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Vibrational correlation functions of hydrogen-terminated C(111)-(1X 1)
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We report lattice-dynamical calculations of surface and subsurface displacement-correlation functions
of hydrogen-terminated (111}surfaces of diamond and Si. These are evaluated employing a semiempiri-
cal total-energy scheme together with a 38-layer slab geometry. The total-energy scheme has recently
been shown to yield a very accurate description of phonons at these surfaces in excellent agreement with
available high-resolution electron-energy-loss spectroscopy data. The calculated vibrational correlation
functions, such as mean-square displacements or mean-square relative displacements, to be reported in
this paper show very pronounced orientational anisotropies and they are distinctly different on different
layers at or near the surface. Even at the fourth layer, convergence to the respective bulk values is not
yet reached. The significance of our results for an interpretation of surface-scattering experiments is as-
sessed and it is shown that a fully quantitative interpretation of surface-scattering data cannot be
achieved by using isotropic bulk displacement-correlation functions or the results of simple phenomeno-
logical models.

I. INTRODUCTION

Elastic or inelastic scattering of atoms, ions, electrons,
or x-ray photons at surfaces is nowadays used in a routine
fashion to experimentally determine the structure of
clean and adsorbate-covered surfaces. Among the
methods used are low-energy electron diffraction
(LEED), ion channeling and blocking techniques like
Rutherford backscattering (RBS), surface extended x-ray
absorption fine structure (SEXAFS) measurements, or x-
ray diffraction (XRD) and the x-ray standing-waves
(XSW) method. The methods using x rays are dis-
tinguished by different sensitivities with respect to partic-
ular structural properties. The XSW method, for exam-
ple, is particularly sensitive to adsorbate atoms with a
high atomic number. ' XRD is particularly sensitive to
surfaces showing pronounced reconstructions and SEX-
AFS measurements, finally, allow a very precise investi-
gation of the atom positions in the near neighborhood of
the x-ray-absorber atom. To arrive at an analysis of
the surface structure which is as complete as possible,
very often these techniques are applied in combination.
Since, for example, the XSW method allows one to deter-
mine adatom positions relative to the ideal bulk-lattice
configuration, a complementary SEXAFS study can yield
information on the substrate surface relaxation, in addi-
tion. ' XRD measurements are successfully comple-
mented by SEXAFS studies as well. All scattering in-
tensities are significantly influenced by the thermal vibra-
tions of the target atoms and are therefore sensitively
dependent on temperature. The thermal damping of
LEED, XRD, and XSW or of SEXAFS data is governed
by Debye-Wailer or EXAFS Debye-Wailer factors, re-
spectively. Debye-Wailer factors are defined in terms of
displacement autocorrelation functions or mean-square
displacements (MSD's) while EXAFS Debye-Wailer fac-
tors involve displacernent-correlation functions (DCF's)

of different atoms as well. While MSD's can directly be
measured nowadays (see Ref. 10, for example), the DCF's
are not directly accessible and are therefore mostly taken
from simple Debye models. For a fully quantitative
analysis of surface-scattering data, respective thermal vi-
brational correlation functions for the atoms at or near
the surface are thus a necessary prerequisite.

For the calculation of displacement-correlation func-
tions the complete vibrational spectrum of the considered
system must be known. The changed bonding
configuration near a surface, as compared to the bulk,
leads to a vibronic surface spectrum that can be
significantly different from that of the underlying bulk
crystal. Consequently, the MSD's and DCF's of atoms
near the surface can be distinctly different from those of
respective bulk atoms. Using isotropic bulk MSD's and
DCF's or simple orientational Debye models for ideal
surfaces thus may lead to an inappropriate consideration
of the surface-specific dynamics in the interpretation of
the data. Important effects such as, e.g. , the anisotropy
of the layer dependence of the MSD's, are ignored. This
situation is very unsatisfactory, indeed. In particular, it
has experimentally been shown by Martinez and co-
workers, ' e.g. , for a Ga monolayer adsorbed at Si(111),
that large anisotropies do in fact occur in surface MSD's.
In this situation, only a quantitative calculation of the
structure, the dynamics, and of vibrational correlation
functions can procure a remedy.

Here we address the calculation of MSD's and DCF's
for prototypical systems and demonstrate the surface sen-
sitivity of these quantities in some detail. To this end, we
have chosen the hydrogen-terminated Si(111)-(1X1)and
C(111)-(1X1)surfaces, for which we have very recently
reported the results of surface structure and surface pho-
non calculations. "' These calculations were based on a
semiempirical total-energy approach and slab geometries.
The energy-optimized configurations show only small re-
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laxations in both cases. For the hydrogen-terminated
Si(111)-(1X 1) surface" we have obtained surface phonon
dispersions which are in excellent agreement with a
whole body of high-resolution electron-energy-loss spec-
troscopy (HREELS) data. ' ' For H:C(ill)-(1X1) our
results' are predictions, so far, since only very scarce ex-
perimental data are available for that system, to date.
The MSD's and DCF's to be reported in this paper have
been calculated using the eigenvalues and eigenvectors of
the respective slab matrices for the optirnally relaxed
hydrogen-terminated surfaces from Refs. 11 and 12.

In this paper we report the calculation of
displacement-correlation functions and mean-square dis-
placements that have been obtained on equal footing
from our lattice-dynamical investigations of H:Si(1 1 1)-
(1X1) and H:C(ill)-(1X1). The paper is organized as
follows. In Sec. II we briefly summarize the definition

and some basic properties of displacement-correlation
functions. In Sec. III we address the thermal dependence
of diffraction data. Here the key quantities are the
mean-square displacements which are presented as a
function of temperature for the two adsorption systems.
In Sec. IV we address the temperature dependence of
SEXAFS data for which both mean-square displacements
and displacement-correlation functions are of paramount
importance. A short summary concludes the paper in
Sec. V.

II. DISPLACEMENT-CORRELATION
FUNCTIONS

Within the harmonic approximation of lattice dynam-
ics the equal-time displacement-displacement-correlation
functions are defined as'

C p(lv, l'v';T):=(u (I,v)up(l', v'))z.

e (A, , k)e&, (A, ,k) g~(g k)
2+&M„M., &, i, 2k~ T

The momentary position of basis atom v with atomic
mass M in the 1th unit cell is R& =Ri +u(l, v). The
equilibrium position of this atom is R& and its momenta-
ry displacement in the Cartesian direction a is u (I,v).
The polarization vector and eigenfrequency of the A,th vi-
brational mode with wave vector k in the first Brillouin
zone are denoted by e(A, , k) and co(A, , k), respectively. N
is the number of unit cells in the macroscopic normaliza-
tion volume, k~ is the Boltzmann constant, and T is the
temperature. In the high-temperature limit, that is, if the
thermal energy k~T is much larger than the maximum
vibrational frequency A'co '":=max {A'co( A, , k ) I, the DCF's
obviously vary linearly with temperature. When
displacement-autocorrelation functions or mean-square
displacements C &(lv, lv;T) are considered, the phase
factor in Eq. (1) simplifies to unity. Thus the MSD's for a
given basis atom v are obviously the same in all unit cells.

To calculate DCF's the complete vibrational eigenval-
ue spectrum {co(A., k) I and the complete set of polariza-
tion eigenvectors {e(A,, k)I for the considered system are
needed. Consequently, the complete information on the
specific surface dynamical properties enters the evalua-
tion of vibrational correlation functions of surface sys-
tems.

For any given pair of atoms (I,v) and (l', v') the
C &(Iv, l'v'; T) are the nine elements of a second rank
tensor. They need not all be unequal to zero. This de-
pends sensitively on the symmetry of the considered sys-
tems. We note in passing that the C tensor transforms
exactly like the atomic force constant tensor.

III. MEAN-SQUARE DISPLACEMENTS

The inhuence of the thermal motion of atoms on
diffraction amplitudes in elastic scattering is governed

I

within the harmonic approximation by a Debye-Wailer
factor which is the second factor in the following thermo-
dynamic expectation value

ikR»i ikR» —(1/2)( I.
k.u(l, v)] ) & (2)

c'. ( v ) =-,' (( ')'),s., (4)

for all atoms in the crystal. The bulk C tensor is diago-
nal and its diagonal elements have the same value. The
bulk MSD tensor is thus isotropic.

In a surface system, the MSD's depend on the layer m
at which the considered basis atom p resides and the C
tensor needs no longer be diagonal. This means that the
MSD's C &(my, mp; T) at or near a surface can be aniso-
tropic. For the clean, reconstructed Si(001)-(2X1) sur-
face, e.g. , we have shown previously' that two of the six
nondiagonal elements of the MSD tensor are nonzero and
that all three diagonal elements are different. The
hydrogen-terminated C(111)-(1X 1) or Si(111)-(1X 1) sur-
faces have a higher symmetry. There is only one basis
atom p in the slab unit cell on each layer m. We can thus
drop the index p and characterize the MSD's by
C &(m, m; T). For the C3„symmetry of our systems all

Here Ak is the momentum transfer from the scattered
particle or wave to the lattice. The evaluation of the
thermal expectation value in the Debye-Wailer factor

( [k.u(l, v) ] ) z. =gk ( u (l, v)u&(l, v) ) z k&
a, P

=gk C p(lv, lv;T)kp
a,P

obviously involves mean-square displacements. For sys-
tems with a high symmetry, like diamond-structure bulk
crystals, the MSD's are given by



7170 B. SANDFORT, A. MAZUR, AND J. POLLMANN

nondiagonal elements of C
& in the appropriate coordi-

nate system vanish and only two different diagonal ele-
ments for each basis atom at or near the surface occur.
The two surface-parallel MSD's on each layer m are iden-
tical and they differ from the surface-perpendicular com-
ponent.

In the left panels of Figs. l and 2 we show the surface-
perpendicular and the surface-parallel MSD's on the first
four layers for H:Si(111)-(1X 1) and H:C(111)-(1X 1) as
resulting from our calculations. The MSD's on a bulk
layer are given for comparison, as well. Note the
different scales in the left panels of these two figures. To
hi hli htig ig t the specific surface inAuence on these surface
M D's and their respective deviations from th b lke u

SD s we show in the right panels of Figs. 1 and 2 the
corresponding relative mean-square displacements

cases that the MSI3's at the surface are strongly aniso-
tropic and they are significantly larger than the respective
bulk values. This is largely due to the reduced bonding of
substrate atoms at or near the surface which allows an

easier thermal motion of these atoms. It should be noted
that even at the third substrate layer the MSD's still
show pronounced anisotropies and they are still far away
from their respective bulk values (see the right panels of

f
Figs. 1 and 2, in particular). The extremely large MSD'
or the H adatoms (see left top panels of Figs. 1 and 2)

s

show very strong anisotropies and most noticeably the
MSD's for surface-parallel thermal motions are much
larger than those for the surface-perpendicular motions.
In Table I we have listed the absolute and the relative
root-mean-square (rms) displacement amplitudes of the
atoms on the first four layers at room temperature for
both adsorption systems. They are defined as

u' '(m)=Q( [u (m)] 2) T and u ™(m)/ub™,respec-
tively. Giant vibrational anisotropies of the adatoms and
very large anisotropies for the substrate surface atoms are
clearly to be recognized. There is no complete conver-
gence to bulklike behavior even on the fourth atomic lay-
er in both systems. The MSD's for H:Si(111)-(1X 1) show
a slower convergence to the bulk values than for
H:C(111)-(1X 1). This is related to the weaker bonding in
Si as compared to diamond. As a matter of fact, the
MSD's are converged within 1% to the respective bulk
values for surface-parallel motions only at the ei hthe eig
(sixth) and for surface-perpendicular vibrations only at
the 15th (12th) layers, respectively, in the two adsorption
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FIG. 1G. 1. Mean-square displacements (left panels) of the H
adatom and of the Si atoms on the first three substrate layers
[see the stde view of the energy-optimized structure of the
H:Si(111)-(1X1)surface given in the top right edge of this
figure] as a function of temperature. The MSD's for the
surface-perpendicular ( ———

) and surface-parallel ( ——- —)

directions are compared in each case with the bulk MSD
( ). The right panels show the corresponding relative
MSD's for the surface-perpendicular ( ———) and surface-
parallel ( —.—.—.) directions. Note the difference in scale for
the upper left panel.
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FIG. 2. Same as Fig. 1 but for H:C(111)-( 1 X 1 ). Note the
difference in scales between the left panels of Figs. 1 and 2, as
well as that between the top left and the other three left panels
in Fig. 2. A so the temperature scale is different fro th t fm a o
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0
TABLE I. rms displacement amplitudes u' ' {in A) and rela-

tive rms displacement amplitudes u ' '/ub ' at T =300 K for an
adsorbate layer atom (H), for substrate layer atoms (Si or C) on
the first three layers of the respective substrates, and for a
respective bulk atom.

rms
Qy

rms
~II + rms /+ rms

b g rms /g rms
II

TABLE II. Analogous to Table I but at T =0 K. Note the
huge zero-point rms amplitudes of the H adatoms, in particular,
for surface-parallel displacements.

H
1.Si
2.Si
3.Si

Bulk

rms
Qy

0.133
0.099
0.097
0.091
0.077

rms
Q

)[

H:Si(111)
0.212
0.088
0.084
0.080
0.077

rms /+ rmsi b

1.72
1.29
1.26
1.17
1.00

+ rms /+ rms
II b

2.74
1.14
1.08
1.04
1.00

H
1.Si

Bulk

H
1.C

Bulk

0.105
0.056
0.048

0.088
0.047
0.041

H:Si(111)
0.178
0.052
0.048

H:C(111)
0.134
0.043
0.041

2.18
1.17
1.00

2.15
1.14
1.00

3.71
1.07
1.00

3.28
1.06
1.00

H
1.C
2.C
3.C

Bulk

0.092
0.053
0.051
0.047
0.044

H:C(111)
0.139
0.048
0.046
0.044
0.044

2.09
1.22
1.17
1.08
1.00

3.17
1.10
1.05
1.01
1.00

systems. At room temperature the rms amplitude normal
to the surface is only 0.13 A (0.09 A) for H adsorbed at
the Si (C) surface while the surface-parallel rms ampli-
tude is 0.21 A (0.14 A) in the respective cases. For 800 K
the respective values are 0.18 A (0.11 A) and 0.30 A (0.17
A). This peculiar behavior is due to the strong chemical
bond between H and the respective substrate atoms
which does not allow easy stretch-mode vibrations per-
pendicular to the surface (see Refs. 11 and 12 for that
matter). On the other hand, easy bending-mode vibra-
tions parallel to the surfaces do occur, giving rise to ex-
tremely large surface-parallel MSD's of the H adatoms.
Thus in highly directional-bonded semiconductor adsorp-
tion systems surface-parallel MSD's of the surface layer
atoms can be much larger than surface-perpendicular
ones. The MSD's of the substrate layer atoms for per-
pendicular vibrations are larger than those for parallel vi-
brations. This behavior is of course related to the re-
duced bonding in the perpendicular direction that allows
easier vibrational motions perpendicular than parallel to
the surface. If a simple model description were used for
all MSD's at these surfaces one would neglect their
specific surface dynamical properties. The observed
salient and unusual anisotropies in the MSD's at the sur-
face should be taken into account when surface
diffraction data are to be analyzed quantitatively.

Comparing the absolute MSD's in the left panels of
Figs. 1 and 2 (note the difference in scales), one immedi-
ately recognizes that their values are considerably smaller
for H:C(111)-(1X1) than for H:Si(111)-(1X1). In addi-
tion, the figures clearly reveal that the high-temperature
or classical limit (C varies linearly with T) is reached in
the case of the diamond surface at much higher tempera-
tures than for the Si surface. The reason for this behavior
lies in the fact that the bandwidth of the vibrational spec-
trum of diamond (fico '"= 165 meV) is much larger t—han
that of Si (iiico '"=-65 meV) and the energy of the H-C
stretch mode (351 meV) is larger than that of the H-Si
stretch mode (257 meV). See Refs. 11 and 12 for these en-
ergies. In the extreme quantum limit, i.e., at T =0 K the
H adatoms show giant zero-point oscillations. In Table

II we have listed the absolute and relative rms amplitudes
at T =0 K for the adatoms, the first substrate surface lay-
er atoms, and for bulk layer atoms of both adsorption
systems. The adlayer atoms exhibit huge zero-point
motions with relative rms amplitudes that are roughly
two to four times larger than those of the substrate bulk
atoms.

It is very revealing to analyze the diagonal elements of
the MSD tensor in the classical limit in some more detail.
We note in Figs. 1 and 2 that the classical limit is essen-
tially reached for the MSD's already considerably below
the Debye temperatures of Si (645 K) and diamond (2230
K), respectively. Thus there seems to be a characteristic
temperature for each MSD well below the Debye ternper-
ature which defines the onset of classical behavior of eachC, respectively. We arrive at the respective tempera-
tures or frequencies by the following simple considera-
tion. The classical or high-temperature limit of the
MSD's follows from Eq. (1) as

(5)

C (m, m;T)=([u (m)] )r=:
MQ (m)

(6)

Evaluating C according to Eq. (5) then yields the
characteristic frequencies or temperatures we have been
looking for. We have listed the resulting energies
A'Q (m) for both adsorption systems together with the

On the other hand, we can consider the MSD of an atom
at layer m in cz direction as resulting from the thermal vi-
bration of a one-dimensional oscillator of mass M and en-
ergy k~T. This oscillator has a characteristic frequency
0 (m) which depends both on the layer m considered
and on the direction a of the oscillation. Its energy is
MQ (m)([u (m)] )z. Now this linear oscillation mode
of an atom at a particular layer m in a particular direc-
tion a originates from a superposition of all the eigen-
modes of the slab as is obvious from Eq. (5) because the
complete sets of eigenvalues and eigenvectors of the
dynamical matrix of the slab enter. But we can simply
define effective frequencies of the respective one-
dimensional oscillators for each set of n and m, which no
longer depend on A, and k. They are defined by
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TABLE III. Effective energies AQ (m) and temperatures
0 (m) that characterize the onset of classical behavior of par-
ticular MSD's. (For the definition, see text. ) They are to be
compared to the Debye temperatures of 645 and 2230 K for Si
and diamond, respectively, and to the temperatures that can be
defined by equating the H-Si and H-C stretch-mode energies at
the two surfaces to k&8. These temperatures are OH s;=2400
K and OH C=4600 K for the two systems, respectively.

Xn.{~) (meV)
a=l a=

ff

0 (m) (K)
a=i a=][

H
1.Si
2.Si
3.Si

Bulk Si

99.3
20.2
20.6
22.3
26.4

H:Si(111)
57.3
23.0
24.3
25.4
26.4

1153
235
240
259
306

665
267
283
295
306

H
1.C
2.C
3.C

Bulk C

197.1
68.5
71.5
80.5
92.2

H:C(111)
108.3
79.0
85 ~ 1

90.0
92.2

2289
796
830
934

1071

1257
917
988

1046
1071

corresponding characteristic temperatures 0 (m) in
Table III. As expected they depend on the particular lay-
er m considered and on the direction a of the oscillation
parallel or perpendicular to the surface. The related tem-
peratures for the mean-square displacements of the Si or
C atoms are much smaller than the respective bulk De-
bye temperatures. Those for the MSD's of the H ada-
toms are smaller than characteristic temperatures which
one can define corresponding to the H-substrate-atom
stretch-made energies (see the caption of Table III). Ac-
tually they all have roughly half the respective values.
The largest effective frequencies, energies, or tempera-
tures result for the oscillations of the H adatoms, in par-
ticular, for the perpendicular motion. Again, this is due
to the large H-substrate-atom stretch-mode frequencies.
From these results we infer, that it is not the bulk Debye
temperature but the above-defined effective temperature
which governs the onset of classical behavior of particu-
lar MSD's. The table again nicely reveals that the
surface-parallel MSD's of the substrates converge faster
to the respective bulk values than the surface-
perpendicular quantities (see Table I for comparison).

IV. EXAFS DEBYE-WALLER FACTORS

Fine structures in extended x-ray absorption spectra
result from an interference between the primary electron
wave that is excited by an x-ray photon from the absorber
atom and secondary waves which result from back-
scattering of the primary wave at the neighbors of the ab-
sorber atom (see Ref. 17, for example). The wavelength
of the primary electron wave is uniquely determined by
the energy of the x-ray photon and the binding energy of
the electron in the crystal. The interference of primary

and secondary waves varies between constructive and
destructive depending on the energy of the absorbed x-
ray photon. The absorption fine structure at the x-ray
edges (EXAFS) thus allows one to obtain quantitative in-
formation on distances between the absorber atom and its
neighbors. Since the involved atoms are all in thermal
motion, their relatiUe thermal displacements play a key
role in the analysis of the spectra. The theory of EXAFS
has been worked out in great detail by Sayers, Stern, and
Lytle. ' ' The oscillatory part of the absorption
coeKcient normalized to the structureless background is
given as '

—2k
y(k) =QF(n, k) sin[2kR (n)+g„(k)]e (7)

o„:=([R(n) (u„—uo)] )r .

o„=JR (n)[(u (n)u&(n))z+(u, (0)u&(0)) r
aP

—2(u, (n)u&(0))r]R&(n) .

Using Eq. (1) this can be rewritten as

o.„=JR (n)[C s(n, n;T)+C p(0, 0;T)
aP

—2C p(n, 0;T)}Rp(n) .

(10)

Thus the MSRD is obviously a quadratic form and it is
determined by the elements of the MSD tensors of the ab-
sorber atom and its neighbor in the nth-neighbor shell
and by the DCF tensor of these two atoms. For a quanti-
tative interpretation of EXAFS or SEXAFS spectra one
thus needs, in principle, both the MSD's and the DCF's.
Since these quantities are not known for many systems,

Here R (n) is the momentary distance between the ab-
sorber atom and a - backscattering atom in the nth-
neighbor shell and R ( n ) is the respective equilibrium

0distance of these atoms. R (n) is the unit vector
R (n)/R (n) along the connection line between absorber
and backscattering atom. The kinetic energy of the excit-
ed electron is A' k /2m. The total phase function is la-
beled P„(k) and F (n, k) describes additional details of the
scattering process (see, e.g., Ref. 3). The temperature-
dependent damping of EXAFS spectra is determined by
the exponential factor in Eq. (7) as has been shown by
Beni and Platzman. ' The latter depends on the kinetic
energy of the excited electron and on the quantities o.„.
Obviously, these contain the projection of the relative
thermal displacement u„—u0 of the two atoms onto the
axis defined by their equilibrium positions. Consequent-
ly, Beni and Platzman' referred to o„as mean-square
relative displacement (MSRD). If we write down the
MSRD explicitly as

a.„=([R(n) u„] )r+([R (n) uo] ) r
—2([R (n) u„][R (n) uo]) z.

and make use of the fact that the vector R (n) does not
depend on temperature, we may write the MSRD as
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very often respective bulk values or so-called hybrid-
schemes' have been employed in the interpretation in
which measured MSD's and phenomenological DCF's
calculated within an orientational Debye model are used.
This approach has been employed, e.g., by McGrath and
co-workers, ' ' who investigated a whole variety of Si
adsorption systems in great detail. We note in passing
that for a metal adsorption system, namely, Co on
Cu(111), the anisotropy of surface MSRD's have been in-
vestigated in a joint theoretical and experimental study.

We have calculated M SR D's for the hydrogen-
terrninated Si(111)-(1X 1) and C(111)-(1X 1) surfaces
from lattice dynamics. In these calculations both the
MSD's and DCF's are evaluated microscopically on
equal footing. We have chosen as absorber atom a sub-
strate atom on the first substrate surface layer (Si or C,
respectively) and have considered as backscatterers two
di8'erent atoms on each of the first three neighboring
shells as shown in Fig. 3. Our results for H:Si(111)-
(1 X 1) and H:C(111)-(1X 1) are shown in the left panels
of Figs. 4 and 5, respectively. To highlight the inhuence
of surface-induced anisotropies and of the DCF's on the
MSRD's, we have defined relative MSRD's as

H: Sj. (111I

4

O ~
(U

C3

2

Cl
CL

QJ)
03

0

0
0 500 1000
Temper atur e (K)

0
0 500 1000
Temperatur e (K)

FIG. 4. Mean-square relative displacements o.„(left panels)
and relative MSRD's o.„/cr (right panels) for H:Si(111)-(1X 1).
They are shown for two backscatterers on the first- (n =1),
second- (n =2), or third- (n =3) neighbor shell of the absorber
atom. The backscatterers considered are indicated in Fig. 3 for
each case. The MSRD's and relative MSRD's shown by dashed
lines ( ———) correspond to the hatched backscatterers in Fig.
3 and those shown by dashed-dotted lines ( ——.—) corre-
spond to the cross-hatched backscatterers in Fig. 3. For com-
parison we give the respective bulk curves that result when bulk
MSD's and DCF's are used in the evaluation of the MSRD's.

H: C (1$1j

Il= 2

CU

sQ
CU

I

C3

1
CU)
(U

CD

0

FIG. 3. Side views of the structure of the adsorption systems
for which the MSRD's in Figs. 4 and 5 are shown. The absorber
atom in the substrate surface layer is shown as a solid dot in
each case. The two backscatterers considered for each shell are
shown on the first- (n =1), second- (n =2), and third- (n =3)
neighbor shells by hatched and cross-hatched circles, respec-
tively.

0
0 1500 3000
Temper atur e (K)

0
0 1500 3000
Temper ature (Kj

FIG. 5. Same as Fig. 4 but for H:C(111)-(1X1). Note the
di8'erent scales.
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2" =cr„j([R (n) u„] )z.+([R (n) uo] )r] (12)

Both the MSRD's and the relative MSRD's in Figs. 4 and
5 are shown for two different backscatterers in each
neighbor shell n =1, 2, and 3. These are highlighted in
the side views of the lattice in Fig. 3 by hatchings and
cross-hatchings, respectively. In addition we have in-
cluded in each panel the respective functions that result
when bulk MSD's and bulk DCF's are employed in the
evaluation. In that case a„ is of course the same for
every backscatterer in an nth-neighbor shell. First we
note that all MSRD's increase with temperature. Thus
the fine structure in x-ray absorption spectra is increas-
ingly damped with increasing temperature, as was to be
expected. Second, we observe that the MSRD's on the
first-neighbor shell are much smaller than those on the
following shells. Thus the contributions of the nearest
neighbors of the absorber atom to the EXAFS spectra are
much less strongly damped than those of more distant
neighbors. That is why EXAFS preferentially samples
the short-range order giving structural information about
the local surrounding of the absorber atom. Comparing
the MSRD*s for different neighbors on the same nth-
neighbor shell, we see that only very weak anisotropies
occur for n ~2. In these cases the backscatterers are all
Si or C atoms, respectively. Since the hydrogen-
terminated Si(111) and C(111) surfaces have almost the
ideal bulk-lattice configuration, this result can easily be
rationalized. When the first-neighbor shell of backscatter-
ers is considered, there occur in both cases large anisotro-
pies in cr, when H or Si(C) is considered as backscatterer
(see top panels in Figs. 4 and 5). Similar anisotropies in
cr& have been observed for Co adatoms and Cu(111) sub-
strate surface atoms as backscatterers in Ref. 22. In par-
ticular, the MSRD for the H backscatterer on the first-
neighbor shell at H:Si(111)-(1X1) shows only an ex-
tremely weak temperature dependence. Comparing the
actual surface MSRD's with those that result when bulk
MSD's and DCF's are employed, we see that the surface
MSRD's are always larger. This corresponds to the
behavior of the surface MSD's in Figs. 1 and 2 which are
always larger than the bulk MSD's. Using bulk values
for MSD's and DCF's in the calculation of MSRD's can
thus lead to a k-dependent underestimate of the thermal
damping of the fine structure in EXAFS spectra.

Considering the temperature dependence of the
MSRD's in more detail, we note that they are linear in T
in the high-temperature or classical limit. This was to be
expected since the MSD's and DCF's are linear in T in
this limit, as well, as we have pointed out in Sec. II. In
the case of H:Si(111)-(1X 1) we observe a linear T depen-
dence of the MSRD's roughly above 300 K and for
H:C(ill)-(1X1) roughly above 900 K as can clearly be
seen in the right panels of Figs. 4 and 5. When the H
backscatterer in the first-neighbor shell is considered (see
Fig. 3 and the top right panels of Figs. 4 and 5) classical
behavior is reached only at much higher temperatures.
This fully corresponds to the behavior of the respective
MSD's in Figs. 1 and 2 and is again related to the strong
H-substrate-atom bonds. The onset of classical behavior

in Figs. 4 and 5 again nicely corresponds to the effective
temperatures derived in Sec. III (see Table III). It is in-
teresting to note that the slope of o.„ increases with T for
increasing neighbor order n. This is due to the fact that
with increasing n the values of the DCF's, which reduce
the values of the MSRD's, decrease and their inhuence
on cr„vanishes. For very large n, the MSRD's are entire-
ly determined by the MSD's of the absorber and the
backscatterer in the nth-neighbor shell [see Eq. (11) for
that matter]. For the same reason, the corresponding rel-
ative MSRD's approach unity in this limit. The limit
n ~~ is obviously not yet reached by far on the third-
neighbor shells (see right bottom panels in Figs. 4 and 5).

Considering the relative MSRD's in the quantum-
mechanical limit for low temperatures, we note that they
decrease with increasing temperature from their respec-
tive maxima at T=O K. This simply means that the
DCF's increase more strongly with T in this regime than
the MSD's.

Finally we would like to emphasize that the MSRD's
for H:Si(111)-(1X1) in Fig. 4 are roughly twice as large
as those for H:C(1 1 l)-(1 X 1) in Fig. 5 (note the different
scales). Again this is related to the stronger C-C and H-C
bonds in the latter system as compared to the strengths of
the Si-Si and Si-H bonds in the former. The relative
MSRD's of both systems show almost quantitative
correspondence for obvious reasons.

V. SUMMARY

We have presented displacement-correlation functions
for the H:Si(ill)-(1X1) and H:C(ill)-(1X1) adsorption
systems. In particular, MSD's and MSRD's were shown
and discussed. The MSD's for atoms at and near the sur-
faces show very pronounced anisotropies in the surface-
parallel and -perpendicular components. Most notice-
ably, the MSD's of the H adatoms are very large and they
exhibit giant anisotropies. Due to their specific adatom-
bonding configurations the surface-parallel MSD's are
much larger than the surface-perpendicular MSD's in
complete contrast to simple model expectations for the
behavior of atoms at a surface. The MSRD's clearly
show why surface EXAFS is very sensitive to the short-
range order. For different backscatterers in the same
neighbor shell the MSRD's show only weak anisotropies
except for the case of the first-neighbor shell where both
H and substrate atoms act as backscatterers. Figures 4
and 5 clearly show that MSRD's calculated with bulk
MSD's and bulk DCF's are not appropriate at a surface.
The pronounced differences in the absolute values of the
MSD's and MSRD's for H:Si(111)-(1X 1) and H:C(111)-
(1X1) can simply be rationalized by considering the
basic differences in phonon band widths and bonding
strengths of the adatoms to the respective substrates.
The onset of classical behavior of all quantities can be ra-
tionalized by referring to the properties of appropriate
effective one-dimensional oscillators whose characteristic
average frequencies depending on layer m and direction a
are smaller roughly by a factor of 2 than the respective
Debye frequencies. Because of the weaker bonding at
and near a surface all MSD's and DCF's are larger than
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the corresponding bulk quantities. Thus thermal damp-
ing of scattering intensities is always larger at and near a
surface than in the bulk. Using isotropic bulk vibronic
correlation functions therefore cannot lead to a fully
quantitative interpretation of surface-scattering data.
Our results demonstrate that the surface dynamical prop-
erties of a considered system have to be taken into ac-
count for a quantitative calculation of displacement-
correlation functions near or at surfaces and we have in-
dicated that a consideration of such quantitative MSD's

and DCF's is a necessary prerequisite for a fully quantita-
tive analysis of surface-scattering data. We hope that in
the near future such analyses for particular semiconduc-
tor surface systems will be carried out in joint theoretical
and experimental efforts.
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