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Adaptive coordinates are shown to be effective in allowing the accurate calculation of structures and
interatomic forces for solids containing first-row atoms using relatively small orthonormal sets of basis func-
tions. Several polymorphs of SiO, are studied as illustrative test cases.

An enhancement of the widely used plane-wave pseudo-
potential approach to electronic-structure calculations was
recently introduced by Gygi to deal with the highly localized
nature of the orbitals of first-row and transition-metal
atoms."? Electron wave functions are expanded in plane
waves in a generalized curvilinear coordinate system. Trans-
formed to ordinary Euclidean coordinates, the spatial fre-
quency of such a “plane” wave becomes a varying function,
and surfaces of constant phase are no longer planes. When
the parameters describing the coordinate transformation are
allowed to adapt to minimize the energy of the system, spa-
tial frequencies tend to be peaked where occupied atomic
orbitals are localized.

The coefficients of a set of plane waves are mapped by
the discrete Fourier transform to values on an evenly distrib-
uted mesh of points in coordinate space. The evenly spaced
mesh in curvilinear coordinates becomes a variably spaced
mesh in Euclidean coordinates, and the points tend to be
dense within localized orbitals, and sparse in open regions
away from atoms and bonds. The effect of the coordinate
transformation may be viewed as concentrating the varia-
tional freedom represented by the wave-function expansion
coefficients where it can do the most good.

Gygi showed that an implementation of the density-
functional formalism within the local-density approximation
(LDA) with curvilinear plane waves retains all the most im-
portant advantages of ordinary plane waves, including basis
orthogonality, absence of Pulay forces, and the ability to use
fast Fourier transforms and the Car-Parrinello (CP)
approach’ to efficiently optimize wave functions and atomic
geometries.

The examples Gygi used to illustrate his adaptive coordi-
nate method were small molecules (CO and H,O) in large
supercells, for which he obtained large enhancements of the
effective plane-wave cutoff energy.” The research reported
here was undertaken to test this approach in the context of
solids, where the atoms with localized orbitals are distributed
throughout space. First, it was unclear to what extent cutoff
enhancement would survive in the face of competition
among many atoms. The second issue is more subtle, al-
though somewhat related: The coordinate transformation is
parametrized in a totally unbiased fashion by the coefficients
of another set of plane waves.> While these variables have
no explicit coupling to the atoms or electrons, optimizing
them in connection with a finite set of electron basis func-
tions has the effect of indirectly introducing a coupling. In
principle, “coordinate modes” could mediate a spurious in-
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teratomic force, and it is crucial to know the magnitude of
this effect to assess the accuracy of the method. A feasibility
demonstration of the application of adaptive coordinates to
solids in an all-electron context including cores has recently
been reported, but these questions were not addressed.*

SiO, was chosen as the primary test case, both because of
the author’s interest and because it is particularly challenging
in terms of the questions discussed above. My independent
implementation of the method follows Gygi’s formalism in
most details, and will be fully described elsewhere.’ In par-
ticular, Gygi’s shear elastic energy tending to resist coordi-
nate deformations away from Euclidean was retained, with
strength proportional to a modulus gL, .2 A fictitious mass
was introduced so that the coordinate parameters could be
included as additional dynamical variables in the damped CP
dynamics used for the wave-function coefficients and the
atomic positions, and all these variables were advanced si-
multaneously at each time step. The Poisson equation is non-
trivial in curvilinear coordinates, and the Hartree potential
was calculated exactly using the preconditioned conjugate
gradient method at each time step. Since Bloch wave vectors
in an irreducible wedge were used for Brillouin-zone sam-
pling, forces on the coordinate transformation parameters
and on the atoms were symmetrized according to the space
group of the solid. Norm-conserving pseudopotentials com-
parable to those of Bachelet, Hamann, and Schluter were
used,® with s nonlocality for O and s and p nonlocality for Si
implemented in the fully separable Kleinmann-Bylander
form.” Ceperley-Alder exchange and correlation as param-
etrized by Perdew and Zunger were utilized.®

Convergence enhancement is illustrated in Fig. 1 for ideal
B-cristobalite with a lattice constant of 7.39 A chosen to give
the normal Si-O bond length of 1.6 A (real B-crystobalite is
a distorted form with a smaller lattice constant).’ The total
energy of this system is plotted as a function of the cutoff
energy of the wave-function plane-wave basis set for con-
ventional and adaptive-coordinate calculations using identi-
cal pseudopotentials. The coordinate transformation plane-
wave set is cut off at 5 Ry independent of basis set cutoff for
consistency, and fge,,=2X107%. The total energy con-
verges dramatically faster using adaptive coordinates. It is
possible to calculate the effective cutoff as a function of
position from the determinant of the Riemannian metric ten-
sor, and the maximum effective cutoff is also shown in Fig.
1. The maximum grows much less rapidly than the average
cutoff, with the enhancement factor dropping from 5 to 2 as
the average cutoff grows from 8 to 55 Ry. Clearly, when the
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FIG. 1. Total-energy convergence for conventional and adaptive
plane-wave calculations, and maximum effective cutoff for Si,O, in
the ideal B-cristobalite structure.

calculation is well converged with ordinary plane waves,
there is no energy to be gained from deforming the coordi-
nates. Published plane-wave SiO, calculations with norm-
conserving pseudopotentials employ cutoffs from 40 to 70
Ry.!%12 An adaptive calculation with an average cutoff of 20
Ry and a maximum cutoff of 64 Ry should be comparably
well converged, and requires only 1 as many basis functions.
The ““ultrasoft” method, which abandons norm-conservation
and basis orthogonality in favor of a form of augmentation,
also converges comparably well for Si0, .

A better qualitative understanding of the adaptive behav-
ior of the method may be had by examining the spatial dis-
tribution of the enhancement. Figure 2 shows a contour plot
of the distribution of effective cutoff in a-cristobalite.
a-crystobalite has a tetragonal structure consisting of four
vertex-sharing SiO, tetrahedra arranged in an alternating spi-
ral structure around the ¢ axis.” There is no simple plane
intersecting several atoms. The plot in Fig. 2 is in the b-¢
plane, showing two unit cells in the b direction, and offset
from the origin by 0.75a. This plane passes within 0.06 A of
a pair of O’s in each unit cell, and their locations are clearly
seen as the four maxima in the cutoff plot. The Si’s bonded
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FIG. 2. Spatial dependence of effective cutoff (in Ry) for
a-cristobalite. Average cutoff is 20 Ry.

FIG. 3. Volume dependence of total energy for MgO and two
SiO, polymorphs. Differences among the three MgO plots are ex-
plained in the text.

to these O’s are 0.26 A above and below the plane, and their
projected positions are indicated on the plot. In this calcula-
tion the average cutoff is 20 Ry, and slightly more aggressive
adaptation than described above is obtained by increasing the
coordinate cutoff to 8 Ry and decreasing gtgpeq, to 1X 1074,
The maximum and minimum effective cutoffs are 70 and
13.6 Ry. The lack of enhancement of the Si’s is consistent
with the fact that bulk Si with this pseudopotential would
already be well converged at the minimum effective cutoff.
Bulk Si done with adaptive coordinates in fact shows mini-
mal adaptation, with the effective cutoff ranging from 8.9 to
11.2 Ry for an average cutoff of 10 Ry.

To quantitatively test the adaptive coordinates in the con-
text of solids, structural properties were calculated for sev-
eral test cases. The simplest is the rocksalt-structure oxide
MgO, for which wave function and coordinate cutoffs of 25
and 5 Ry were used, along with two special k points.14 The
Murnaghan equation of state!® gives an excellent fit to the
results over a wide range of lattice constants, and energy vs
volume fits for three calculations are shown as the leftmost
curves in Fig. 3. The solid, dashed, and dash-dotted curves
correspond t0 fgpear=2, 1, and 0.5X 107 %, respectively. The
predicted lattice constants of 4.103, 4.111, and 4.121 A and
bulk moduli of 155, 153, and 150 GPa are nearly equivalent
compared to the experimental values of 4.21 A (Ref. 9) and
160 GPa,'® and the differences from experiment are well
within the range one expects for pseudopotential-LDA calcu-
lations. The reason for showing all three is to call attention to
the elastic energy that Gygi introduced to stabilize the
adaptation of the coordinates for his small-molecule calcula-
tions.? The magnitude of the energy is 7.70, 4.97, and
3.09%x 1073, respectively, and accounts for part of the up-
ward shift of the first and second curves. The other part of
the shift is increased LDA energy with increasing stiffness.
Examining the maximum effective cutoff for the MgO cal-
culations, it is seen to vary significantly with volume for
Hshear=5 X 1073, increasing from 68 to 78 Ry over the range
shown in Fig. 1. For ptge,,=2X% 10" %, however, it is nearly
constant. The volume dependence of the cutoff is clearly a
result of competition for wave-function degrees of freedom
among the O atoms as discussed earlier. The volume-
dependent shift of the energy curves relative to each other
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FIG. 4. Reference 80-Ry plane wave (A) and two 25-Ry adap-
tive coordinate calculations (B,C) for a-cristobalite, offset for clar-
ity. Each dashed curve repeats the above solid curve.

can be interpreted as a spurious repulsive interatomic force.
However, fgeor Of 2X 1074 has the important effect of lim-
iting the range of the competition, thus removing the spuri-
ous force while still allowing substantial adaptation.

The other curves in Fig. 3 show energy vs volume for two
SiO, polymorphs, a-quartz and a-cristobalite. The three
plots were combined to emphasize the extreme range of
compressibility spanned by these three materials, and to al-
low the reader to appreciate that a-cristobalite poses an ex-
tremely sensitive test of interatomic forces. In MgQO, both
Mg-O and O-O contacts are essentially at their ionic radii,
and volume change involves only stretching and compress-
ing these distances. a-cristobalite, on the other hand, has less
than 0.01 A change in bond length over the entire range of
volumes in Fig. 3. The volume change is entirely accommo-
dated by rotations of the SiO, tetrahedra, with the Si-O-Si
bond angle changing from 120° to 170°, and hence involves
weak bond-bending forces and distant second-neighbor Si-Si
interactions, leaving a-cristobalite extremely soft. a-quartz
is an intermediate case. Both SiO, calculations were done at
the experimental c/a ratio.

Figure 4 compares several calculations for a-cristobalite
on an expanded scale. To provide the most consistent pos-
sible reference, a conventional plane-wave calculation with
the same pseudopotential and an 80-Ry cutoff was carried
out, using one special k point'* and fully relaxing all internal
coordinates. These calculated points are shown with curve A
in the plot, and lie extremely close to the Murnaghan fit. This
fit is shifted and repeated as the dashed line of curves B,
where it is compared to the adaptive coordinate points and fit
(solid) calculated with pger=2X10"* and cutoffs as for
MgO. The considerable scatter of the points is due to the
passage of discrete wave-vector stars through the cutoff
sphere as the volume is changed, and is much greater for the
small basis of the adaptive calculation than for the 80-Ry
cutoff, where the outermost stars have very little weight in
the wave functions. In fact, what is plotted is not the LDA
energy alone, but the sum of it and the elastic energy of the
coordinates. While at first glance this seems like an arbitrary
and unphysical procedure, note that the function which is
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minimized by the damped CP dynamics is this entire func-
tion, so that only this sum is in fact variational. While the
elastic energy changes little on the average over the volume
range, the “truncation noise” in it, or the LDA energies taken
separately, is considerably greater than that of the sum. The
magnitude of the elastic energy, incidentally, is 0.016 har-
trees per SiO,, exceedingly small compared to the total en-
ergy. The dashed curve of the set C is the solid B fit
(shifted), which is compared to the energies and fit (solid)
computed with three special k points. The truncation noise is
considerably reduced, and the curvature is slightly increased.

A few adaptive calculations at different c/a ratios indi-
cated that the energy minimum was very close to the experi-
mental value, but a complete two-parameter energy surface
was not explored since this was not the main purpose of the
present research. Within the fixed c¢/a constraint, lattice con-
stants a of 4.94, 4.93, and 4.92 A were found for calculations
A, B, and C, compared to the experimental value of 4.96
A.Y7 The curvature of E(V) at fixed c¢/a corresponds to the
Voigt (polycrystalline average) bulk modulus, which can be
calculated from the elastic constants and is actually quite
close to the conventional modulus for the materials consid-
ered here. Calculated values of 10.6, 11.6, and 12.9 GPa for
A through C are all small compared to the experimental
value of 16.8 GPa.'® While other calculations have been re-
ported showing closer agreement,'®13 we find the fitted
value to be sensitive to the fitting range, and note that the
absolute error is still very small by LDA standards because
the material is so soft. Average Si-O bond lengths of 1.601,
1.604, and 1.605 A were calculated compared to 1.609 for
experiment.17 Si-O-Si bond angles were 145°, 144°, and
144° compared to 145° for experiment. All O-Si-O bond
angles are tetrahedral within 1°.

For a-quartz, the calculation in Fig. 3 was carried out
with two special k points, and parameters otherwise the
same. Much less truncation noise was evident in the E(V)
points (not shown) than in Fig. 4. The brief summary of
calculated/experimental quantities is 4.87/4.91 A for a,
41.3/34.9 GPa for the Voigt modulus, 1.61/1.61 A for the
average Si-O bond length, and 143°/144° for the Si-O-Si
bond angle.'®!? Quartz is lower in energy than cristobalite by
0.03 eV per SiO, (taking cristobalite calculation C as the
best-converged result), which appears to be identical to the
experimental value.” Subtracting spin-polarized atomic en-
ergies, the cohesive energy found here for a-quartz is 21.86
eV.

Calculations with gige,,=1X10"* for a-quartz gave re-
sults that were comparable to those quoted above. The result-
ant slight increase of the adaptive coordinate competition
apparently did not introduce significant systematic errors.
For a-cristobalite with one k point, however, the truncation
noise was amplified by the increased coordinate adaptation
to the point where meaningful fits could not be made. Cal-
culations attempted for both materials with an average basis
function cutoff of 20 also suffered from this problem. None-
theless, these calculations gave good bond lengths and
angles, and these parameters may be entirely satisfactory for
calculations at constant volume where internal structure is
the principal desired result.

We note for completeness that the average cutoff energy
for the expansion of the electron charge density was gener-
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ally kept at four times that of the wave functions. This pro-
cedure is guaranteed to avoid aliasing errors in its discrete
Fourier transform, as in conventional calculations. However,
several geometric quantities entering the calculation of the
kinetic energy in curvilinear coordinates in principle contain
arbitrarily high multiples of the maximum spatial frequency
of the transformation itself. The same is true of the Laplacian
that enters the Poisson equation. In addition, the pseudopo-
tentials can contain high spatial frequencies, and were ap-
plied directly on the adaptive coordinate mesh. The magni-
tude of possible aliasing errors connected with these terms
was tested by doubling the cutoff for the charge, which de-
creases the discrete Fourier transform mesh spacing by
1/\/5 for the entire calculation, and found to be less than
10~ * hartrees per SiO,.

In summary, the adaptive coordinate method has been

shown to allow the treatment of solids containing first-row
atoms with small orthonormal basis sets. A potential source
of systematic errors has been identified, but these errors have
been shown to be controllable so that even the effects of very
weak interatomic forces can be correctly described. The
reader should note that the systematic errors inherent in the
pseudopotentials themselves are rarely examined so criti-
cally. One can conclude that Gygi’s approach should prove
useful for a wide variety of interesting solid-state calcula-
tions.
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