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The energy band gaps of silicon-carbon alloys are calculated using a GW approach with local
density approximation (LDA) eigenfunctions. These band gaps are compared with those calculated
with nonlocal corrections for the exchange-correlation energy functional. For small concentrations
of carbon, it is found that carbon-silicon alloys are semiconducting with a very small band gap.
These results are consistent with former LDA calculations, which predicted that the band gap of
carbon-silicon alloy at low carbon concentrations is smaller than the band gap of pure silicon.

It is desirable, from the standpoint of band-gap en-
gineering, to make alloys of carbon and silicon similar
in concept to alloys of germanium and silicon. Unfortu-
nately, C in Si has a very low solubility. This problem
has recently been overcome apparently first by Posthill
et al.,! and then by Iyer et al.2 Posthill et al. used
a plasma-enhanced chemical vapor deposition technique
and fabricated 7 pm thick layers, with a carbon concen-
tration of 3.5%. Iyer et al.?2 used solid source molecular
beam epitaxy to grow 0.2-0.3 % carbon alloys with Ge to
compensate strain. More recent work3—® has produced a
variety of different samples including much higher con-
centrations, and samples which show no signs of silicon
carbide formation.

Recently, Demkov and Sankey® have studied silicon-
carbon alloys in the framework of the local density ap-
proximation (LDA) formalism. They found that both
random and ordered silicon-carbon alloys have smaller
band gaps than pure silicon for low carbon concentra-
tions. This was found to be true even in the completely
relaxed geometry in which the net force acting on ev-
ery atom is zero. In fact, at approximately 10% carbon,
silicon-carbon alloys were predicted to become metallic.
This is a quite unexpected result since both silicon car-
bide and diamond have larger band gaps than pure sili-
con. Thus, using a simple interpolation, one could expect
that the energy gap of the silicon-carbon alloys would in-
crease with the carbon concentration, as shown by Soref.”

The above results were based solely on LDA calcula-
tions which are known to considerably underestimate en-
ergy band gaps. If the LDA predictions are correct, the
potential technological applications of Si-C alloys may
be quite different than expected. Therefore in this paper
we have checked the LDA predictions for silicon-carbon
alloys using a GW approach. It is well known that the
GW method gives energy band gaps in excellent agree-
ment with experiment, as shown by several authors®711
for such semiconductors as Si, Ge, GaAs, AlAs, and dia-
mond. An important observation from these calculations
is that the quasiparticle energies in a semiconductor can
be obtained from LDA wave functions. In the first order
approximation, the quasiparticle energies €, are given
by
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where ¥ is the self-energy operator, V. is the exchange-
correlation potential, and €, and v, are LDA eigenval-
ues and eigenfunctions for the nth electron band. As
pointed out by Godby et al.® the above expression cor-
rectly describes contributions to the quasiparticle ener-
gies resulting from nonlocality and energy dependence of
the self-energy operator.

In our calculations we have followed recent papers by
Rohlfing et al.'* and by Hott'? in evaluating the matrix
elements of the self-energy operator. We have used the
plasmon-pole approximation, together with the dielectric
function due to Falter et al.'® and experimental values of
dielectric constants €5, of diamond and silicon. The LDA
energies eI;‘BA and wave functions ¥, have been calcu-
lated using the pseudopotential method and a plane wave
basis set with an energy cutoff of 500 eV. The spin-orbit
interaction is ignored. For several compositions, we have
also carried out LDA calculations using a mixed basis set
consisting of spd localized orbitals and a small number of
plane waves. Both methods give essentially identical re-
sults. As in Ref. 6, we used soft pseudopotentials due
to Troullier and Martins.* To evaluate matrix elements
of the self-energy operator, the LDA energies and wave
functions must be known for a large number of points in
the irreducible wedge of the Brillouin zone. We calcu-
lated these quantities in two steps. First we solved the
Kohn-Sham equations for a coarse grid of k points. Next
we used the k - 5 method to determine energies and wave
functions for a very fine mesh of k points.

For comparison with the GW results, we also carried
out band structure calculations using nonlocal (gradi-
ent) corrections to the exchange and correlation energy
(NLDA). We used Becke® corrections for the exchange
energy and the Perdew!® nonlocal expression for the cor-
relation energy. Figure 1 shows the electron band struc-
ture of silicon near the top of the valence band calculated
in the LDA, NLDA, and GW approximations. We see
that the valence bands in all three methods are nearly
identical, whereas the NLDA and the GW conduction
bands are shifted upward with respect to the LDA bands.
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FIG. 1. Electronic band structure of silicon near the top
of the valence band. Solid line, LDA; dotted line, nonlocal
exchange correlation (NLDA); and dashed line, GW approxi-
mation. The top of the valence band is at 0.0 eV.
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As a result of this shift, the energy band gap increases
from 0.65 eV (LDA) to 0.90 eV (NLDA), and 1.08 eV in
the GW approximation. The experimental value of the
band gap for silicon is 1.17 eV. The difference between
NLDA and LDA band gaps for silicon is 0.25 eV. This
value is consistent with results reported by Ortiz,'” who
found that the X;. energy for silicon increases by 0.20
eV when nonlocal corrections are taken into account.

We have found that the difference between NLDA and
LDA band gaps has a similar trend for diamond and for
silicon carbide. This is illustrated in Fig. 2, which shows
the energy of the lowest conduction bands for a cubic
carbon-silicon supercell of general formula C,Sis_, as
a function of the number of carbon atoms for several
points in the cubic Brillouin zone. The carbon atoms
were placed in the unit cell so that they were as far apart
as possible. For one or two carbon atoms in the eight-
atom unit cell, the band gap is negative (i.e., metallic).
We see that the NLDA bands are shifted upward rel-
ative to the LDA bands by 0.20-0.35 eV. The shift is
approximately the same for all compositions. Therefore,
although the NLDA band gap for pure silicon is in better
agreement with experimental data than the LDA value,
the NLDA band gap of diamond (4.5 eV) or SiC (1.3 eV)
is still approximately 1.0 eV smaller than the experimen-
tal value.

Figure 3 shows the LDA electronic band structure of
cubic CSi; supercell alloys for two configurations: (a)
carbon and silicon atoms were located on an ideal dia-
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FIG. 2. The energy of the lowest conduction band at I
(0,0,0), X =(1,0,0), M *(1,1,0), and R Z(1,1,1) points
for cubic C,Sis_n supercell alloys computed within the LDA
and NLDA. The top of the triply degenerate valence band
at I is defined to be 0.0 eV. The cubic lattice constants were
determined from Vegard’s rule, with atoms placed at diamond
lattice positions.

mond lattice; and (b) the atomic positions were relaxed,
so the net force acting on each atom is zero. During
the relaxation process, silicon atoms located inside the
unit cube move toward carbon atoms, which are located
at every cube vertex. Therefore the silicon-carbon bond
length decreases from 2.25 A to approximately 2.04 A,
and the total energy decreases by 1.46 eV. We note that
the silicon-carbon bond in the relaxed CSi; alloy is only
0.15 A longer than Si-C bond in silicon carbide. This re-
duction in the bond length strengthens the C-Si bonding
state, causing a “hyperdeep” level at —13.5 eV to become
split off [Fig. 3(b)].

The energy levels above —10 eV for the unrelaxed CSiy
alloy at the I" point calculated in LDA, NLDA, and GW
approximations are compared in Fig. 4. The top valence
band (at E = 0) is triply degenerate in all three approx-
imations (no spin-orbit coupling). The electronic struc-
ture is very similar to that of pure silicon, except that
there is an “additional” band, located —0.33 eV (LDA)
and —0.11 eV (NLDA) below the top valence band. This
level, denoted by a dashed line in Fig. 4, is singly de-
generate. Therefore only two of the three top valence
bands in the LDA or the NLDA spectrum are occupied
by electrons, and the unrelaxed CSi; alloy is in princi-
ple metallic. In the GW approximation, the additional
level moves above the valence band and therefore CSi,
becomes a semiconductor with a small energy band gap
of 0.17 eV.

After relaxation of atomic positions, the LDA bands at
I’ have a very similar structure to GW bands of the unre-
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laxed CSiy alloy, with a band gap of 0.18 eV, as shown in
Fig. 3(b). However, at the R point the lowest conduction
band is 0.35 eV below the top of the valence band. There-
fore the relaxed CSi; alloy in the LDA is also metallic,
with an indirect band gap of —0.35 eV. In the GW ap-
proximation, the band gap increases to 0.29 eV, and the
energy of the lowest conduction band at the R point is
0.42 eV above the top of the valence band. Therefore the
G W approximation predicts that the relaxed CSi; alloy
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FIG. 3. Electronic band structure for unrelaxed and re-
laxed CSir alloy calculated in the LDA approximation. The
mixed basis set consisted of spd orbitals and a small number
of plane waves. For both configurations, the lattice constants
were determined from Vegard’s rule.
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FIG. 4. The energy levels of unrelaxed CSir in LDA,
NLDA, and GW approximations at the I" point.

is a semiconductor with a small direct band gap of 0.29
eV at the I" point.

One of the interesting features of the LDA electron
band gaps found by Demkov and Sankey® was an un-
usual “double-well” shape for the value of the minimum
band gap versus composition (see Fig. 12 of Ref. 6). We
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FIG. 5. The energy of the lowest conduction band of cubic
carbon-silicon alloys in the GW and the LDA approximations
for I (0,0,0) and R Z(1,1,1) points.
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have found that this feature is also preserved in the GW
approximation. Figure 5 shows the energy of the lowest
conduction band calculated in the GW and the LDA ap-
proximations as a function of carbon composition. Both
GW and LDA curves have the characteristic double-well
shape with minima for CSi; and CsSi3 alloys, and a local
maximum for silicon carbide. The GW curve is shifted
upward with respect to the LDA curve. The trend is sim-
ilar to that discussed above for NLDA energies, except
that the shift is larger for diamond than for silicon.

The results reported here provide strong evidence that
the band gap of silicon-carbon alloys is a quite complex
function of alloy composition. The band gap reaches its
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absolute minimum for approximately 10% of carbon. At
this composition the band gap is smaller than the band
gap of pure silicon. This is valid for both relaxed and un-
relaxed alloys. This phenomenon is related to the large
chemical difference of silicon and carbon, and not to the
detailed geometric distribution of atoms within the unit
cell.
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