P is defined as

(2)

to actually calculate P(io), retrieving the low-frequency
limit P(0) = (1/3) r v~ and the high-frequency limit
P(oo) = (3/5)ir 2v~, where vt; is the Fermi velocity, as
special cases. This will also lead to expressions for the
adiabatic law constant rc(io) and for the effective num-
ber of degrees of freedom f(ur). In short, I present the
generalization of the hydrodynamic model to arbitrary
frequencies.

The approach taken here is based on a straightforward
comparison of the hydrodynamic model with a more so-
phisticated one, namely, the Boltzmann model with the
Mermin correction that takes into account the relax-
ation of the charge carriers to the local equilibrium (mod-
ulated by the wave). The Mermin correction is normally
applied to the Lindhard or RPA model of the dielectric
function; for the present purpose it sufBces to consider
the much simpler Boltzmann dielectric function.

The hydrodynamic model is based on Newton's second
law for an electron of effective mass m, charge —e, and
average velocity v,

dv" ( - v -i V'p
m —= —e E+ —xB i
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As we see, the particle is subject to the Lorentz force of
the electromagnetic wave (there are no applied fields), to
a phenomenological damping force (v being the collision
frequency), and to a pressure force (n is the local electron
density). This last contribution in Eq. (1) is proportional
to the pressure gradient and derives, hence, entirely from
the inhomogeniety of n —the result of the modulation by
the wave. Denoting by "0" equilibrium quantities (which
are homogeneous for our bulk electron gas) and by "1"
small out-of-equilibrium quantities (which are inhomoge-
neous,
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If one also uses the continuity equation

On

Bt
+ V' (nv) =0,

then it is easy to show that the dielectric function for
longitudinal response is

5H(Cd, q) = 1—
Cd(Cd + iV) —P'q2'

where cd~ = (4am(o) e2/m) i~2 is the plasma frequency. So
this is the well-known hydrodynamic result.

For an adiabatic process p is proportional to n", where
K is the adiabatic constant. Then

c)p(i) /c)n(i) —~p(o) /n(o) (6)

For a degenerate &ee-electron gas

p(o) ~ n(o) ~~
3 5

where u is the particle energy per unit volume and ~~ is
the Fermi energy. Because 5~ = zmv&2, from Eqs. (3),
(6), and (7),

2 1 2P = —Kvy.5
(8)

It is well known that the value of e depends on the num-
ber of degrees of freedom f, according to the formula

r. = (f + 2)/f (9)

In this paper we are concerned with a three-dimensional
free-electron gas. However, f = 3 only for very low fre-
quencies, where the randomness of the collisions indeed
permits motion in all three dimensions. For very high
frequencies the motion is deterministic, with the velocity
parallel to the direction of the electric field; thus f = 1
is appropriate. Therefore Eq. (9) gives

function:

cd 1 f cd 5 1 —qvi /cd
e~ cd, q = 1+ ln

cdqv~ qvt; 2 qqvt; f 1+ qv~/cd

(12)

This result is obtained in the limit ~ && v. Often the
efFect of collisions is included by replacing all ~ in the
square brackets by u = ~+ iv. However, in the presence
of charge-density oscillations this procedure is incorrect.
It ignores the fact that the accelarated charges do not
relax to a state of uniform density no, but to a local
density n(x) = n( ) + n( )(x). This dependence of the
perturbation n( )(x) on position is a consequence of the
modulation by the electric Geld of the wave which, in our
situation, is longitudinal (E . q P 0). The correct proce-
dure was indicated by Merrnin, who actually applied it
to the RPA model of e(cd, q). Here we apply this approach
to the Boltzmann model, Eq. (12). Then the Boltzmann
model with the Mermin correction reads

cd [e~ (cd, q) —1]
5~M(cd, q) = 1+

cd + iv[5~(cd, q) —1]/[e~(0, q) —1]

(13)

cd~ ( 3 q vF5~(~ q) —1= —
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2
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(14)

Also, with no approximations, Eq. (12) gives

5~(0, q) —1 = 3(~~/qv~)2. (15)

Substituting Eqs. (14) and (15) in Eq. (13) one finds

Obviously, Eq. (13) corresponds to a more sophis-
ticated physical situation than Eq. (5). In fact, if
cd/q ( v~, then the logarithm in Eq. (12) gives rise to
an imaginary part, which describes collisionless or Lan-
dau damping that is absent in the hydrodynamic model.
Nevertheless, &~M and e~ have the same limiting form
for weak spatial dispersion. Then expanding Eq. (12) in
powers of qv~/cd one obtains

and from Eq. (8)

(
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A similar expansion of Eq. (5) gives

(16)
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By now it is quite obvious that, for a three-dimensional,
degenerate free-electron gas, f, r, and P are functions
of the &equency. So we shall proceed to determine the
functions f(cd), r(cd), and P(cd).

II. DETERMINATION OF P(cd)

On the basis of the Boltzmann equation the follow-
ing expression is found for the longitudinal dielectric

Comparison of the coeKcients of q in the last two equa-
tions determines that

3 1

p2( )
5 3 2

4P+ZV
(18)

This "interpolation formula" reproduces the low- and
high-frequency limits given by Eq. (11); however, notice
that, in general, P is complex.

Further, if Eq. (8) is now taken to be the definition of
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r.(ar), then

ld+ZV
{d + —'LV

3
(20)

This complex number reduces to 3 and to 1 in the low-
and high-frequency cases, respectively.

The behavior of the real and imaginary parts of f (u) is
quite interesting. Re f(ur) decreases monotonically from
3 to 1, and has the value 2 for u/v = 1/3. On the other
hand, Im f(~) vanishes for ~ = 0 and for ~ = oo, as
expected, and for u/v = 1/3 attains the maximum value
of 1.

III. BULK PLASMONS

As an interesting application we can now derive
the bulk plasmon dispersion relation within the hy-
drodynamic approximation. We impose the condition
eH(cu, q) = 0 on Eq. (5) and substitute the value (18)
for P . This yields

(21)
This is an implicit dispersion relation from which u(q)
may be determined numerically, even for large damping.

In the absence of nonlocality (negligible q), the last
term in Eq. (21) can be neglected. Then the solution is

~(q m 0) = (~~ —v /4)' —iv/2. (22)

For weak spatial dispersion, ~ in the last term of Eq.
(21) can be replaced by this limit. If we also assume
that v /4 (( Id&2 (as usually satisfied) then we obtain the
explicit dispersion

3& + stv
K Col

M+ tV

This, again, gives the correct limits Eq. (10). Finally, an
effective number of degrees of freedom is obtained from
Eq. (9):

this term is proportional to v. Nevertheless, this term
comes from the collision-modified Landau damping that
is incorporated in the Boltzmann-Mermin model. For
v = 0 Landau damping exists only for large wave vec-
tors, such that q ) u/v~. Collisions (v g 0) soften this
requirement, so that collision-modified Landau damping
extends even to small wave vectors. Years ago a similar
situation was encountered for Landau damping of helicon
waves.

IV. DISCUSSION AND CONCLUSION

The hydrodynamic model applied to the degenerate
free-electron gas has been used incorrectly for many years
when applied to arbitrary ratios w/v. This is because the
P2 coefficient of q2 in e(~, q) was known only in the low-
and high-frequency limits. Here we have determined P2
for arbitrary ~ by comparing the hydrodynamic model
with a more sophisticated one, namely the Boltzmann
model including the Mermin correction. The result for P2
is a complex expression, Eq. (18), that is consistent with
the well-known low- and high-frequency limits. The com-
plex P leads, in turn, to a complex adiabatic constant
K(u), Eq. (19). There is no need for alarm: considering
the definition of P2, Eq. (3), the complex r(~) only im-
plies that the pressure fluctuations are not in phase with
the density Auctuations. The adiabatic law is formally
satisfied with this r(u). We have also defined an eff'ec-

tive number of degrees of freedom, a complex number,
Eq. (20).

With Pz as given by Eq. (18) substituted in Eq.
(5), the hydrodynamic model becomes identical with the
Boltzmann-Mermin (and, as well, with the Lindhard-
Mermin) model for small wave vectors. For finite val-
ues of q, obviously it is preferable to use the Boltzmann-
Mermin model. Nevertheless, for the sake of simplicity, it
is quite reasonable to use the hydrodynamic model, with
P determined from the small-q limit, even for finite q.

Finally, we have applied the above surveyed results to
the derivation of the bulk plasmon dispersion relation.
This leads to collision-modified Landau damping even
for small wave vectors.

q v~ .v ( 4 q u~l
id —ldp + —'L —
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