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Extended Hubbard model with off-site interactions: Two-particle spectrum and Auger fine shapes
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We present a method for calculating the Green's function of two particles on a periodic lattice, with
arbitrary distance-dependent interactions (extended Hubbard model). We develop the exact results to-
gether with their dispersionless limit (local approximation) for the sake of comparison. Numerical cal-
culations for a repulsive, Thomas-Fermi-like potential illustrate the effects of including off-site interac-
tions in a simple cubic lattice. For strong correlations, the spectrum differs qualitatively from that of the
Hubbard model, and may show several resonant states instead of just one. The formalism lends itself to
many physical applications: here, we discuss its consequences for the theory of Auger core-valence-
valence line shapes of solids. We show that Auger spectroscopy is a method for measuring the strength
of electron-electron interactions, both on site and off site.

I. INTRODUCTION

In recent years, the Hubbard model' has been subject
to a renewed attention for its relevance for high-T, super-
conductivity, quantum antiferromagnetism, and fer-
romagnetism, thus playing a central role in theoretical in-
vestigations of strongly correlated systems. Besides the
above fundamental issues, the Hubbard model is also
used as a theoretical framework of some spectroscopic
processes when, under the perturbing action of the probe,
part of the electronic degrees of freedom in the sample
exhibits an interplay between itinerant and localized
behavior.

In its simplest form, the Hubbard model (HM) consists
of a single-band tight-binding Hamiltonian, plus a period-
ic, on-site, interaction term U, which accounts for the
dominant part of the Coulomb repulsion experienced by
the electrons. The long-range part of the potential is
neglected, and one is left only with the on-site interaction
terms. Adding off-site interaction terms, we obtain an ex-
tended Hubbard model (EHM). To what extent the in-
clusion of off-site terms is relevant to the description of
strongly correlated systems is a matter of current debate
in the literature, and the general issue is a dificult one.
On the other hand, exact results of two- (or few-) body
problems on an infinite lattice are often of interest be-
cause they are known to be preliminary to the study of
the related, much more involved, many-body problem.
In this respect, for the HM the prototype exact result is
the Kanamori solution for the two-body problem.

Working out the eigenvalue problem numerically is the
most direct way to the exact solution. For example, a di-
agonalization technique which makes use of Lowdin's
partitioning method has recently been used to include
intercell interaction in the theory of Auger spectra from
polymeric chains. Also, Navarro and Wang have recent-
ly introduced an implemented diagonalization method for
the EHM solution of a dilute (few particles) system.

If one is not interested in as much detail as is contained
in the single eigenvalue/eigenvector, Green's functions
are the usual shortcut to provide more compact informa-
tion such as, for example, the density of states. Accord-
ingly, we present here a Green's function method for the
solution of a two-particle EHM, and investigate the effect
of off-site interactions on the density of states. The
method (valid for arbitrary dimension, lattice, and in-
teraction) bypasses diagonalization techniques and gives
directly the interacting two-particle Green s function, in
terms of noninteracting propagators. It extends to the
case of two particles the approach introduced by Calla-
way and Hughes for a cluster of impurities in a lattice,
and we believe that it has a number of potential applica-
tions. An obvious occurrence of a two-body EHM prob-
lem arises in the theory of Frenkel excitons, where the
interaction is attractive. However, the case of Frenkel
excitons is deferred to future work, because electron and
hole must belong to different bands. Below we shall con-
centrate on the simpler case of Auger core-valence-
valence (CVV) line shapes, where the need for an exten-
sion of the Hubbard model has been recognized only re-
cently. This is of some general interest because it allows
the direct observation and measurement of the interparti-
cle interaction strength in the valence bands of solids,
and their distance dependence.

The acronym CVV is used for those Auger transitions
that produce two holes in valence states. The basic
theoretical framework for these transitions was intro-
duced by Cini and Sawatzky, and is referred to as Cini-
Sawatzky theory (CST) in the literature. Typically,
intra-atomic Auger processes (where the primary core
hole and final-state holes belong to the same atom) dom-
inate, while interatomic transition rates are smaller by or-
ders of magnitude. Thus two holes are created at one site
of the lattice. Complications arise in partially filled
bands, which polarize around the primary hole, leading
to many-body effects; ' however, in completely filled
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bands, all that remains is a two-hole process. Therefore
the line shape of solids with completely filled bands de-
pends on the local density of states of the two final-state
holes, which are created on one atom, where they repel
each other strongly, and may subsequently delocalize into
the crystal. In this paper, we specialize to the case of
filled bands.

In this case, CST is based on exact solutions of two-
body problems for an Anderson Hamiltonian" and a
Hubbard model, ' ' and the relationship between the
two formulations has been examined. ' ' With an ap-
propriate account of multiplet effects, ' the CST was ade-
quate until recently the improved resolution and a more
accurate energy referencing of the experiments allowed
the observation of small but interesting discrepancies, '

which apparently can be rationalized with off-site interac-
tions. ' ' Thus here we apply our EHM Green's func-
tion solution to Auger CVV transitions from filled bands.

We state now the plan of the paper. In Sec. II we de-
scribe our mathematical approach, that for a two-body
EHM problem. In Sec. III we discuss the general proper-
ties of the solution, by using a simple cubic lattice as a
numerical test case, and the relevance of off-site interac-
tions to the theory of Auger spectroscopy, in the light of
current theoretical treatments and recent experimental
evidence. Finally, we report in Sec. IV our concluding
remarks and directions for future work.

We rewrite the interaction terms as

g V(r)~R1', R+ri, )(R1',R+r$ ~,

lR, R+r) =N '"ge '~'"+'"' Q, r),
Q

(3a)

where N —+ ~ is the number of sites, and

~Q ) g r/2(N) —i/2 y —iq
~Q ) (3b)

In the ~Q, r ) basis, the Hamiltonian takes the form

H= g H~, H~=HP+HP
Q

where

I-IP= y ~Q, r)Wg, (Q, r'~,

with

where r describes the relative motion of the two particles
and belongs to the lattice of relative motion, which we
call the r lattice. Next, we go to an excitoniclike picture:
omitting spin labels, we introduce

II. FORMALISM

A. Two-particle Green's function

We allow for a general interaction V(r) and consider
the extended Hubbard model:

Wg e
—ig (r —r')/2 g eiQ. (r —r')[E(Q q)+F(q)]1

rr' N
q

H~= QV(r)~Q, r)(Q, r~ .

(5b)

Rrks

H = g E(k )n«+ g V(r) nit t na+ r &,
Due to translational symmetry, the most general two-

particle Green's function can be written as

where E(k) are the Bloch energies of a nondegenerate
band, nk, =a&,a&„nR,=aR,aR, with s and R spin and site
labels, respectively. We give a convenient and exact gen-
eral method to determine the interacting two-particle
Green's function

0,0+r

where

1 R R+r' =—ge ' ' e'=1
z —H ' N

Q

XG~ (z),

Gtt ~ tt a (z =E—tO+ )

1R, T, Rz T R, T, Rz T) .
z —H

Qg(zl=(Q, r Q, r') .1

z —HQ
(8)

To proceed, we consider the chain of operator identities

co HQ

1

co HQ0

1 1

HoQ co —H

1 1

co H co H0 0

1 1 1

co —HQ ~—HQ co —HQ0 0
+ V+V V

co HQ co H0 0 co HQ cc) HQ0

We expand the inverse operator inside the large parentheses, and summing the geometric series, we end up with

1 1 1 1 1

co —H~ co —HP r)) —H() 1 —V[1/(co —
H() )] co —

H()
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By taking matrix elements on the
~ Q, r ) basis, we eventu-

ally get
~i ) —= ~Q, i) =N,-'" y ~Q, r, ),

r, E. shell i

(15)

Gg, (z) =gg, (z)+A/, (z),
where g~, is given by Eq. (8) for HP =0, and

and we denote them by italic site indices. A cluster in the
Q lattice has an equivalent cluster with many fewer sites,
where Eq. (11), with italic indices, still applies. We may
write

Ag, (z) = y gq(z) I —M~(z)

Here, I is the unit matrix and

[M~(z)]„=V(r)gg(z) .

V(j)gi~ (z) . (12)

Ap„(z) = y gg(z)
1I.

I—M~(z)
L

with

V gi~(z), (16)

B. Use of symmetry

Point symmetry can reduce the size of the inversion
problem associated with M. We illustrate this by choos-
ing a special ease of Eq. (7), namely,

(0,0
1

R,R+r =—y e-'~ "e-'~'"Gg(z),1

z —H N
Q

(14a)

t'R(z)=(Q, O Q, rI .
1

z —HQ
(14b)

The two-particle Green s function in Eqs. (14) is sufficient
in many situations (e.g., for exciton recombination and
for Auger spectroscopy of closed bands).

The relative motion of the two particles takes place in
a lattice that we called the r lattice. The r lattice is iden-
tical to the Bravais lattice of the crystal; however, the
Hamiltonian HQ0 which describes the noninteracting par-
ticles in the Q, r) basis has a Q-dependent point symme-
try, which is generally reduced. Actually, for fixed Q, HP
describes the motion of one effective particle (of coordi-
nate r) in a distorted lattice, which we call the Q lattice.
It is this reduced symmetry that we can still exploit. The
Q lattice can be partitioned in terms of successive shells
InI of symmetry related sites. For any Q, the state
~ Q, O) is total symmetric, i.e., it belongs to the irreducible
representation I 0 of HQ0. Accordingly, the power expan-
sion of AP, (z) connects only total-symmetric states to
~Q, O). Therefore we introduce yet another lattice, called
the equivalent lattice, with sites which are totally sym-
metric combinations of those of the Q lattice, namely,

Equations (11)—(13) solve the problem; they are formally
similar to the equations which describe the motion of a
single particle on a lattice in the presence of a cluster of
impurities. We see that the size of the computation does
not depend on the physical size of the crystal, but on the
range of the potential. The present approach is particu-
larly useful if V is short ranged, because then we may
solve for the two-hole dynamics in an infinite system by
performing a matrix inversion in a small interaction clus-
ter in the r lattice. It is interesting to note that if the in-
teraction cluster is finite, we may rephrase all the two-
body problems exactly as if the motion were con6ned, in
terms of a non-Hermitian efFective Hamiltonian. This is
shown in the Appendix.

M'g„(z)=V g~„(z), (17)

where V, =V( r; ) for any r, in shell i Of course,
~Q, O) = ~Q, O). Although we have exemplified the use of
symmetry in a special case of Eq. (7), the same technique
can be applied in general.

C. Simple cubic lattice

We wish to show the method by a detailed discussion
of the local two-particle Green's function of cubium:

G„(z)=—QGttai(z)= —g Q, O Q, O . (18)=1 =1 1

N
Q

N

The relevant Bloch energies of Eq. (1) are

E(k) =cos(k„a)+cos(k„a)+cos(k,a) . (19)

x J (y„t)J„(y,t) . (21)

Equations (20) and (21) show explicitly that Q (or y) fixes
the symmetry (I) orthorhombic (y„Wy Wy, ), (II)
tetragonal (y„Wy„=y, ), (III) cubic (y„=y =y, ). The
convenience of the equivalent cluster can be easily illus-
trated by a specific example: if V(r) has spherical symme-
try, and V(r) 2a)=0, direct use of Eqs. (12) and (13)
would require the inversion of a 33 X 33 matrix, while by
using symmetry, the matrix is 11 X ll for (I), 8 X 8 for
(II), and 5 X 5 for (III). For each of cases (I)—(III), by us-
ing the recurrence relation

In Eq. (19), a is the lattice parameter, the site energy is
set equal to zero, and all energies are measured in units of
2V, where V is the nearest-neighbor hopping parameter.
The propagators gq~(z) in Eqs. (16) and (17) are linear
combinations of ordinary Green's functions gQ =gQ

1 J

of the Q lattice, where r;, r, belong to shells i and j, re-
spectively, and translational symmetry has been used. By
expressing r; —r, in terms of Q-lattice coordinates lmn,
the generic Green's function is

g~(lmn;z=E —i0+ )

1 ~ cos(lx)cos(my)cos(nz)
dx dy dz

0 z Q xcosx /@cosy Q zcosz

where y, =2 cos(Q;a/2). Alternatively, in terms of Bessel
functions,

gQ(ttmn .z) (i)™+n+Ij dt e
—i(E—iO+ )tJ (y t)

0
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)o mo no grmn( ) 'Yxl g)+1~.( )+gI i—~.(z)]+yy[g)m+in(z)+g(~ —i„(z)]+yz[glm„+i(z)+g(~„ i(z)] (22)

the generic g~(lmn;z) is given by an algebraic combina-
tion of gq(l =Omn;z) and this reduces the number of in-
dependent Green's functions to be calculated. They are'
27 for (I), 19 for (II), and 5 for (III). In addition, we used
the symmetry

gran(/mn, P —'F —iI') =( —I)'+ +"+'

I

(18) and (21) also in the trivial case V(r)=0, and com-
pared it to the numerical convolution of the noninteract-
ing one-particle Green's function; (ii) we calculated the
momenta of the interacting spectrum analytically up to
third order and compared them to the numerical momen-
ta. The results confirmed that the method is correct and
accurate.

X[g~(lmn, p;E —iI )]*

to obtain simultaneously g~ at E and —E values.

(23)
E. The dispersionless (local) limit

D. The Q integrals

The local two-particle Green's function GL(z), Eq. (18),
requires a Q integration. This was approximated by a
sum over 120 Q vectors in the irreducible ( —,', ) sector of
the first Brillouin zone, according to the Chadi-Cohen
method. ' In the actual calculation, we set z=E—iI,
with a small by finite I . This phenomenological broaden-
ing ensures fast and uniform numerical convergence of
the integral of Eq. (21) and smooths the oscillations in the
spectrum due to the finite Q sum.

We must check the accuracy of the approximate Q in-
tegral, especially when the integrand may develop bound
states outside the continuum. To this end, we considered
the folj[owing test Hamiltonian:

In certain physical problems, one needs to consider the
electron-electron interaction only at one site; this may be
due to the system being inhomogeneous, but in most
cases the reason is that configurations with both particles
at any other site have little weight. A case in point is the
description of Auger CVV transitions, where the exact
solution based on the Anderson impurity model" (in
which the two particles are taken to have a short-range
interaction U at a single site) is often used as a local ap-
proximation for the Auger Hubbard model, where an
identical short-range interaction U is taken to exist on
every site.

In the above spirit, in this section we wish to develop
the local limit of our EHM exact solutions: as far as it
applies, we can use the great simplifications inherent in

H =HTq+ V/no+, (24)

where HTB is a tight-binding Hamiltonian. In this rather
artificial problem, the particles are independent. Thus
the local two-particle Green's function is

GL S003 Soo
+ — & +

27Ti
(25)

Soo(z) =Soo (z),
while for spin up, it is Wolff-Clogston distorted:

(26)

where S+—is the one-particle Green's function: for spin
down, this is the same as for HTz,

c5l

C5

Soo(z)=Soo(z)[1 —WSoo(z)] (27)

For a simple cubic lattice, Soo (z) is known analytically
and Gi+ can be found with Eq. (25) with no need for a Q
integration. On the other hand, using

1 ~ 1
S~ (z)=—V

N z —E(q)
(28)

and the distributive property of convolutions, we get

Soo (z —E(q) )

q 1 —
VlSoo (z —E(q))

(29)

In Eq. (29) GL was evaluated by a finite (120 Q points)
summation. The two different calculations of GI+ were
in very good agreement, as shown in Fig. 1.

We did two additional checks: (i) we used the full algo-
rithm for the two-particle Green's function based on Eqs.

&=3, &=0.3

0 2 4
E/2'V

FIG. 1. Test of the accuracy of the truncated Q sum in Eqs.
(29) for singular Q summands. The truncated Q sum is per-
formed with 120 Chadi-Cohen Q points from —' of the first Bril-
louin zone. '9=3, I =0.3 in units of 2V, and V is the hopping
term. Three curves are reported: dotted [Eq. (29), truncated Q
sum, I =0.3], solid [Eq. (27), exact Q sum, I =0.3], and dashed
[Eq. (27), exact Q sum, I =0.0]. The solid curve is obtained
broadening the dashed curve.
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the neglect of dispersion and avoid the demanding (espe-
cially for the multiple band case) Q summation of Eq.
(18).

According to the definition of gQ (z) [Eq. (8) with
V =0],

1
iq. (r —r')

gQ (z) e
—iQ (r —r')/&

N z —E(Q —q) —E(q)

;Q.(r r )gi 1 ~ e
' 5(q+q' Q)N, z —E(q) —E(q')

(30)

The local approximation replaces 5(q+q' —Q) with its
average value 1/N, which yields

Q( ) ( „,( ))—= . s„,as„,1

277 1

and employs Eqs. (11), (16), and (17) with (g„.(z) ) in the
place of gQ (z). The results will be discussed and com-
pared to exact ones in the next section.

F. The case of parallel spins

of the two-particle local density of states is distorted,
with the spectral weight being transferred to higher bind-
ing energies; for U exceeding a critical value U„;, (which
depends on the type of lattice) a resonance develops out
of the continuum, near the bottom of the two-particle
band. The width of this resonance depends on the disper-
sive character of the bound state: for an impurity mod-
el, with the on-site interaction retained at only one site
(say site 0), the resonance is a 5 function (zero width).
For the periodic (Hubbard) model, the bound state can
hop along the lattice, and the resonance has a finite
dispersion width. For both cases the position of the res-
onance is the same. ' The impurity case can be thought
of as the dispersionless limit of the homogeneous (period-
ic) one. ' As the resonance develops, the spectral weight
in the band region tends gradually to zero, for progres-
sively higher U values. Now we turn to the effects of off-
site interactions.

A. Model calculations

For illustration, we computed the diagonal Green's
function

The Hamiltonian of Eq. (1) is obviously not spin rota-
tion invariant. The direct way to allow for this invari-
ance is to replace (1) by

r,Iz)=(otos otos),1

z —H
(33)

ks Rrss'

H= yE(k)n)„+ —,
' y V(r)nR, nR+„. . (31) with a Thomas-Fermi-like potential up to two lattice dis-

tances:

As far as a two particles with opposite spin are con-
sidered, Eq. (31) is identical to Eq. (1). However, Eq. (31)
also describes the parallel spin case, which we turn to
consider briefly. For the parallel spins, we split in Eq.
(31) the r=O terms from the r&0 ones; if U=V(r=O), we
have

U, r=0

V(r) = A
e

—(r/a)
0&r~2a

(r/a) '

0 otherwise .

(34)

r&0

H;„,= —,
' g UnR, + —,

' g V(r)nR, nR+„.
Rs Rrs

The first term in the right-hand side of Eq. (32) is a shift
U/2 for the site energy, and consequently a shift U for
the two-particle density of states. The other term in the
right-hand side of Eq. (32) is the off-site interaction, for
which we can essentially follow the above treatment, al-
though the group theoretical analysis requires more alge-
bra. There are a few, trivial, differences, due to the Pauli
principle: Goo, goo, vanish and the g„'s contain an ex-
change term, ' therefore in the interaction cluster the site
~Q, O) is missing, i.e., we have a "punched" interaction.

Then, we recover many of the features of the above for-
mal treatment. This is why we choose to explicitly de-
scribe the treatment of the antiparallel spin case: for op-
posite spin, there is a nontrivial competing behavior be-
tween V(0) and V(r&0), in affecting both the position and
the line shape. For parallel spins the line shape depends
solely on V(r&0).

III. RESULTS AND DISCUSSION

The effect of the local term U on the two-particle local
density of states is well known: as U increases, the shape

We take the screening length equal to the lattice parame-
ter a.

Let u be the nearest-neighbor interaction, u=V(r=a).
It is the single quantity that best characterizes the off-site
strength of V(r): a trivial example is V(r) =u= const, for
r&0, with V(0) =U. In that case, one could calculate the
spectrum by (i) distorting the noninteracting one by a
strictly one-site term equal to U —u and (ii) shifting the
result by u. Therefore we prefer u rather than A=ue as a
label for our calculated spectra.

In the numerical calculations, the energy unit is 2V,
with V the nearest-neighbor hopping parameter for the
simple cubic lattice. In this way, for V(r)=0, the one-
particle local density of states ranges from —3 to 3, the
bandwidth is W=6, and the two-particle local density of
states ranges from —6 to 6. In Table I, we report the
values of U and u in the same units, for each of the four
numerical cases we studied; the last column entries
denote the corresponding figure. These particular
choices of U and u will be useful in the next section.

In Figs. 2(a)—2(d), exact two-particle local densities of
states (solid lines) are compared to their dispersionless
limits (dashed). Figure 2(a), where U=5.46 and u=2. 84,
shows an intense peak close to the edge E/2V=6 of the
continuum, and a broader structure at lower binding en-
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5.46
9.67
9.74

14.96

2.84
2.84
4.7
4.7

2(a)
2(b)
2(c)
2(d)

g
~ ~ ~ $ ~ W g

~ % ~ ~ g ~ F g V ~

=5.46, u=2. 84:

U=9.67, u=2

U=9.74, u=

U=14.96, u=4. 7
~ I I I ~ ~ I I ~ & ~ -- ~ ~ I I I I ~ I ~I

-1 2 5 8 11
E/2Q

~ ~ I I

14 17

FIG. 2. Comparison between exact and dispersionless limit
solutions for the two-particle local density of states in the pres-
ence of off-site interaction terms, for different U/W, u/W values.
(See main text and Table I.) Energy units are the same as in Fig.
1. For all panels (a)—(d): solid line is the exact solution, dashed
line is the dispersionless limit solution. In all cases I =0.3,
W= 6, and the edge of the continuum is at E/2V=6.

TABLE I. Values of U and u used for a comparison between
exact and dispersionless limit solutions. The entries in the third
column establish a correspondence between the U and u values
and different panels in Fig. 2.

Fig.

ergy. The intense peak is the usual split-ofF resonance
that is expected from the Hubbard model; the secondary
peak is more interesting because it is due to a new bound
state, although it falls in the continuum and gains some
width from it. It disappears for u=O, leaving a very
small bandhke residue, thus we may refer to the two
structures as "the u peak, " and "the U peak. "

Thus with our choice of V(r) we find two types of reso-
nance. Pictorially, we may say that for each g value, the
solid behaves as a dimer, where one dimer site corre-
sponds to two particles on the same lattice site, while the
other represents two particles bound on two adjacent lat-
tice sites. Evidently, the number of bound states depends
on the range of the potential, and the Coulomb interac-
tion will have infinitely many of them, in analogy with ex-
citons. The above simple dimer picture will not apply
with long-ranged potentials possessing a large number of
bound states; it is then more appropriate to think of the
two-particle resonance as a composite quasiparticle pos-
sessing a rich internal structure.

In going from Fig. 2(a) to Fig. 2(b), U increases and the
u feature loses most of its weight: thus, if U is large
enough to produce split-off states and U))u, we recover
a single type of resonance. The wave function of the U
bound state is dominated by con6gurations with the two
particles on the same site, and gets an overwhelming
overlap with ~0&OJ, ).

Next, we compare the solid lines in Figs. 2(b) and 2(c).
Since the U values are almost equal, the maxima approxi-
mately line up in energy. However, in Fig. 2(c), due to
the larger off-site contribution u=4.7, the u peak is much
more evident, and is becoming split off at E/2V=6. In
Fig. 2(d), u=4.7 again, but u is much larger, and the U
peak loses weight again.

A close look at the numerical results shows that U and
u resonances have bonding and antibonding character,
respectively: the U bound state slightly moves to higher
binding energy with increasing u, but the u bound state
moves to lower binding energy with increasing U.

The dispersionless limit of the theory (dashed curves)
provides a fair approximation in all cases, reproducing
both bound states and the main features of the exact solu-
tion. However, in Fig. 2(a), the exact curve has a larger
intrinsic linewidth, and the dispersionless limit tends to
concentrate the most prominent features in a smaller en-
ergy range. In Figs. 2(b) —2(d), there is less difference be-
tween the exact and dispersionless limit curves. This is
due to the larger U values, which decrease the dispersive
broadening.

For parallel spins, the interaction, if strong enough,
can produce one (or more) resonances, but the maximum
localization achievable is a nearest-neighbor localization.
For the present model (which does not include band de-
generacy) only the u peak would be expected to show up
in the line shape.

B. Auger spectroscopy

This work was partly motivated by the need for an im-
proved theory of the Auger process in solids. Indeed, due
to the local character of the Auger transition, the key
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solid-state quantity that enters the formulation for a filled
electron band is the two-hole local density of states. Be-
cause of the presence of the Coulomb interaction and the
extended character of valence states, the two-hole dy-
namics in the CVV Auger final state rejects the competi-
tion between localized and itinerant behavior. The CST
of the Auger line shapes in solids is based on Anderson-
like or Hubbard Hamiltonians, which retain only the on-
site (repulsive) Coulomb term U. Depending on the U/W
ratio, where W is the bandwidth, the typology of spectra
can range from a featureless one (bandlike spectra), to a
sharply featured one (atomiclike spectra). In any case, U
determines the Auger line shape and the energy position
of the spectral features simultaneously. Input data of the
theory include the noninteracting (U=O) local densities
of states. These can be obtained from self-consistent
band structure calculations. Atomic multiplets and ma-
trix elements are often adequate; the solid-state screening
is introduced by reducing the Fo Slater integral, while the
other Slater integrals remain essentially unscreened in
many systems like transition metals. One can compute
Coulomb self-energies in solids reliably by standard
methods; however, most authors treat the screened Fo
value as the only adjustable parameter of the theory.
Since the band is degenerate, matrix Careen's functions
are necessary and we can build them from their nonin-
teracting counterparts in the intermediate coupling
scheme to allow for spin-orbit and Coulomb interactions;
in addition, angular momentum is relaxed by crystal field
effects. However, in many simple cases, crystal field
effects are small, the ISJ quantum numbers apply, and to
a good approximation the line shape is a superposition of
independent LSJ components. In the present work, we
adopt the same view. Therefore the following treatment
is intended for each multiplet component separately:
several spectra have been successfully interpreted in this
way. Thus, for example, the dominant intensity in the
Au and Ag spectra is given by the 'G4 term, while the 'So
component is the most atomiclike in character, i.e., the
highest U(LSJ) interaction term pertains to it.

Recent high-resolution experiments on Au (Ref. 15)
and Ag (Ref. 20) noble metals, however, have shown that
the CST framework must be refined. The unexpected re-
sult was that if we determine Fo by optimizing the line
shape, we do find a quite good one, but there is an essen-
tially rigid energy shift between theory and experiment;
on the other hand, by varying Fo, one easily removes the
shift, but at the cost of a clear worsening of the profile.

For Au (Ref. 15) the shift is about 1.2 eV. For Ag, the
situation is similar (although the best fit of the Ag Auger
line shape is not as good as the one for Au) and a shift of
about 2.0 eV (Ref. 20) clearly results.

The root of the trouble was identified' ' in the neglect
of the off-site interaction terms in the CST. This implied
that an EHM description would resolve the discrepancy
with experiment. Short of an exact solution at the time,
we used a perturbational approach, valid for a small off-
site interaction. The neat effect of the off-site terms was
to provide an approximately rigid shift of the line
shape, ' ' thus supporting the above interpretation.

We are now in a position to analyze the problem with
the exact solution, without being limited to small enough
off-site terms. Also, the present approach, based on a
Green's function formalism from the start (compare with
Refs. 16 and 17), lends itself to an analytic extension to
the multiple-band case. In the following, for both Ag and
Au, we will discuss only the U('G~), U('So) terms, as
representative of the whole multiplet structure U(LSJ)

In Table II, we report the U and u values in units of
2V used in our simulations and the U values in eV (in
parentheses). The letters in bold show the correspon-
dence between the entries of Table II and the panels in
Fig. 3. The numerical values U,u in Tables I and II are
the same: in fact we choose them having in mind the
present discussion of Auger spectra. The U values give
the same U/W ratios for our model as in the real Ag, Au
metals; this is done for both 'G4, 'So components. The
on-site values in eV for the real Au and Ag metals were
taken from the literature. ' ' In principle, refined U
values should be determined by fitting the present theory
with the actual crystal structure to the experiments; how-
ever, the current U(LSJ) are quite adequate for the
present purpose, that is, to highlight the qualitative
effects of the off-site interactions. Similarly, a realistic
calculation of u is outside our immediate scope, and the
values we use are readily obtained as a rough but reason-
able estimate from the known lattice parameters and
Thomas-Fermi screening. That the energy differences be-
tween multiplet terms are very well predicted by the CST
suggests that the ofF'-site interactions should be almost in-
dependent of the LSJ component. However, the band-
width is different for silver and gold, which gives different
U/W and u/W ratios for the two metals.

In Fig. 3, we compare the dispersionless limit of the ex-
act solution with the CST in the local version: the disper-
sionless limit results are the same as in Fig. 2, where they

TABLE II. CVV Auger spectra of Au and Ag and the correspondence between U('04), U('So), u
values, and panels in Fig. 3 (the correspondence is established by the entries in bold characters). The
actual value of U model parameters (given in units of 2V, where V is the hopping term) is fixed by the
U(I.SJ) values in eV as shown in parentheses and taken from Refs. 14 and 20. The conversion factor
to/from eV is given by the ratio of experimental (in eV) and model bandwidths. For the u model
values, see discussion in the main text.

'S,
U U

5.46 (5.2 ev)
9.74 (5.6 eV)

2.84 [3(a)]
4.7 [3(c)]

9.67 (9.2 eV)
14.96 (8.6 eV)

2.84 [3(b)]
4.7 [3((j)]
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FIG. 3. Present (Ul+JWO, u&0) and CST (UL+JWO, u=0)
theory for the Au, Ag, Auger CVV spectra; difterent LSJ terms
are shown (see main text and Table II). Energy units are the
same as in Figs. 1 and 2. The conversion to/from eV units is
made with the help of Table II ~ For all panels (a)—(d): solid line
is the present theory, dashed line is the CST theory. In all cases
I =0.6, in good agreement with experimental values. In each
panel, the energy shift between the present theory and CST line
shape is calculated as the energy difference between the maxima
of the two curves, when the CST is the best fit of the exact line
shape. The best fit procedure also fixes the CST U value.

compare favorably with the exact EHM solution. The
Lorentzian broadening is I =0.6, which in our units ac-
counts well for the usual phenomenological broadening of
the theoretical Auger line shape. Figures 3(a) and 3(b)
model the effect of off-site interactions for Au. To esti-

mate the energy shift, the U value in the (dotted) CST
curve was determined to give the best fit of the disper-
sionless limit profile. The best CST fits are obtained at
lower U values than those in Table II. The energy shifts
obtained in this way are in good agreement with those
obtained comparing CST to experiment. For Ag, Figs.
3(c) and 3(d), a similar energy shift between dispersionless
limit and CST is found. For both Ag and Au, the search
of the best CST fit gives consistent values of the energy
shifts for the two LSJ terms. In summary, the overall
eft'ect of off-site interactions is twofold: (a) an energy
shift between the two-particle local density of states as
calculated in the present theory and the CST Auger line
shape, implying that the EHM provides the sought gen-
eralization of the CST to explain both line shapes and the
absolute positions of spectra and (b) the line shape is also
modified. In order to go beyond the present qualitative
argument, a proper extension of this theory to degenerate
bands is needed. Such a generalization is currently under
way.

IV. CONCLUSIONS

We have proposed an exact Careen's function solution
for two particles on a lattice interacting with an arbitrary
law V(r). The method is valid for arbitrary dimensions
and lattice structure, and generalizes the Kanamori solu-
tion for two particles in the Hubbard model. Two-body
problems are usually dealt with by direct diagonalization
of the Hamiltonian: the method shown here bypasses the
eigenvalue problem and determines directly the two-
particle propagators. Model calculations for a single-
band simple cubic lattice with a Thomas-Fermi-like
repulsive interaction demonstrate the practical usefulness
of the approach. The general aspects of the solutions
have been compared with the results of the Hubbard
model and with the dispersionless or local limit of the
theory. As a first application of the method to a physical
situation, we examined how off-site interaction terms can
modify the current theoretical description of the Auger
decay in solids. By using a Thomas-Fermi-like potential,
we have modeled the 'G and 'S components of the Au
and Ag CVV line shapes, and the results support a previ-
ously proposed explanation of the energy shift between
the CST and experiment. This explains the absolute ener-
gies of the experimental features. However, only minor
changes in the line shapes are obtained, which is good,
since the shapes already agreed well with experiment.
However, these minor changes are qualitatively
significant and, with other interparticle potentials V(r),
the present theory improves over the previous results
both qualitatively and quantitatively. In general, one
finds that the two-particle (or two-hole) resonance
possesses an internal structure, leading to several (possi-
bly infinitely many) bound states, instead of just one. The
method is always more convenient than a direct diagonal-
ization of the Harniltonian, and is particularly suited for
a short-ranged V(r); for very long-ranged potentials,
when direct inversion in the interaction cluster becomes
dificult, we may consider perturbation-theory-based
treatments of the long-distance tail of the interaction.
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Besides, we are currently working out extensions of the
present approach to multiple bands, in order to deal with
a variety of problems.

APPENDIX

Equations (11) and (13), specialized to the local case of
Eqs. (14), give a simple visualization of the concept of in-
teraction cluster. In fact, let us define

where

I'g„„(00;z)= & r=O~ [z—&O(z)] '~r=O&

1 &~(z)
k=O

k

(A4)

and U=V(r=O). Indeed, by expanding and using (Al),
we get

V~.(z) =zV(r)g~. (z)

and introduce the effective Hamiltonian

(A 1)
I g„„(00;z) =—[1+V Gg(z) ],1

(A5)

M(z)= y~(z)lr)&r'I .

Then we can show that

Gg (z) = [zrg„„(00;z)—1]U-',

(A2)

(A3)

which is equivalent to (A3). Thus, by using a non-
Hermitian eff'ective Hamiltonian &~(z), we may refor-
mulate the problem in such a way that the motion is
confined in a cluster, whose size is fixed by the range of
V(r).
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