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The symmetric periodic Anderson model is studied in the limit of infinite spatial dimensions with an
essentially exact quantum Monte Carlo method. As the temperature is lowered T ( Tp, the properties of
the system cross over from those of a metal with a moderately heavy mass, to those of an insulator in
which the one- and two-particle spectra develop gaps =Tp, where Tp is the Wilson Kondo scale.
Whereas the quasiparticle gap = Tp is indirect in momentum, the optical conductivity displays a much
larger direct gap. Tp is much larger in the symmetric lattice than in the impurity problem with the same
parameters. Depending upon the ratio of Tp to the Ruderman-Kittel-Kasuya-Yosida exchange energy,
there is a transition to an antiferromagnetic state. In the paramagnetic state, the f-electron linear
specific heat shows scaling with T/To, whereas the f-electron contribution to the bulk susceptibility
shows only a rough scaling with T/Tp with deviations that are consistent with the strength of the net
ferromagnetic exchange.

I. INTRODUCTION AND METHOD

Since the discovery of the heavy-fermion materials
with rare-earth or actinide elements the periodic Ander-
son model (PAM) was considered as the most promising
candidate to at least qualitatively describe the rich phys-
ics in these materials. From early studies it is known that
most of the unusual properties of these materials like the
large coefficient in the specific heat, transport properties,
and even magnetic and superconducting properties can
be qualitatively accounted for with the PAM. ' Quantita-
tive agreement with experiments is sometimes possible
due to the fact that over a large region these systems may
be regarded as a regular array of independent Kondo
scatterers, which makes it possible to calculate especially
thermodynamic' and even transport quantities using
the well-understood impurity Anderson model.

However, in view of the controversial two-particle
properties of these materials it is desirable to have an ex-
act solution of the periodic Anderson model in a nontrivi-
al limit. A quite general limit to obtain sensible approxi-
mate or even exact results for such locally highly corre-
lated models is the limit of infinite dimensions. In
this limit the dynamics of the system become essentially
local, which considerably simplifies the task of calculat-
ing physical quantities. Recently, several groups in-
dependently proposed a mean-field theory for the Hub-
bard model based on the special properties in this lim-
it ' and were able to calculate a variety of quantities
approximately or even essentially exactly. ' '" In this
paper, we apply this procedure to the periodic Anderson
model. In combination with exact quantum Monte Carlo
(QMC) procedures, ' we calculate one- and two-particle
properties of this model which can be viewed as essential-
ly exact results for the periodic Anderson model in a non-
trivial limit.

Although the inclusion of more realistic features
presents no fundamental difficulty for our method, we

want to concentrate on the simplest version of the period-
ic Anderson model in D dimensions,

H= —g d, d +H. c. +g(edd, d, +eIf, f, )
D { j

+g U(n&, &

—I /2)(n&, t
—1/2)

+ ~(d; f; +H. c. ) .

In (1), d (f)It' destroys (creates) a d (f) electron on site i
with spin cr, U is the screened Coulomb-matrix element
for the localized f states, and V characterizes the mixing
between the two subsystems.

Although the lattice structure is not essential to our ar-
guments, we will study the model (1) on a simple hyper-
cubic lattice of dimension D with hybridization
t =t*/2&D restricted to near-neighbor hopping. This
surely is an oversimplifying assumption for real systems;
however, it has the advantage that the free density of
states in the limit D ~ ~ becomes purely Gaussian,
N (e)=expI (e/t') ]/'t—/7rt*, with a width t*. We
choose t *= 1 as a convenient energy scale for the
remainder of this paper.

Since dynamics become essentially local for D = ~, '

one can use the fact that the proper one-particle self-
energy is then k independent to resume the perturbation
series and obtain an effective impurity Anderson model
with a self-consistently determined medium. ' For the
Hamiltonian (1), these equations read

Gf (z)= f dep{d ~(e)Iz —ef —X (z)

+ V~[z —ed —e]

&(z)=[(G;; (z)) '+& (z)]

where GIj (z) denotes the one-particle Green's function
for the f states and Q(z) is the noninteracting (U turned
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off) local Green's function with the effect of integrating
out all the other f sites included. The self-energy in Eq.
(3) comes from allowing U to act. Q(z) is to be used as
the initial Green's function in a QMC procedure, ' or as
the bare Green's function in a perturbative expansion for
the local self-energy. ' Equations (2) and (3) form a
closed system which determines X(z). The difficulty
remains that, in order to obtain a refined X(z) from an in-
itial guess, one has to solve the impurity Anderson model
defined by (3). Among the several different approaches to
this problem, quantum Monte Carlo (QMC) (Ref. 12) is
the most efficient for the current purposes, since it (i) is
essentially exact in that the errors are small and controll-
able and (ii) allows us to address two-particle properties
in addition to the real-frequency spectra. ' A detailed
discussion of the application of QMC to lattice systems in
the infinite-dimensional limit has appeared elsewhere. '

In this paper we will regard QMC only as a source for the
one- and two-particle Green's function measured on the
impurity site.

These local Green's function provide sufficient infor-
mation to calculate all of the thermodynamics and equi-
librium transport quantities in the infinite-dimensional
limit. For example, the one-particle f and d (and fd)
Green's function may be constructed from X(ice„) ob-
tained from solving Eqs. (2) and (3),

G~(k, i co„)= 1

i co„—e&
—X(in'„) —V /(i co„—e&

—ek)

(4)

As described in Appendix A, with the additional
knowledge of the two-particle one-site Greens' function,
one may calculate the corresponding lattice susceptibility
for any x(q), where x(q)=(1/d)gl cos(q&) defines an
equivalence class of wave vectors in the infinite-
dimensional Brillouin zone. In this way, the magnetic,
charge, and superconducting lattice susceptibilities are
calculated.

It is also possible to calculate the real-frequency dy-
namics of the model by analytically continuing the on-
site Green's function. For example, if the on-site f
Green's function G/(R=O, co) is calculated by numerical
analytic continuation, ' the real-frequency self-energy
may then be obtained by inverting the Fadeev function
w (z) (Ref. 16) in

those for the Hubbard model, ' when both are written as
functions of the local conduction-band Green's function
G (R=O, ni) and y.

II. RESULTS

Recently, there has been renewed interest in a special
class of cubic lanthanide-based compounds such as
CeNiSn (Ref. 19) or Ce3Bi4Pt& (Refs. 20 and 21) which
show a behavior reminiscent of normal heavy-fermion
materials at high temperatures but become insulating at
low temperatures where they develop both transport and
spin gaps. In these materials the f-electron contribution
to experimental measurements is isolated by taking the
difference of measurements on the Ce compound and the
isostructural La analog. ' ' The symmetric periodic
Anderson model, e& =@&=0, is used to model these ma-
terials since it also displays heavy-fermion-like properties
at high temperatures, and develops a (pseudo) gap in the
one-particle excitation spectrum at low temperatures.
It is, therefore, interesting to study its relevance for these
materials.

A. Hybridization gap

The essential physical feature in the symmetric model
is the formation of a gap in the various spectra. As
shown in Fig. 1(a), this gap forms quite rapidly in the
single-particle density of states as the temperature is
lowered. Since the chemical potential is at the center of
the gap (co=0), an insulator forms at low temperature.
The occurrence of this insulating state is directly con-
nected to the perfect particle-hole symmetry in the
present case and has a rather intuitive physical reason:
As T (To where To is the Kondo temperature which
will be discussed in Sec. II B, the Kondo effect leads to a
scattering resonance at the chemical potential. In fact, as
shown in Fig. 1(b), where the f-electron contribution to
the density of states is isolated, one can see that a broad
Kondo resonance begins to form when T ~ To before the
gap opens. Since there exists a level crossing between
these dynamically generated local quasiparticle states and

1.0
3

0.5

00'
G/(R=O, co)=[1+iv'~w(y(co)) V /a(co)]/a(co), (6)

where y =co —
e&

—V /a and a=co —ej —X(co). Since the
current-current susceptibility is free of vertex corrections
in the infinite-dimensional limit' and since, in the ab-
sence of a momentum-dependent fd hybridization V, the
current operator may be written exclusively in terms of
the d-electron operators, ' knowledge of X(ni) is sufficient
to calculate the optical conductivity. In fact, the form of
the equations for the optical conductivity is identical to

0.5

0.0

FIG. 1. Temperature dependence of the total density of
states (a) N, „,(co) and the f-electron density of states (b) X~(co)
when V=0.5, U=2. 0, @&=@&=0,and To=0.23.
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the conduction-band states, as the temperature is lowered
further one will find a splitting with a gap at the position
of the resonance. For the particle-hole symmetry under
consideration the resonance develops exactly at the
chemical potential, ' i.e., the resulting system conse-
quently is an insulator.

As shown in Fig. 2, the size of the gap in the density of
states is roughly 6= To/2, when measured from zero fre-
quency to the location of the maximum, independent of
the parameters chosen. Thus, many of the thermodynam-
ic and transport properties of the system should show
some sort of scaling with T/To. There is also a spin gap
in the local f-electron dynamic susceptibility. To lowest
order, the gap in the dynamic susceptibility results from
particle-hole excitations across the insulating gap. Thus,
the width of this gap, when measured from co=0 to the
peak is about twice the quasiparticle gap A, =26, when
measured in the same way. A similar gap ratio, 6, /6 =2

21is seen in the Anderson insulator Ce3Bi4P3.
Evidence for the gap may also be seen in the thermo-

dynamics properties of the system like the bulk charge
and spin susceptibilities. These are plotted as a function
of temperature when U=2 and V=0.6 in Fig. 3. Con-
sistent with what is seen in Ce3Bi4Pt3, the ferromagnet-
ic susceptibility displays a broad peak when T=T0.
Note that both the charge and the spin susceptibilities
share similar features, in that they both fall to essentially
zero once the gap forms in the single-particle density
states. Notice also that this occurs at the same tempera-
ture for both, indicating that for the infinite-dimensional
PAM, the spin and charge gap have the same value,
5 =b, =26. This is in contrast to the one-dimensionalS C

Kondo lattice, where the charge gap is always larger than
the spin gap, especially for the small value of
Jfd —8 V /U (Refs. 26 and 27) used in Fig. 3. Apparently

U=2 V=0.50
U=2 V=0.60
U=3 V=0.59
U=3 V=0.67
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FIG. 3. Spin and charge susceptibilities for the symmetric
PAM whenU=2 and V=0.6. Both susceptibilities develop a
gap of the same magnitude at low T.

the nonlocal charge and spin excitations found in finite
dimensions, but not in D = ~, are responsible for the
larger value of 6, /6, .

The optical conductivity, shown in Fig. 4, also displays
a gap as T/To~0. There is a Drude peak centered at
co=0, which loses its spectral weight as T/T0 —+0 and
the system becomes insulating. At higher frequencies,
there is another peak which results from direct (momen-
tum conserving) particle-hole excitations across the
single-particle gap. Finally, there is a very small tail ex-
tending to co = U =2 associated with charge transfer on
and off the f orbital. In the inset, the quasiparticle ener-
gies are plotted versus ek = 2t gP, cos( k&

—) when
11=30, the smallest direct gap Ed;„„/To=2.83 occurs
when @k=0. The value of Ed;„„/T0 is represented as an
e in the main plot. The energy of the low-temperature
optical gap corresponds to the direct gap in the quasipar-
ticle spectrum rather than To/2 (the indirect gap) due to
the lack of nonlocal dynamical excitations (i.e. , magnons,
plasmons, or acoustic phonons) in the infinite-
dimensional limit which would facilitate lower-energy in-
direct transitions.
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Flax. 2. Local neutron structure factor Sf(co) (a), and f

electron single-particle density of states N (co) (b) when
T=0.05, and e =ed=0 for various values of V and U. Thef d

rough coincidence of the gap in each figure indicates that the
gap is proportional to To (since the plots correspond to different
values of T/To, one does not expect the plots to exactly coin-
cide).

FIG. 4. Optical conductivity of the symmetric PAM when
U =2, V =0.5, and To =0.23. The + coincides with the
minimum direct gap in the quasiparticle energy when P=30.
The corresponding quasiparticle energy defined by
Re I I /G (Ei„ek ) J

=0 is shown in the inset.
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B. Kondo temperature

In the Anderson impurity problem it is possible to
define a Kondo scale To which is determined by the addi-
tional low-temperature susceptibility due to the introduc-
tion of the impurity into an otherwise pure host,

(T=0)=1/To. In order to define a similar energy
scale in the lattice system, it is useful to think about the
infinite-dimensional PAM as a self-consistently embedded
impurity problem. Once convergence of the self-
consistency has been obtained, it is possible to consider
the simulated site as an impurity embedded in a host
characterized by the d-electron propagator. Then, con-
sistent with Wilson's definition of the Kondo scale, we
define To=lim, ol/y; (T), where'; is the total addi-
tional susceptibility which results from the addition of
the impurity to the host defined by the fully-dressed d-
electron propagator. The calculation of g; is discussed
in Appendix C. The limit T~O can be approximated by
extrapolation. This is shown in Fig. 5 where I /Toy(T) is
plotted vs T/To from several difterent data sets. The re-
sults from dift'erent sets can roughly be collapsed onto the
same curve with an appropriate choice of To for each da-
taset. The corresponding values of To are listed in the
legend.

To gain some perspective on this result, it is useful to
compare the PAM value of To with the Anderson impur-
ity model value. To do this, we simulated a single Ander-
son impurity embedded in an uncorrelated Gaussian d
band with N"(e) =exp [

—(e) I /'i/vr in the symmetric
limit ed =sf =0. We measured the additional susceptibili-

ty due to the introduction of the impurity into an other-
wise pure noninteracting host, y; . The Kondo tempera-
ture Tz is then determined by comparing y; (T) to the
universal Anderson impurity result of Krishna-murthy,
Wilkins, and Wilson. This result when multiplied by
(vr/2) gives To=(m/2) Tl;. ' ' We calculated the im-

purity To for each of the values of U and V discussed in

Fig. 5. As tabulated in Table I, the impurity To is
significantly smaller than the lattice To. Our results are
consistent with those of Rice and Ueda who employed a
Gutzwiller approximation, and found that the impurity

Ci U=l
i U=l

0U=l
L, U=2
4U=2
O' U=2
L U=3
+U=3
+.U=3

v=0.30
V=0.35
v=0.40
V=0.40
V=0.50
v=0.60
V=0.51
V=0.59
V=0.67

0
t

D ~D tMI CliM Al 1

0
0.0

Q7

Cl

~~QQx (

0.5

& &a~n~ +~& $ p

1.0 1.5 2.0
T

FIG. 6. The f electron (a) contribution to the linear specific
heat, and the total lattice linear specific heat (b). The f-electron
result shows scaling with T/T0.

Kondo scale is exp( —1/2N (0)J) smaller than the lat-
tice To. A similar eFect was seen in simulations of the
one-dimensional Kondo lattice. This demonstrates that
the f moments significantly renormalize the properties of
the conduction band, and that the symmetric lattice mod-
el is both significantly less correlated and has a
significantly difFerent temperature dependence than the
Anderson impurity model.

If To were the only small energy scale in the problem,
then many of the f-electron properties of the system
should show scaling with T/To. For example, the f
electron and total lattice specific heat are plotted versus
T/Tp in Fig. 6. The f-electron specific heat was calcu-
lated by measuring the f-electron contribution to the en-

ergy per site and evaluating the thermal derivative;
whereas the total lattice specific heat is the derivative of
the total energy per site. Clearly, the f-electron specific
heat is relatively universal, whereas the total lattice
specific heat is not.

C. Magnetic properties

0
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QU=1 V=0.30 T =0.078
I. J U 1 V 0 35 To 0 145
'.') U=l V=0.40 T =0.235
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+U=3 V=0.59 T =0.2380
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FIG. 5. 1 /T0+' p( T) vs T/T0 for various data sets. T0 was
chosen so that 1/T0&; p(0)=1. When chosen in this wap, the
data collapse onto a single curve (Ref. 29), indicating universali-

tyofy; p(T).

Of course, To is not the only small energy scale to be
found in the PAM. The magnetic exchange energy will
cause deviations from universality, especially for quanti-
ties which are sensitive to it. For example, in Fig. 7 the f
electron and total lattice bulk magnetic susceptibilities
are plotted. Again, the f-electron contribution is closer
to universal than the total lattice susceptibility. Howev-
er, there clearly are deviations from scaling which are
well outside of the systematic and statistical errors in-
volved in the QMC process. As shown in the inset, the
deviations from scaling correlate with the strength of the
net ferromagnetic exchange. This demonstrates the im-
portance of the magnetic exchange.

Magnetic transitions in the PAM are determined by
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TABLE I. Kondo scales for the symmetric impurity problem and the PAM. In each case, the im-

purity Tp; p
is significantly less than the lattice Tp &,«,.„.The measured ratio of Tp; p/T0 &,«,„is quali-

tatively consistent with the Gutzwiller result exp( —1/2N" (0)J) when J&d is approximated as
Jgd=8V /U.

0.30
0.35
0.40
0.40
0.50
0.60
0.51
0.59
0.67

Tp imp

0.0199
0.0483
0.0933
0.0197
0.0802
0.1957
0.0211
0.0594
0.1280

TO lattice

0.078
0.145
0.235
0.089
0.230
0.427
0.125
0.238
0.390

0 imp /Tp lattice

0.255
0.333
0.397
0.221
0.349
0.458
0.169
0.250
0.328

exp( —1/2N (0)J&d )

0.292
0.405
0.500
0.250
0.412
0.540
0.279
0.384
0.477

the competition between Kondo screening of the mo-
ments and this magnetic exchange. The former favors
paramagnetism, while the latter favors antiferrornagne-
tisrn in the symmetric model. In order to explore these
two effects, we have calculated both the screened and un-
screened moments of the system, as well as the
Ruderman-Kittel-Kasuyer-Yosida (RKKY) magnetic ex-
change as described in Appendix B.

In Fig. 8, the screened Ty/( T) and unscreened
((n& n& )

—) local f moments of the system are plot-
ted vs T/To. As expected, the screened local moment is
significantly reduced by the Kondo effect when T (T0.
However, it is also interesting to note that the unscreened
moment is also reduced when T ~ T0. This effect has also
been seen in simulations of the one-dimensional Ander-
son lattice. ' To interpret this effect, it is useful to con-
sider the infinite-dimensional PAM as a self-consistently
embedded Anderson impurity problem. For the impurity
problem, ((nI nI ) )—changes little with T/To, but
may be reduced by either increasing the hybridization
rate ~V K (0), or decreasing U. To see which is hap-

pening here, consider the single-particle spectra shown in
Fig. 1. Here, the high-energy peaks, associated with fd-
charge transfer, shift significantly upward when the tem-
perature is lowered, T T0. This is consistent with an in-
crease in the impurity hybridization rate, since a reduc-
tion in U would cause these peaks to shift to lower fre-
quencies. This reduction in the unscreened moment is
consistent with the increase in the PAM value of T0
when compared to the impurity result. Thus, a phenome-
nological explanation for the increase in T0 for the sym-
rnetric lattice is that the opening of the hybridization gap
corresponds to an increase in the hybridization rate of
the impurity problem, leading to a reduction in the un-
screened moments.

These moments interact through both RKKY and su-
perexchange. For large U, the net magnetic exchange is
dominated by the RKKY exchange, since the superex-
change contribution falls off more quickly with increasing
U. In Appendix B, the RKKY exchange is approximated
with fourth-order perturbation theory in V. The resulting
exchange always favors anitferromagnetism in the sym-
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FIG. 7. The f-electron (a) and total lattice
(b) bulk magnetic susceptibilities vs T/Tp. The
f-electron contribution is closer to universal
than the total lattice susceptibility; however,
deviations from scaling are still apparent, indi-
cating the importance of the exchange energy.
In the inset, the net ferromagnetic RKKY ex-
change is plotted versus T/Tp. The deviations
from scaling found in (a) correlate with the
strength of Tp JRKK~(x = 1).
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((nf —nf )') local fmoments vs T/To
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FIG. 9. The approximate ratio of the energy to be gained per
site by forming an antiferromangetic state ERx~v[x(q) = —l]
(which we approximate by the product of JaKKv[x(q)= —1]
and the square of the unscreened moment), and the energy to be
gained by forming a paramagnetic (Kondo screened) state T0
(the symbols have the same meaning as those used in Fig. 8).
When this ratio is large, one expects the system to display an
antiferromagnetic transition. In the inset, the RKKY exchange
is plotted vs x(q) whenU =2, V =0.5, and P=20. The largest
exchange occurs at the zone corner x (q) = —1, indicating that
an antiferromagnetic state is favored.

metric PAM; i.e., as shown in the inset to Fig. 9,
JRKKv(x(q)) is maximum at x (q) = —1. In order to
compare the energy per site that the system can gain by
forming a paramagnetic Kondo ground state —To to that
which can be gained by forming the N eel state
E«~v[x(q) = —1] (which we approximate by the prod-
uct of J«zv[x(q)= —1] and the square of the un-
screened moment), we plot the ratio of these energies in
Fig. 9. When E«zY/To & 1, we expect that the system
will undergo an antiferromagnetic transition as the tem-
perature is lowered, and when E«Kv /To 5 1, we expect
a paramagnetic ground state.

The transition is seen in Fig. 10, where the antiferro-
magnetic total lattice susceptibility is plotted versus
T/To. In the infinite-dimensional limit, the susceptibili-
ties display mean-field behavior, 1/y(x, T)-T —T, (x).
Thus, the transition temperatures may be determined by
interpolating (or extrapolating) the inverse susceptibilities
to zero as a function of T. This is shown in the inset to
Fig. 10. As expected, the datasets which do not display a
transition are those with the smallest values of
E«&Y(x(q)= —1)/To. In each case displayed in Fig.
10 where a transition was found, T~ & To, so that Kondo
screening and the hybridization gap always begin to form
before the transition.

This competition between screening and exchange can
also be seen in the phase diagram of the symmetric mod-
el. For example, T~ is plotted vs U for fixed V=0.6 in
Fig. 11(a). For small U the screening dominates, and the
ground state is a paramagnetic insulator (of course for
U=O, the system is a band insulator ), whereas for
U ~ 2. 5 the system undergoes an antiferromagnetic tran-
sition. However, for U~ 2. 5, T& is still reduced by Kon-
do screening, since without Kondo screening, one expects
that T&=ER~~Y(x = —1). The screening reduces T~ so
that T~ + E«~v (x ——1 ).

In addition, T& falls quite slowly after the peak value is
reached. If the magnetic exchange in the symmetric
PAM is approximated with fourth-order perturbation
theory in V using the undressed conduction-band propa-
gators, ' then the resulting RKKY interaction
J—Jfd —1/U~ for large U. Thus, one expects that

Tz —1/U in the strong coupling limit, i.e., when the un-

screened moment saturates so that J«~Y(x = —1)
=E«zv(x = —1). However, we find that Tz falls more
slowly with increasing U, at least in the range of large to
intermediate U [this same behavior was also seen in a re-
cent slave-Boson calculation of the symmetric PAM (Ref.
37)]. There appear to be at least two reasons for this.
First, the RKKY interaction, when constructed from
fully-dressed conduction-band propagators obtained from
the QMC, falls slowly with increasing U. This is due to
the fact that the quasiparticle gap, which suppresses the
particle-hole excitations which characterize the RKKY
exchange, decreases as U increases. In fact, the antiferro-
magnetic RKKY exchange may roughly be fit to
JR~~v(x = —1)=a +b /U, as shown by the solid line in
Fig. 11(b). Second, the effects of screening are reduced
when U increases, further favoring the formation of an
antiferromagnetic state. This is because To falls more
quickly with ~ncreas~ng U than does ERKKY(x
fact, as shown by the dashed line, the Wilson Kondo
scale may be fit to an exponential form Tc =c exp( bU), —
and the ratio To/E«KY(x = —1) appears to fall mono-
tonically with increasing U, indicating that the Kondo
screening declines more quickly than the net antiferro-
magnetic exchange.

D. Superconductivity

The superconducting properties of the heavy-fermion
compounds are especially interesting and controversial.
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FIG. 10. The product of the lattice antifer-
romagnetic susceptibility and temperature
versus T/To. In the inset, the inverse suscep-
tibility is plotted vs T. The transition tempera-
ture may be determined by interpretation or
extrapolation with the form 1/y' "'(x, T)
—T —T, (x). Note that the datasets which do
not display a transition are those with the
smallest value of ERxxv[x(q= —1)]/To
shown in Fig. 9.

In the infinite-dimensional PAM, as in the infinite-
dimensional Hubbard model, pairing with symmetries or-
thogonal to the lattice is not supported. ' Thus, we need
only look for s-wave pairing. Recently, Coleman, Miran-
da, and Tsvelik explored the properties of the sym-
metric Kondo lattice model (which may be approximat-
ed with the PAM in the limit as U —+ ao ) with a
Mijorana-fermion mean-field theory. They found that
the ground state of the symmetric model was an odd-
frequency superconductor. Thus, we will look for both
odd- and even-frequency s-wave pairing.

To do this, we calculate the on-site s-wave pair-field
susceptibility and use a frequency form factor to project
out the odd and even parts as described in Appendix A.
We found that both of these pair-field susceptibilities
were always largest at the zone center x (q) = 1, and that
the odd-frequency susceptibility was always much larger
than the even-frequency susceptibility, suggesting that
the strong local correlations always suppressed the even-
frequency pairing. The transition temperature may then
be calculated by extrapolation of I/P(x =1)-T —T, .
As shown in Fig. 12, the extrapolated value of T, is al-
ways negative, indicating that no transition was found.
Indeed no transition was found for any of the datasets ex-
plored.

III. CONCLUSION

We have provided an essentially exact solution of the
infinite-dimensional PAM. For brevity, we have concen-
trated on the symmetric model, and shown that the spec-
tra, specific heat, and susceptibility are heavy-fermion-
like for high T/To, and insulatorlike for low T/To. The
f-electron linear specific heat shows scaling with T/To,
whereas the f-electron contribution to the bulk suscepti-
bility shows a rough scaling with T/To with deviations
which are consistent with the strength of the net fer-
romagnetic exchange. At low temperatures, the single-
particle spectra shows a quasiparticle gap 6= To /2,
whereas the gap in the dynamic spin susceptibility is
twice this size 5, = To. From the behavior of the charge

and spin bulk susceptibilities, we infer that the charge
and spin gaps are identical in the infinite-dimensional
limit b, , =6, .

The magnetic properties of the system are determined
by the competition between Kondo screening and RKKY
magnetic exchange. For small values of U/V, the Kon-
do screening dominates and the ground state is a
paramagnetic insulator. For large U/V, the magnetic
exchange dominates, and the system displays an antifer-

004—

0.02 CP

Q Q
Q

0.00 ('
0.8 ,
0.6 ,
0.4 &

0.2
0.0

1)
1)
x=-1)

U

FIG. 11. T& versus U when V=0.6 (a). T+ was determined
by extrapolation as shown in Fig. 10. For small U, the system is
dominated by Kondo screening, and the ground state is
paramagnetic. For large U, the system is dominated by RKKY
magnetic exchange, and exhibits an antiferromagnetic transi-
tion; however, T& falls slowly with increasing U. In (b), various
relevant energies are plotted versus U when V =0.6 and P= 10.
To was determined by fitting y; „(T=0.1) to the data shown in
Fig. 5. It falls exponentially fast [a fit to an exponential
To =a exp( bU), is indicated by —the dashed line]. The net anti-
ferromagnetic RKKY exchange J«K&(x = —1) may be fit to
the form JRKK&(x = —1)=a+b/U as indicated by the solid
line. The ratio To/E«K+(x = —1) falls monotonically with in-

creasing U, indicating that the Kondo screening declines more
quickly than the net antiferromagnetic exchange.
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1.5

1.0
Il

Gf(k, i co„)= 1

i'„Ef X( i co„) V /( i co„Ed'Ei )

/3„—EI,
(A3)

Gf(R=O, iso„)= [1—i V'mw(y„) V /a„]/a„ (A4)

0.0
0 2

Gf (k, ice„)= V

[ice„—ef X—(ice„)](i~„ed——
&i ) —V

FIG. 12. Inverse odd-frequency pair-field susceptibility vs T.
Near a transition the infinite-djmensjonal ljmjt, 1/P""'
-(T —T, ). In each case, the T, which would be obtained from
the extrapolation 1/P'"' ~0 would be negative, indicating the
lack of a transition.

romagnetic transition. However, the screening still
reduces T~ (Ea~~v(x = —1). Furthermore, the fact
that the screening diminishes as U increase, and that
Ja~~v(x = —1) falls slowly with increasing U, causes T~
to fall only slowly with increasing U after the peak value
has been reached.
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V

a ('Y
(A5)

G (R=O, iso„)= i&m—w(y„.)V/a„, (A6)

which may be solved to eliminate the local irreducible
vertex function r,

(A8)

Thus, if we measure yf in the QMC process, and can
form y; and y from X(iso„), then we can find yq, and
the corresponding magnetic susceptibility,

where a„=ice„—ef X(i—co„) and P„=ice„—ed.
The two-particle propagators require a bit more

thought. However, they may also be written as functions
of the appropriate local vertex function and the irreduc-
ible self-energy. Consider the local and lattice opposite-
spin particle-hole propagators depicted in Fig. 13. Both
satisfy a similar two-particle Dyson equation with an
identical vertex function I (ice„,iso ). In fact, if we iden-
tify the matrices with elements y (q, iso„,ice ) and
gf(R=O, iso„,ice ), as yfq and yf, respectively, then they
satisfy similar matrix equations,

(A7)

APPENDIX A: ANALYTIC FORMS
OF THE ONE- AND TWO-PARTICLE PROPAGATORS yf(q, T)=2T+yf(q, iso„,ice ) .

n, m

(A9)

In the approach discussed in this paper, QMC is used
only to extract the irreducible self-energy and local vertex
functions. In order to study the properties of the lattice,
it is necessary to have analytic forms for the lattice prop-
agators in terms of these functions.

The one-particle propagators can be written as func-
tions of X(i co„) and complex error function w (x). ' For
example, the one-particle d-band Green's function,

G (kiddo ),=„ 1

i co„ed —ei, —V /—[i co„—Ff —&(i co„)]

(A 1)

Where the factor of 2 in an isotropic system is required to
convert the transverse susceptibility to the more tradi-
tional longitudinal value (i.e., 2y —=y").

In fact, since all of the vertex functions are momentum
independent or local, the charge and pair-field suscepti-
bilities can be formed by solving a similar set of equa-
tions. Finally, we can use the fact that the d electrons are

(a) Local

= —iVmw(y„), (A2)
(b) Lattice

where y„=iso„—ed —V /[iso„—ef —X(iso„)]. The f
electron and mixed f dpropagator may b-e defined in a
similar fashion

FIG. 13. Two-particle Dyson equations for the local (a) and
lattice (b) opposite-spin particle-hole propagators.
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+total +dO +dfo+fdO+(g++dfo+fo &)—
q q q q

xqf(r+y '-'y ") .
q q q (A10)

noninteracting, so that the vertex function dresses only
the f propagators, to form the other lattice propagators.
For example, the total lattice particle-hole opposite-spin
two-particle propagator is given by

1
p( ), &2) ——g&(e') —e~+ )5(e,—e„)

1 tel e2xq j t xq ~e
2 2 -"2

sr+1 —x(q)

(Al 1)

(A12)

The charge and pair-field susceptibilities can be formed
by solving a similar set of equations.

Since the local fully dressed magnetic, charge, and
pair-field susceptibility matrices are measured in the
QMC process, all that we need to calculate the corre-
sponding lattice susceptibilities are the noninteracting re-
sults. These may be calculated for any q by using the
methods introduced by Miiller-Hartmann who showed
that all points Q in the infinite-dimensional Brillouin
zone with the same x (q) =(1/D)X& cos(q& ) are equivalent
in that the two-particle density of states may be written
as a function of x (q),

At the zone center x = 1 and corner x = —1, this reduces
to

imp(~i e2) e ~(el ~2)x~1 7r

1 —e,
lim p(e„e2)= —e '6(e, +ez) .

x~ —1 'ir

(A13)

(A14)

Using this two-particle density of states, it is possible
to find forms for the noninteracting susceptibilities dis-
cussed above. For example, the noninteracting particle-
hole f-propagator needed to calculate the magnetic and
charge susceptibilities is

fp . 1 ii/~V w [[y„—ex(q)]/Vl —x(q)2I P„—e2
gg(q, iso~)= —

2 f de2po(e2) 1—
~n a„ 1 —x(q) 'V n ~2

(A15)

the corresponding d propagator is

i &vrw [ [y—„—ex(q)]/'t/1 —x (q) J
gg(q, i~m )= —f «2po(~2)

1 —x(q)
while the mixed propagator is given by

2

xg'(q, i~ )=, x h(q i~ ) .
Qn

'Vn &2
(A16)

(A17)

The noninteracting particle-particle f propagator needed to calculate the superconducting susceptibility is

1y„'(q, i~ )=—,d~~, (~, ) 1—
~n

i&vrV~w[(y„—ex(q)]/'t/1 —x(q) P„*—e2

a„+1—x (q)
(A18)

the corresponding d propagator is

i&rrw [ [y„—e—x(q)]/Vl —x(q) ]
y (q, ice )= —f de2po(e2)

1 —x(q)
(A19)

while the mixed propagator is given by
2

x,'f'(qi~ )= ~,x,",(q, i~ ) .
~n

(A20)

f (iso„), so that

P= T+f (ice„)y""'(q,iso„,ice )f(ice ), (A21)

Finally, before leaving this section, we will discuss the
formalism necessary to calculate the odd- and even-
frequency s-wave pair susceptibility. To do this, we first
calculate the particle-particle opposite-spin susceptibility
matrix as described above. Then, to project out the odd
and even parts, we introduce a frequency form factor

where, for even-frequency pairing f (ice„)=1, and for
odd-frequency pairing, f (ice„)=sgn(co„). Several other
odd functions tried for the odd-frequency form factor;
however, they did not cause a qualitative change in the
results (we never found a pair-field transition).
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APPENDIX 8: THE RKKY EXCHANGE

The magnetic interaction between the f sites is mediat-
ed by two basic types of processes, superexchange and
RKKY exchange. Examples of these exchange processes
are depicted in Fig. 14 between two f sites. Since there is
no direct f fhy-bridization, the superexchange is mediat-
ed by charge transfer from the f sites to the d band.
Both f-electrons first hybridize to the d band, and then
hybridize back into the opposite f site. For larger U,
J

p h g
V / U . The RKKY process is accom-

plished by one of the f electrons creating a particle-hole
spin excitation in the d band which is absorbed by the
other f site. For large U, JRKRv-J/d times the d-
electron particle-hole bubble. Since the hybridization
gap closes as U increases, this bubble should increase
with increasing U (in fact, we find that for intermediate
to large values of U, it grows roughly linearly with U). So
at worst JRKRv —V /U . Thus, for large U,

JRKK & »J
p h g

Because of this, and since the
magnetic exchange is being calculated only to provide a
qualitative result, we will ignore the superexchange.

The RKKY exchange is usually approximated by the
second-order (in J&d) process between two f sites, mediat-
ed by a particle-hole excitation of the d electrons. If the
two f sites are located at R and R', with moments SR and
SR. respectively, then the energy of the RKKY exchange
process is approximately

ERKKY — JR~Km SR SR'

2J2 TS S ~ —ik (R—R') ik' (R—R')
2

X G "(kiddo , )G„"(k ice„',),
(B1)

JRKKY(R

~ y 2 ~ l ~ —ik.(R—R') —ik.(R—R')

N

XG (ki, co „)G (k', iud„), (B2)

and the net exchange between the site and its next-near-
neighbor shell,

2D (D —1)JRKKv(R„„„)
= —

J&d Tg[2y„i&~w—(y„)(1—2y„)] (B4)

where 2D and 2D (D 1)=2D—are the number of
nearest and next-nearest neighbors, respectively, to each
site. In order to determine the net effect of the RKKY
exchange, it is also useful to calculate it as a function of
q, or rather x (q),

JRRRY(q)= —2JId T—gG (k, in'„)G (k+q, i~„) .
Nk, n

(B5)

This may be calculated with the formalism discussed in
Appendix A for any x (q)

2J/d TXI p o(

where J/d = 8 V /U in the symmetric model. Then, using
the methods discussed in Appendix A, one may calculate
the net RKKY exchange between any site and its near-
neighbor shell (since there are an infinite number of near
neighbors, the exchange between any two sites is zero,
but the net exchange is finite),

2D JRRKv(R„„)= —4J/d Tg[ii/mw(y„)y„+ 1], (B3)

so that
(B6)

Superexchange

RKKY exchange

/' ' Xt

We can see from the form of (B3) and (B4) that for the
symmetric model, for which y„ is purely imaginary, the
near-neighbor RKKY exchange is antiferromagnetic and
the next-near-neighbor exchange is ferromagnetic. Both
favor commensurate antiferromagnetism. In fact, the in-
tegrated result at different ordering vectors q,
JR&Rv(x (q)) displays a peak at x (q)= —1, so that the
RKKY exchange favors commensurate antiferromagnet-
ic order.

APPENDIX C: THE IMPURITY KONDO SCALE

FIG. 14. Examples of the basic electronic processes which
characterize the RKKY exchange and superexchange. The top
figure illustrates one possible superexchange process. Another
process, which is equivalent in the symmetric model, involves
double occupancy of one of the f sites. The bottom figure illus-
trates one of the RKKY processes, which are characterized by
particle-hole excitations.

Since it is possible to envision the infinite-dimensional
PAM as equivalent to a self-consistently embedded An-
derson impurity which hybridizes with its (self-
consistently determined) host with a matrix element V, it
must also be possible to define an impurity Kondo scale
Tp e

However, to be consistent with definition of the Kondo
scale described by Krishna-murthy, Wilkins, and Wil-
son one must define the impurity susceptibility as all of
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a

f.
~~- d&

JcT

+
d cT

+
d f

A -G'

If we assume that the host is described by the fully
dressed d-electron propagator obtained once the QMC
process has converged, then each of the contributions to

may be easily calculated. g~ is local, and hence
may easily be calculated in the final iteration of the QMC
procedure. The other contributions may be calculated
with the knowledge of the host propagator, and the im-
purity one- and two-particle Green's function. For exam-
ple, y~" may be formed by summing the diagrams shown
in Fig. 15(a),

FIG. 15. Diagrams for the (a) Xtmp and (b) X"
impure post con

tributions to the impurity susceptibility. yf" =g;f =2TV g—gf(ico„,ico )[G (k, ico )]21
Xk„

(C2)

the additional magnetic susceptibility due to the addition
of the impurity and its subsequent screening by the host:

ff fd df dd dd
+imp +Imp++Imp++imp++ +pure host & (Cl)

where yg is the f-electron contribution to the impurity
suscePtibility +Imp Pimp is the suscePtibility involving
correlations between the impurity and the host, and
J +pure host is the additional susceptibility of the
host due the introduction of the impurity. Then
To=limT ol/g' „(T).

The momentum sum may be evaluated using the methods
described in Appendix A, with the result that

+fd +df

4TV g—y (i co„,i co )[i&srw(y„)y„+ I ] . (C3)
n, m

Similarly, g""—y „"„h„,may be formed by summing the
diagrams shown in Fig. 15(b),

g" —g~„"„h„,= 4TV 2—g[G—(q, t co„)] G '(ico„)+2TV"
2 g [G"(q,ico„)]g (ico„,t co )[G'"(lt, ico )]

q, n qk„~
or, after the momentum sums are performed

y" —yp~„h„, = 4TV +[i&a—to(y„)(1—2y„)—2y„]Gf(ico„)

(C4)

+&TV +[i rrto(y„)y„+1]yf(ico„,ico )[i&mto(y )y +1] .
n, n

(C5)
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