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Static polarizability associated with multipole surface plasmons in metallic surfaces
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An Euler-Lagrange-type equation is solved to different orders for a plane metallic system perturbed
by the external operator q used previously in a sum-rule calculation. This approach managed to
reproduce to within a few percent the multipole surface-plasmon energies. The jellium model is
used for the positive ionic background and local-density functionals for the Hamiltonian. Prom the
zeroth-order Euler-Lagrange equation a self-consistent ground-state density is obtained and used in
the first-order equation to obtain the induced density. Prom the induced density, several aspects of
the system response are considered and special attention is focused on the static polarizability.

I. INTRODUCTION

Recent inelastic reHection electron scattering experi-
ments on smooth Na, K, and Cs surfaces have confirmed
the existence of multipole surface plasmons predicted
previously by several theoretical works. These modes
are associated with electronic density Huctuations that
are peaked at the surface region and have a decreasing
oscillating amplitude towards the interior of the metal.

The aim of the present work is to complete the analysis
of some of the topics treated in a previous paper, which
addressed the study of the multipole collective surface
modes within a sum-rule (SR) calculation. The SR ex-
pressions have often been used to discuss global prop-
erties of the random-phase approximation spectral distri-
bution or strength function S(E) in terms of its moments.
The strength function is the linear response of the sys-
tem to an external excitation operator Q. It has been
demonstrated that the two energies E~ and Eq de6ned
by Es(Q) = /ms/mz, Ez(Q) = gmz/m z, where m&
is the kth energy weighted moment of S(E), are upper
and lower bounds of its centroid and determine an upper
bound of its variance. The more collective the nature of
the excited state, the closer the values of the E3 and Eq
energies.

Reference 3 was devoted to the calculation of the E3
energies often called "the sudden limit. " The perturba-
tion is provided by an external operator Q, concentrated
in the surface region. In the present work, with the same
operator a variational calculation is performed and some
complementary topics related to multipole plasmons are
addressed.

II. SELF-CONSISTENT GROUND STATE
AND INDUCED DENSITY

provides the ground-state (g.s.) density of the perturbed
system. The Lagrange multiplier p, (the chemical poten-
tial) is used to fix the particle density. Atomic units (a.u. )
will be used from now on unless otherwise stated. An
extended Thomas-Fermi approach for the kinetic term
as well as a Slater plus Wigner expressions for the ex-
change and correlation contributions are chosen within
the local-density function s(n). If the electronic density
is expanded in powers of A, n(r') = no(r) + An~(~) +
Eq. (1) can be analyzed for diferent orders of A.

In the limit z —+ —oo, the unperturbed g.s. no is con-
stant and known for a given metal (let's call it no), and
the chemical potential measured from the bottom of the
Coulomb potential inside the metal is given by (see Ta-
ble I) p = p, —U(r) ~,=--, where U(r) is the total direct
Coulomb potential.

Figure 1 shows (full line) the g.s. electronic density
for Na, K, Rb, and Cs and Fig. 2 for Al. There is a
clear difFerence between the electronic density for alkali
metals and that of Al, since no maximum structure near
the jellium edge (at z = 0) appears in the case of Al.
This fact meant that the electronic density for Al could
be approximated very well by the following function:

no
np(z) = (2)

with h = 0.65 a.u. (dashed line), in contrast to the case
of alkali metals. For comparison, the analytical approx-
imation given by Eq. (2) is also shown for alkali metals.
The b parameters for Na, K, and Cs are taken from the
fit of the polynomial approximation to the experimen-
tal data in Ref. 1 for the surface monopole modes and
the analytical expression obtained using Q, = e'~'~e~' (q
is a two-dimensional momentum) and Eq. (2) in a SR
calculation in the low q limit, given in Ref. 8 by

If e is the energy density of the unperturbed system,
A is a small parameter and n is the number of electrons
per unit volume, then the solution of the Euler equation,

Bs n)
Bn

+AQ= p,

va(q) = " [1 —qb'ln(2)],
+2m*

where rn* is the electronic effective mass and mz the
plasma energy.

In the Rb case, no experimental data were available
and the b parameter was adjusted to the numerical
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III. STATIC POLARIZABILITY

The m z sum rule is given by
1

m t ———— dz f (z)g(z),

where g(z) has been defined as Q = e'~'
( ~. A h r= e '
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where V„, is the potential obtained from~~ V„,[n]
s„,(n), where s„, is the exchange-correlation contri-

bution to the electronic energy density. For monopole
modes, 4;„g is peaked at a positive z value in such a
way that the greater the value of q, the lower the over-
lap between the g.s. electronic density and the induced
potential, producing a negative slope in the monopole
surface dispersion relation. In the multipole case, it has
nodes along the z axis and is peaked slightly inside the
metal (as a consequence of this, a positive slope of the
dispersed energy results).

Finally, taking advantage of the simple relation be-
tween the m q SR and the static polarizability, given
by cr(q) = —2m q(q), a study of the variation of n as
a function of q and r, has been made. A nearly linear
variation of the polarizability (multipole case) with the
momentum q is obtained. This behavior agrees with the
classical result obtained for monopole modes given by,
nc~(q) = —z~ . There is even a similarity between the
slopes (0.22 and 0.16 a.u. for multipole and monopole,
respectively). Furthermore, this classical value of cr (and
m q ——z~ ) together with the one obtained for mj in the
same classical limit given by mj ——~ ', produces the
nondispersed classical value of the ordinary surface plas-
mon energy, Eq ——~ . A very different result is obtained
for the multipole case if the same procedure is followed
to obtain the classical undispersed plasmon energy.

In the multipole case, if the kinetic, exchange, and cor-
relation terms are removed &om Eq. (1) the solution for
f (z) is no longer a 8-type function as one would expect
for a classical incompressible system; that is to say, there
is not the classical limit for these multipole modes or in
other words, the multipole mode energy at q = 0 is not
of a purely Coulombic nature, as is the case for ordinary
surface or bulk plasmons, but instead it has a residual ki-
netic contribution that makes the to(q = 0) value greater
than the typical surface frequency m„/V2.

Figure 7 compares the variation of the static polariz-
ability (as a function of r, ) of monopole and multipole
modes. They behave quite differently; the denser an elec-
tron gas, the greater the polarization by monopole per-
turbations, while in the case of multipole perturbations
the opposite is true.

IV. CONCLUDING REMARKS

The comparison of Eq and the sudden regime energy
E3 calculated in a previous work provides information
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FIG. 7. Comparison of monopole and multipole static po-
larizabilities as functions of r, .

about the variance of the excitation spectrum and also of
the adequacy of the operator Q in selecting eigenmodes.
As Fig. 5 shows that the E3 energy is closer to the exper-
imental data, we infer that the main structure of peaks
of the spectral function S(E) is located at high energies.

Although some of the results obtained for Al are dif-
ferent from those results obtained for alkali metals, as is
the case of the g.s. density, the induced density (larger
for monopole modes) and the low static polarizability,
they do not justify the absence of direct experimental
inelastic electron scattering results for multipole modes.
Taking into account that a large electronic diffuseness at
the surface [given by the h parameter in an analytical ap-
proximation of the g.s. using Eq. (2)] gave approximate
results for the surface monopole modes in Ref. 8 where a
trial b = 1.60 a.u. was used, we conclude that the jellium
model is not appropriate for representing surface lattice
layers in the case of dense &ee-electron-like metals and
that a more realistic inclusion of the ionic background,
especially at the surface region is necessary to increase
the diffuseness of the electronic density otherwise treated
by a steep function of z [see Fig. (2)] in a self-consistent
jellium calculation. This increase of the electronic dif-
fuseness would increase the calculated value of the work
function improving its fit with experimental results (see
Table I).
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