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Monolayer instability: An upper bound for the wetting and nonwetting of a substrate
by a solid monolayer
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Continuum mechanics and computer simulations are used to study the elastic stability of solid mono-

layers. We observe microscopically the upper limits of the ratio of adsorption to cohesive energies that
allow for the wetting of the substrate by a solid monolayer using molecular dynamics. Also, structural
instabilities are found analytically in nonlinear elastic continuum models by solving the nonlinear von

Karman equations for a thin circular system (an adsorbed island) undergoing planar compression. The
instability occurs as a bifurcation at the first eigenvalue. A series of simulations over a range of adsor-
bate energies versus temperature demonstrates the existence of a stability boundary.

I. INTRODUCTION

The wetting or nonwetting of substrates by liquid ad-
sorbates has been studied extensively for a very long time,
and remains a current topic of interest. ' However, there
have been far fewer investigations of solid films. During
computer simulation studies of the microscopic proper-
ties of thin solid films, we see the results of structural in-
stability, i.e., monolayers coalescing into other forms.

Our simulations of adsorbates with sufficiently high
cohesive energies and at temperatures above their bulk
triple point form sessile drops. In the same systems at
low temperatures, we find that the solid monolayer is un-
stable, and observe the system to form terraced islands of
multilayer.

We have attempted to understand the physical origins
of the crossover from those systems that remain an elastic
monolayer to those which become thin terraced multilay-
ers. To this end, we also studied nonlinear elastic contin-
uum models. These models exhibit instabilities in the
form of eigenvalue bifurcations. For sufficiently high
cohesion in the adsorbate, solid monolayers may actually
be near such a bifurcation instability. We believe our
qualitative study suggests the existence of a ther-
momechanical instability as part of the mechanism for
the nonwetting of certain solid monolayers. Highly at-
tractive adsorbate molecules are drawn to each other
rather than to the less attractive substrate. From a com-
putational point of view, a simulation that starts as a
solid monolayer, but cannot remain so, represents a sys-
tem above the upper bound of scaled interactions possess-
ing monolayer stability. Such monolayers would not wet
that particular substrate. In the continuum model,
strong adsorbate attraction causes an internal compres-
sive stress. In elastic theory, the body buckles when the
compressive stress reaches the first eigenvalue. In our
case, the system crumbles. Eigenvalue bifurcation marks
the upper bound to the continuum model's stability.

One should note that the static buckling of the contin-
uum model is preempted in the simulations (and in exper-
iment) by thermal iluctuations. We add that feature to
the model as a linear perturbation. Physisorbed solids

that are far from this unstable region simply respond to
modest increases in temperature and compression
(spreading pressure) by the transport of molecules into a
higher position by the well-studied process of layer pro-
motion.

In Sec. II, we discuss some of the microscopic features
of layer promotion in film growth. A short review of in-
terfacial elasticity that helps guide our thinking on this

problem is given in Sec. III. We present our results from
simulation in Sec. IV A and those from elastic theory in
Sec. IVB. Section V contains our discussion of the re-
sults.

II. LAYER PROMOTION IN ADSORBATES

When a wetting monolayer is slightly compressed or
heated (the system chemical potential is increased), the
adsorbate begins a layering transition. This is to say that
some of the atoms or molecules in the monolayer are pro-
rnoted vertically to form a second layer. The atoms from
below or others from the coexisting vapor find the upper
layer to be energetically favorable. Consequently, they
reside there. Such transitions are marked by layering
coexistence, and the condition is indicated experimentally
by adsorption isotherm steps.

Our simulations show three di6'erent microscopic
mechanisms for layer promotion occurring under a
variety of thermodynamic circumstances (see Fig. l).
First and most often in strongly attractive adsorbates, we

(0) (~)
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FIG. 1. A diagram illustrating the three microscopic mecha-
nisms for layer promotion observed in our simulations: (a) verti-
cal migration at a free edge, (b) random vertical promotion of
individual molecules from increased temperature, and (c) sec-
tional (collective) layer promotion due to elastic instabilities.
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points they made is the relationship between the surface
tension y and the components of the surface stress o. , -.
For a linear elastic isothermal isotropic solid-vapor inter-
face at equilibrium,

FICx. 2. A final configuration of a solid monolayer showing
layer promotion by the (a) and (b) mechanisms in Fig. 1. The
system is 5000 atoms at a reduced temperature t = —0.36. This
is below the bulk triple point of the adsorbate.

observe the atoms on the edges of adsorbed islands to be
more likely to migrate to the second layer by simply
climbing over their interior neighbors. Second, with
sufFicient temperature, individual atoms in the interior of
the island will randomly gain enough vertical displace-
ment to thermally promote to the upper layer. This ap-
pears to be more rare than the edge migration. Figure 2
is the final configuration of a simulation for an
argon/graphite monolayer at

t =(1—T/T, )= —0.36

reduced temperature. The bulk triple point temperature
of the adsorbate is T, . Both layer promotion mechanisms
(a) and (b) of Fig. 1 are present. The simulations use the
Nose molecular dynamics algorithm described in a previ-
ous paper. The boundary is a circular system of 5000
particles surrounded by a power-law repulsive potential.

Third, we observe highly compressed solid layers to
promote groups of atoms to the second layer in a sudden
response to some structural instability. It is this final
mechanism that prompted our study. We hope to show
that this sudden upheaval is due to an eigenvalue bifurca-
tion in the elastic stability of the film. The details of our
analysis of this phenomena are given in Sec. IV.

where c; is the corresponding surface strain. The deriva-
tive By/BE; is the key to many issues. For example, in
liquids By/Be, , =0, indicating the equivalence of surface
tension and surface stress. When By/BE;J. (0, Andreussi
and Gurtin show a Oat surface to be unstable and thus
predict the conditions for surface wrinkling. Marks,
Heine, and Smith later observed the wrinkling of a
Au(111) surface under certain conditions. Recent
diffraction studies by Mochrie and co-workers show
structural changes in strained surface phases on Au(111)
and Pt(111). Spencer, Voorhees, and Davis observed
morphological instabilities in growing epitaxially strained
films. The buckling of Langmuir monolayers and po-
lymerized monomolecular films' has been studied suc-
cessfully with experiments and theory.

Elastic stress induced into adsorbed films by substrate
potentials was addressed theoretically by Huse, " and in
many simulations by Grabow and Gilmer. ' Gilmer' has
thoroughly reviewed the role of the misfit and the varia-
tion of interactions 8' on film growth. The ratio
W=E„/c,„,where e„is the potential minimum for the
adsorbate-substrate interaction and c,

„

is the same for the
adsorbate-adsorbate intermolecular potential. Gilmer
and co-workers have simulated film growth by
molecular-beam deposition, whereas our simulations
monitor the results of applying temperature and spread-
ing pressure to an originally static film. They' also simu-
late silicon using the Stillinger-Weber potential.

In our study, we are only dealing with a very thin (1—6
layers) solid films on an essentially rigid but modulated
substrate (graphite). However, we believe the work cited
above on polymers, metals, and semiconductors suggests
an important direction. That is, the structural stability of
solid adsorbed film depends strongly on elasticity as well
as thermodynamic and kinetic considerations. Wortis'
has cautioned that care should be exercised in making de-
tailed parallels between the surfaces of bulk systems and
island films of finite thickness. We have attempted to use
simulation to observe the microscopic behavior of these
films, while going to continuum mechanics to qualitative-
ly understand the stability criteria.

IV. STRESS-INDUCED RUPTURE
OF ADSORBED FILMS

III. INTERFACIAL ELASTICITY

The role of elasticity in the structure and stability of
physically adsorbed layers has rarely been a considera-
tion. However, there is considerable evidence from a
variety of surface systems that the stresses and strains in
films are important. Early reviews by Herring and Mul-
lins have clarified the thermodynamical and elastic prop-
erties of free metal surfaces. One of the many important

Recent attention to bifurcation phenomena in physics
literature has often centered on sudden changes in the
behavior of nonlinear oscillating systems. However, the
study of bifurcation theory in nonlinear eigenvalue prob-
lems also has a very rich history when applied to the sta-
bility limits of physical equilibrium. '

When very thin films are subjected to high lateral
compression, catastrophic breakup may occur. Such
high compressive forces could be achieved through
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confining surface geometries, buffer gases applying high
spreading pressures, or high cohesive forces in the adsor-
bate. In our simulations, we use two difFerent ap-
proaches. One increases the relative strength of the
adsorbate-adsorbate pair interaction relative to the
adsorbate-substrate atom-atom potential. The other con-
trols the radius of the circular simulation cell or the box
size in a rectangular cell. The contraction of the cell
walls increases the pressure within the cell.

A. Molecular-dynamics results

Most of the results presented in this paper start from a
monolayer with a high cohesion energy and a relatively
weaker interaction with a corrugated graphite substrate.
The adsorbate interaction parameter c—in a Lennard-
Jones (LJ) (12,6) potential —is increased, while keeping
the holding potential the same. With these interactions
fixed, we compute a series of simulations over a range of
reduced temperatures t. The reduced temperature in-
creases in increments of 0.10 over a range from —0.8 to
+0.2. In the Lennard-Jones system the triple point is
0.7c. The temperature series is then repeated after in-
creasing the adsorbate-adsorbate interaction (e) by fac-
tors from 2 to 10 in increments of 1.0. We computed 77
simulations in this part of the study. The ratio of the
adsorbate-adsorbate c,

„

to the adsorbate-substrate c„is
scaled from a common reference system, argon adsorbed
on graphite. With this factor we increase the strength of
the cohesion of the film as a multiple of the base
argon/graphite system. For values of the ratio 8' from
one-third to one-tenth in the range of intermediate tem-
peratures below the triple point, we find a region where
the third type of layer promotion —part (c) of Fig. 1—is
a major factor in the terracing of the film due to elastic
instabilities. This system is nonwetting as a solid mono-
layer.

It was interesting to simulate a nonwetting Quid system
to serve as a reference. Starting with an ordered mono-
layer, the system melts and equilibrates as a sessile drop-
let. Figure 3 is a picture of the final configuration. This
Quid system has c.

„

three times that of argon. The tem-
perature is just above the bulk triple point.

Figure 4 is the final configuration of the same system in
Fig. 3, except that the temperature is below the bulk tri-
ple point of the adsorbate. The simulation began with a
solid monolayer and three times the adsorbate attraction
of argon. This makes the factor 8'one-third that of the
argon graphite system. The system would not wet the
substrate because the internal cohesion of the adsorbate
was too great. However, a similar simulation remained a
solid monolayer when the 8'factor is one-half that of the
argon/graphite reference system. The interesting feature
of the configuration in Fig. 4 is the fact that the center of
the circular island has ruptured, and the formation of an
annular ring of terraced solid multilayer surrounds a
patch of bare substrate. This unusual structure is com-
mon in the range of 8 less than one-third that of
argon/graphite. The higher cohesive adsorbates do not
remain solid monolayers. As we shall see in Sec. IVB,
the maximum amplitude of the buckling displacement

FIG. 3. The final configuration of the sessile drop formed
from 5000 atoms at a temperature slightly above the bulk triple
point of the adsorbate. The adsorbate interaction is three times
that of argon. The interaction to the substrate is the same as ar-
gon to graphite. The adsorbate has formed a sessile drop with a
visible contact angle.

occurs in the central area of the film. The first region to
crumble occurs in the rniddle of the circle. These mole-
cules are then more mobile, and the film coalesces into
the annular multilayer. Other overlapping structures
form. The film has, on occasion, ruptured along a diame-
ter through the circular island and left a solid band of
terraces across the film. After many simulations, our
heuristic conclusion is that the film can only take up to a

FIG. 4. A final configuration for the system in Fig. 3 but at a
temperature below the bulk triple point of the adsorbate. The
reduced temperature is t = —0.36. The numbers indicate the
layers existing above the substrate (n =0). These contours were
drawn from atom positions of the resulting terraced solid multi-
layer.
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critical value of in-plane pressure. Once exceeded, the
film crumbles into a more tolerant multilayer or to a bulk
solid if there are sufficient atoms present. This pressure is
internally generated in these simulations, but we also re-
port that by tightening the in-plane boundaries on circu-
lar or rectangular simulation cells we have increased the
pressure externally. Similar results are obtained. In or-
der to examine the existence of such a critical compres-
sion limit, we turn to continuum mechanics.

B. Analytic studies of the continuum model

We model the film as a circular elastic continuum of
radius R and thickness h. Until the monolayer begins to
break up due to the applied in-plane stress and/or in-
creased temperature, the continuum model is quite in-
structive. The material is assumed to be isotropic and
has a Poisson's ratio (v). The perimeter of the film is
subject to an in-plane radial stress. This applied stress
substitutes for the compression of the monolayer by its
own cohesive pair interactions and a spreading pressure.
Assuming a density of atoms p with the attractive part of
the pair interaction given by

T 6
aP= —4e
r

the radial stress applied to a central core of radius ro is
approximated by

~xx 2 7 ~xy
Bp

B2$ B2$
0

Bx By
' yy B~2

and

I =[12(1—v )]

The relations between the strains, displacements, and
stresses are

2
Bu + 1 Bw

Bx 2 Bx Oxx+V~xy 7

Bu Bv Bw Bw

2 ay+Be+ Bx By
= —(1+v)cr„„,

and
2

Bv 1 Bw+ Oyy+VO xx
3' 2 3'

Converting to polar coordinates,

(rZ)'V' a'y a'w+2 a'y a'
By~ Bx2 Bxay Bxay Bx By

The components of the displacement of an infinitesimal
volume of the middle surface of the plate are (u, v, w).
The function P is the elastic stress function. The follow-
ing derivatives are the components of the accompanying
stresses divided by Young's modulus:

4cphS(ro) = — f V$2rrr dr =ca,
0

Qp =
—,'q

(2)

where a is a constant. Hence, if we take systems with an
increased pair parameter E, we increase the radial stress
proportionally.

The plate is mechanically stable unless the radial stress
reaches a critical value. At that level, the plate buckles.
In the molecular system, if the c.

„

is too great, the mono-
layer is not a mechanically stable structure. This
mechanical condition implies the thermodynamic condi-
tion that the adsorbate no longer wets the substrate. The
critical stress or critical c,, not only must exceed the elas-
tic limit but must also exceed the additional stabilizing
inhuence of the holding potential of the substrate. When
the system is driven to the buckling condition, that ends
the comparison of the continuum model to the adsorbate
system. The molecular monolayer will not resist frag-
mentation, as would a metallic plate. The point is that
the buckling conditions are an upper limit to the ther-
momechanical condition for the monolayer to wet the
substrate. In fact, one would expect thermal Auctuations
to preempt this static limit. Solutions to the continuum
model require the nonlinear elastic equations given by
von Karman. ' We follow the solution given by Stoker. '

In Cartesian coordinates, assuming the middle of the
plate is z =0, then the von Karman equations are written

g Qq+pq=0,
where

B

R Bwq=— Ih
7

and

R2d+3d
dr2 r dr

d d=O and q =0
dr r=0 r=0

(3a)

since the system has radial symmetry. The functions P
and w have continuous fourth derivatives. At the plate
edge, r =R,

p =p and r +(1+v)q
dr r=R

=0,

Coupled nonlinear equations must be solved simultane-
ously. Equations [Eq. (2)] with the appropriate boundary
conditions formulate the problem. The conditions at the
center (r =0) are

4~ Bw Bw
By Bx

r 2
B w

BxBg

where the last equation states the vanishing of the bend-
ing moment at the plate edge. Solving for p and q will
determine all physics of the problem. The stress at the
circumference is
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dp
p,

——r p +p.
dr

The radial bending stress and the bottom of the plate is

pi, =6@ii r +(1+v)qdp

and the normal defiection (buckling) is

p +p +(p —1)0=0,2d 8 d8
dp dp

which is the first-order Bessel's equation. Here

p —=A,pr/R, 8—=q&r/R, and gp=pp/g

The first-order boundary condition at the plate edge is

MOJO(AO)
—(1—v)Ji(AO) =0 . (6)

q =cq&+c q3+E q5+

p =pp+E p2+E, p4+

p =pp+& p2+~ p4+ '

(4)

In this formalism, p=pp is the value of the edge force
that starts the buckling.

Substitute Eq. (4) into Eq. (2) and the boundary condi-
tions Eq. (3a) and (3b) and separate out the orders in
powers of c.. The zeroth-order equation is

Qpp =0,
and the companion zeroth-order boundary conditions are

dpp

dr ~
—p

=0 and pp =pp .

The general solution is

C,
pp= +C2 .

r

The singularity at the origin is incompatible with the first
boundary condition, and in the second boundary condi-
tion gives C2 =pp. The zeroth-order solution is as yet an
unknown constant. This solution has no vertical
deflection and is equivalent to the linear elastic problem.
The eigenvalue and, consequently, the in-plane compres-
sion are still too small to initiate vertical displacernent.

For increased compression, we rewrite the first-order
equation to be

1 Rw= — qrdr .
R r

The important parameters are Poisson's rat;io v and the
eigenvalue

A, =p/i)

which is our driving criteria —the in-plane compression.
The boundary value problem is properly posed. For

sufficiently small values of A. , the in-plane compression is
the only solution —w =0. As A, increases, nontrivial
solutions arise in which w&0. The plate buckles with a
finite distribution of vertical displacement. In our appli-
cation, only the first eigenvalue is germane. Thus pertur-
bation theory is best suited for our analysis.

Usually, there are two symmetric solutions +q. In our
case, the substrate constrains out the negative slope of
the vertical deflection. Assume that the functions p and q
to be expanded as a series in a small parameter c, and re-
quire that c.~0 at the onset of buckling. We write We have carried out the solution to the eight order and

have shown the correction to be less than 10%. The
profile is not important to our microscopic film of atoms
because the monolayer crumbles. This is demonstrated in
the simulations. Linear (first-order) theory predicts the
existence and magnitude of the eigenvalue bifurcation,
but it takes nonlinear higher-order theory to solve for the
plate profile.

The second-order equation

~p2= —q &

with

p2 =0,
dr

also has a closed-form solution

pz =
—,
' [1+Jo(kor/R)] ——'[Jo(kor/R)+ J&(kor/R)]

C~+ —,'[Jo(A,or/R)J2(i, or/R)]+C, +
(Aor /R )

(9)

The constant Cz =0. For higher-order solutions, we have
used power series.

To observe the bifurcation at the first eigenvalue
graphically, the first equation in Eq. (4) is inverted for e
as a series in q, . This approximation for c is substituted
into the second equation of Eq. (4) to obtain the radial
stress as a function of the slope of the vertical displace-
ment. Evaluation at the plate edge gives the applied
stress as a function of vertical displacement (buckling).
To the lowest order of approximation, this relationship is

The roots of this transcendental equation are the bifurca-
tion eigenvalues of our boundary value problem. For ex-
ample, for values of Poisson's ratio, assume v=0. 2 and
0.3. The critical compression is Pa=0.0297(h/R) and
0.0352(h/R), respectively. This value would be the
upper limit of the perimeter radial stress or, proportion-
ally, the upper limit of W=E„/s„which allows the
rnonolayer to wet the substrate. Finite-sized islands of
adsorbate that are stabilized by the holding potential will
have a threshold of in-plane compression.

A description to the linear compression up to the criti-
cal buckling value is realized by first-order theory. Until
the compression reaches the first eigenvalue, the solution
is the trivial q& =0. The plate is Hat to the substrate. At
the first eigenvalue, the amplitude of first-order solution
is finite, and to this level of approximation is

CiR
q, = J, (A,or/R ) .
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quadratic and is given by
2

p pp+ + ~ ~ ~ (10)

A,„=(nn.), n =1,2, . . . .

For a two-dimensional rectangular plate' (h ) thick,
length (a) and width (b), the eigenvalues are

2
mh

2
n Qm+
mb

E
12(1—v )

~mn

Figure 5 shows the bifurcation at the critical stress p0,
i.e., the first eigenvalue. Recall that the negative vertical
displacements are constrained because of the substrate.
In our system, the higher-order bucklings are academic
since our monolayer no longer exists as a structure after
the compression reaches the first eigenvalue.

Eigenvalue bifurcations as critical values in structural
problems date to Euler and Bernoulli. Experimental sys-
tems under compressive stresses respond elastically with
linear displacements until the critical value is exceeded.
Once surpassed, the system displacements become large-
amplitude departures from the linear case. For different
geometries, the location of eigenvalues can be simple or
highly detailed. In one dimension, (buckling columns)
the first eigenvalue is

The first (critical) eigenvalue is for n =m =1. E is
Young's modulus, and v is again Poisson's ratio. We
have previously published a picture from the simulation
of a rectangular film that was initially compressed beyond
its stability point (see Fig. 4 of Phillips and Hruska). '

Continuum models are by their nature idealizations of
a molecular system. In order to move the model closer to
the simulation and to experiment, we attempt to include
the effects of thermal fluctuations into the continuum bi-
furcation model. The efFects of temperature (in particu-
lar, the vertical amplitudes of the mean-square displace-
ment of the atoms) on molecular monolayers introduce
another variable into the bifurcation phenomenon. The
concept is just that used in structural mechanics to in-
clude material imperfections. A monolayer is not per-
fectly Aat, vertical displacements of the atoms prevent the
system from being in a mathematically fIkat plane. Thus,
the zero norm for the solutions, until the critical
compression has been reached, is not precisely true in our
application. The vertical component of the mean-square
displacements of atoms in a solid monolayer due to
thermal vibrations (phonons) is an additional disordering
feature present in our simulations and in experiment. We
include these effects in our continuum model as a first-
order perturbation to the energy of the strained system.

For clarity and simplicity, consider the one-
dimensional case mentioned above. The potential energy
for the one-dimensional example is a function of the
derivatives of the longitudinal displacement u and the
vertical displacement w:

V= —,
' f [(w„)+(u„+w„/2)]dx,

0

Prupture Pcritical po

where l is the length of the rod. The work required to so
contort the one-dimensional strip is given in terms of the
difference between the original length I and the shortened
curvilinear length I.:

1hW= f podx=PO(L —1) .

This resulting length is

I I
L = Ql+w, 'dx= f [1+w'/2 —w„'/4+ . ]dx .

0

Then

po

FIG. 5. The three-dimensional figure is a schematic diagram
of the potential-energy sheet V{A &,po, T) in terms of the ampli-
tude of the buckling A l, the radial stress po, and the ternpera-
ture T~5. The diagram shows the bifurcation of the film's
vertical displacement w ~ A

&
as a function of stress po applied

to the rim. The two-dimensional projection of A l vs po is the
usual bifurcation pitchfork. The lower prong of the pitchfork is
not allowed because of the presence of the substrate. The addi-
tional lines are profiles with thermal fluctuations included. The
theoretical bifurcation point P, „„&and the physical rupture
point p,„~,„„areshown.

L =1+—,
' g A i(nm/1) (1/2)+ .

n=1

where the nth eigenfunction is

w„(x)= A„sin(nmx/1) .

Written as an expansion in the amplitude of the first
eigenfunction, the potential energy is

V( A, ,po) =(1/4)(m. /1) (p —po) A,

+(3pol/2 )(m. /1) A, +
Now, if the effects of microscopic perturbations in the en-
ergy 5 are added, at least to the linear term, one obtains

V(A„p0,5)= Ail+ +(1/4)(~/1) (p —po)A i

+(3pol/26)(vr/1) A i+
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Qn the microscopic scale, we identify the perturbing im-
perfections as thermal fluctuations 6 ~ T. The higher the
temperature, the greater the amplitude of the vertical dis-
placement becomes. When this amplitude exceeds some
critical displacement, the solid film crumbles in a rather
catastrophic manner. This is represented by a dashed
line on the amplitude A

&
in Fig. 5. The limit is not un-

like a Lindemann criterion. The point is merely that with
an experimental system, thermal fluctuations preempt the
strict mathematical limit of p„;„.„l.The amplitude solu-
tion curve is raised, and its intersection with the assumed
limit predicts a realistic limit p,„,„„.

If the three-variable function of the potential energy is
plotted, we observe that Eq. (10) is a two-dimensional
projection for the function sheet of V( 2 „p0,5) (see Fig.
5). We have used the temperature in place of 5. In the
amplitude versus compression projection of our energy
function (Fig. 5), the dotted line represents the critical
amplitude for stability. The curve of the cross-sectional
region represents the imperfect film's departure from the
pitchfork of the pure mathematical solution. The higher
contours represent higher temperatures. The upper limit
of the transition from a wetting solid monolayer to a
nonwetting one is achieved when the cohesive energy
and/or temperature combination drives the vertical dis-
placement amplitude of the film to the critical bifurcation
limits shown in Fig. 5. At T=0, the limiting cornpres-
sion p„;„„jis the critical eigenvalue. At the higher tern-
peratures, the contours are intercepted at a stress value

p rupture p critical

V. DISCUSSION

The logic of our simple qualitative modeling is elemen-
tary. If the starting configuration of the system is a
monolayer at a given set of conditions (temperature, in-
teraction strengths, etc.), will the film essentially remain a
monolayer? If so, these conditions are representative of
possible wetting by a solid phase. If not, then the given
system is beyond the upper limit of wetting. We qualify
our conclusion for a wetting system to be only an upper
limit because it is quite possible that a system that starts
as a rnonolayer might not be experimentally achievable in
an atom by atom adsorption. Hence we reserve the ob-
served conditions in our simulations merely as an upper
limit since we use the solid monolayer as a starting
configuration.

It would be helpful to have a simple and readily avail-
able scaling for the wettability of solid physisorbed mono-
layers. Interaction potentials for many systems are not
well known, and the quantitative determination of them
is often laborious. What one needs is a relatively com-
mon pair of thermodynamic results that give a relative
measure of the molecules' energy with the substrate
versus their energy with each other. Although many
such values exist, we have arbitrari1y chosen the isosteric
heat in the low coverage limit, and the latent heat of
fusion at the triple point.

Table I lists these ratios for several commonly ad-
sorbed systems on graphite or carbon black. Nitrogen
and methane each have a ratio slightly more than three

TABLE I. Experimental values and the wettability ratio for
example systems on graphite or carbon black.

Adsorbate

Isosteric heat in the Latent heat at
low coverage limit the triple point

(cal./mole) (cal./mole) Ratio

Methane
Nitrogen
Argon
Krypton
Xenon
Ethane
Ethylene
Water
Ammonia
Carbon dioxide

2900
2200
2300
3100
4000
4230
4000
4000
3960
4000

225.5
171.6
280.8
390.7
548.5
683
800.8

1435.7
1424
1928

12.86
12.82
8.19
7.93
7.29
6.19
5.00
2.79
2.78
2.07

halves of the rare gases. The particular point of interest
is that the factor for ammonia is one-third that of the ar-
gon system, and just over one-fifth that of nitrogen and
methane. In our simulation, the factor W=e„/E„was
used. We found the instability when c.„ofthe argon
graphite system was multiplied by three, but that the
solid monolayer wetted the graphite when only multi-
plied by two. The adsorbate-substrate parameter was
kept the same in all simulations. With these dissimilar
ratios as guides, the nitrogen and methane systems would
be expected to wet graphite even more readily than do
the rare gases. As an example of the nonwetting of a
monolayer at low temperatures, our model suggests
stronger adsorbate interactions or weaker interaction
with the substrate. Ammonia on graphite is in the region
of questionable wettability according to our simulations.
It is quite interesting that recent neutron-diffraction ex-
periments by Larese, Hastings, and Phillips' do not find
a signal consistent with the formation of a two-
dimensional solid phase. To this time, the existence of a
solid ammonia monolayer adsorbed on graphite remains
a controversial problem in spite of a sizable body of
work.

The experimenta1 evidence for the wetting of the sub-
strates by solid monolayers has been discussed in broader
reviews by Larese 2l Hess, Thorny and Duval, and
Sinha. The present status of the noble-gas adsorbates is
that their solid monolayers definitely wet graphite. In
fact, there is ample evidence that films of several solid
layers grow through a succession of isothermal
steps 2 1 24

Our model predicts that the low-temperature (solid)
monolayers of heavier noble gases should a11 wet graph-
ite. Their ratios in Table I are nearly equal. The
argon/graphite system was studied by early monolayer
isotherms and more recently by Zhang and Larese and
Youn, Meng, and Hess. X-ray, neutron, and low-
energy electron-diffraction (LEED) experiments demon-
strate the existence of the solid rnonolayer. The structur-
al case for solid monolayers of Kr/graphite is made by
LEED, ' high-energy electron difFraction (HEED), x-
ray diffraction, and isothermal steps by Larher, Tho-
my and Duval, and Hess. Xenon monolayers are also
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known to wet graphite from the sharp steps in low-
temperature isotherms. Diffraction experiments and
thermodynamic studies likewise confirm the existence
of the two-dimensional solid.

Methane and nitrogen adsorbates have nearly equal ra-
tios in Table I. The value is over 50% higher than for the
noble gases. Our model suggests that a monolayer of
methane or nitrogen should wet more readily than even
the noble gases. Neutron diffraction by Kjems et al.
demonstrated the presence of a solid monolayer of nitro-
gen on graphite. In addition, LEED (Ref. 39) and
refiection high-energy electron-diffraction (RHEED)
(Ref. 32) experiments confirm the existence of the expect-
ed solid nitrogen monolayer. Steele quotes the effective
difference in the intermolecular pressure from the first to
second layers of nitrogen to be 60 atm. This high level of
internal stress in very thin films which shows up in the
data from Nz (Ref. 41) and CH4 (Ref. 42) experiments.
Once the film grows to a sufricient thickness where the
top of the film does not feel the substrate potential as
strongly, the differences in the shearing stresses between
layers of the film are so great that the upper layers may
become incommensurate with the lower layers. This
seems to be the case for CH4. In nitrogen, the loss of
compression at the top of the film appears to induce par-
tial wetting by growing P bulk. '

Vora, Sinha, and Crawford observed solid methane
monolayers by neutron diffraction. Larese et al. re-
cently completed a series of experiments for coverages ex-
tending to trilayers. Gay et al. used electron-
diffraction methods to study methane films and found
diffraction patterns consistent with solid monolayers. In
these films (see Table I), experiments show clearly the
readiness of adsorbates with their ratios in the 8—12
range to form solid monolayers at temperatures well
below the bulk triple point.

Ethane and ethylene at low temperatures have regions
of low (horizontal) and high (vertical) density solid mono-
layer phases. In Table I, they have ratios in the five 5 —6
range that suggests a consistency with our continuum
model prediction. These ratios are only 25% and 40%
less than those of the noble-gas systems. Larese and co-
workers have taken neutron-diffraction patterns from
ethylene films showing ordered 2d phases. Low-energy
electron-difFraction and computer simulations agree
with this interpretation. The total wetting to bulk films

appears not to occur below 74 K. Solid ethane films are
observed by a number of investigators using neutron
diffraction and LEED. ' Consistent interpretations of
heat-capacity and vapor-pressure isotherm experi-
ments for ethane agree with the actuality of the ordered
2d solid.

Small polar molecules have an additional absorbate en-
ergy in an ordered array due to their mutual electrostatic
interactions. At higher temperatures, this contribution
to cohesion of the adsorbate is reduced either through
layer promotion or rotational disordering. This could ac-
count for the reported wetting of graphite by a Quid
monolayer at an elevated temperature. This possible
effect was pointed out to me by Larese. ' An example of
this static energy was calculated for CO2 by Bruch.
The ratios in Table I for water, ammonia, and carbon
dioxide are all at or below one-third the value for argon
on graphite. Their adsorbate pair interactions are too
strong for the monolayer solid to form. Our model sug-
gests these adsorbates might not wet graphite as a low-
temperature solid monolayer. This appears to be the ex-
perimental situation. Terlain and Larher find the CO2
monolayer does not wet graphite below 104 K. Kiselev
et al. and Avgul et al. find that water does not ap-
pear to wet graphite. According to our proposed cri-
terion, the last three adsorbates listed in Table I should
not form low-temperature solid monolayers on graphite.
By comparison, the case for nonwetting by the solid am-
monia monolayer may be understood. Other systems
with similar ratios do not wet at low temperatures. The
ammonia results' are consistent with this classification.
The first seven adsorbates in Table I should have solid
monolayer phases. The experimental evidence is that
they do. Our continuum model finds a nonlinear elastic
eigenvalue bifurcation as a compressional limit to the for-
mation of a stable film. The simulations demonstrate the
crude limits on the interactions for systems where one
could reasonably expect to find stable monolayers.
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