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We calculate the tunneling density of states and plasmon excitations in a double-quantum-
well system. In these calculations, the barriers are doped uniformly. The eigenfunctions are first
obtained in the Hartree approximation and these results are then used to calculate the exchange
contribution in lowest order. This is a simple way to include the effects due to temperature on the
intersubband transition energies. We present a self-consistent-field theory and numerical calculations
for the intersubband plasmon excitation energies. The derived analytical results show that in the
long wavelength limit the symmetric mode is not affected by tunneling but the antisymmetric mode
depends on the charge transfer between the quantum wells. The results for the antisymmetric modes
include corrections to previous results where tunneling between the layers was neglected. For the
symmetric mode, the sign of the charge density fluctuations in each quantum well is the same and
the double-well structure is completely symmetric with respect to the midplane. There is a preferred
direction for electrons to tunnel when the charge density fluctuations in the wells have opposite signs
which cause the plasmon frequency for the antisymmetric case to depend on tunneling. We also show
that in the quasiclassical regime (¢ < krr) there is no minimum separation between the charged
layers for the plasmon excitations with wave number g not to be Landau damped. We also examine
the effect on the tunneling density of states and the plasmon excitation spectrum when the doping
density of the barriers is not the same; specifically, the volume dopant density in the left barrier is
larger than the dopant density in the other two barriers, which are assumed to be equally doped.

I. INTRODUCTION AND MOTIVATION

There has long been an interest in double-quantum-
well structures’™® in both the presence and the absence
of an external magnetic field. More recently,* 1° several
papers have been concerned with the electronic proper-
ties of these structures. In many of the theoretical cal-
culations reported so far, the electron gas (EG) systems
within the quantum wells have been treated as two di-
mensional (2D). Clearly, this is not an adequate way to
treat this problem when one is interested in the plas-
mon excitations associated with the excitation of an elec-
tron between subbands. In the experiments of Ashoori
et al.'%! and Eisenstein et al.'* the 2D EG’s occur in
GaAs quantum wells which are separated by AlAs tunnel-
ing barriers. Typically, the samples used in Refs. 4, 10,
11, and 14 have well widths which are 200 A and the bar-
rier widths between the wells are from 50 to 150 A and
the confining potential is 250 meV high. Therefore, it
seems appropriate to include the coupling between the
quantum wells and not treat either well as an isolated
2D EG system. Furthermore, because of the intralayer
and interlayer electron-electron interactions and the in-
terlayer tunneling of the electrons, novel properties as-
sociated with the intersubband transitions will result,
which cannot be explained by a simple single-particle the-
ory due to the role played by the Coulomb correlations.
The calculations we carried out for this paper were done
in the absence of an external magnetic field. However,
there is a body of work on the finite magnetic field effects
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on double-layer systems, especially in the extreme quan-
tum limit where only the lowest Landau level is occupied.
We have extended our zero-field formalism to deal with
the density of states (DOS) and plasmon excitations in
a perpendicular external magnetic field2° when the finite
width of each quantum well is taken into account and the
difference in the effective mass in the quantum wells and
the barrier region is included. In this case, the cyclotron
frequency is labeled by the quantum number for the enve-
lope functions due to the confinement of electrons in the
z direction within the quantum well which leads to dis-
crete energy subbands. These effects, as well as screening
within the electron gas, will definitely govern the scaling
of the Fermi energy with the magnetic field.?!

In Ref. 14, the tunneling DOS was measured by capac-
itance spectroscopy for a magnetic field perpendicular to
the plane of the electron gas. The doping of the barrier
regions was done so that the electron density in each of
the double quantum wells was the same when no inter-
layer tunneling voltage was applied. In the formal pre-
sentation of our theory, we are allowed to have arbitrary
doping so that the electron density in the quantum-well
layers can be different. We explore the consequences of
an imbalance in the electron densities in the two confined
systems on the plasmon excitations and the tunneling
DOS.

The rest of this paper is organized as follows. In Sec. II,
we present the self-consistent Hartree equation and ex-
change correction to the self-energy for the double-layer
quantum system. We include the variation of the effec-
tive mass with subband energy and present numerical
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results for the electronic wave functions, the conduction
band edge showing band-bending effects obtained in the
Hartree approximation, the electron effective mass, the
subband energy levels, and the DOS. In Sec. III, we use
linear response theory to derive the dispersion relation
for plasmon excitations. This formalism includes the po-
larization effects of the medium. Numerical results are
presented in Sec. IV for the plasmon excitations. In Sec.
V, we summarize our results and use a density matrix
approach in the Appendix to identify the symmetry of
the modes of excitation given by our dispersion relation
in Sec. III.

II. QUASTIPARTICLE ENERGY
AND THE DENSITY OF STATES

Our method of calculation of the self-energy in the
Green’s function is based on the dielectric response func-
tion formalism of Martin and Schwinger.??2 The gen-
eral formulation is described as follows. We expand the
Green’s function in terms of a complete set of states ¢y »
which satisfy the Schrédinger and Poisson equations si-
multaneously. That is,

= bk (®)dicn (r') Gin (), (1)

k,n

G (r,r’;w)

bin(r) = eI C, (ks 2), (2)

A
where n is a subband index, r (r,2) is a posi-
tion vector, k and r|| are 2D vectors, A is the sample
area, and the confinement of an electron in the z direc-
tion within the quantum well leads to discrete energy
subbands which are self-consistently determined by the
Schrédinger equation

d K22
(—*_———z +Vh(2) + 5

m + VH(Z)> Cn(k; 2)

- ek,nCn(k;z) ) (3)

and Poisson’s equation for the Hartree potential Vg (z).
We solve Eq. (3) perturbatively by solving it for k =
0 in conjunction with Poisson’s equation to obtain the
envelope function {,(z) = (,(k = 0; z) and the subband
edge E,

kBT

— (= )?

jzs(z)diVH(z) = 4me? IiNJ(z) —

S I

where u is the chemical potential, Er, = A%(2mnn2p)/
2m}, and n = ffooo dz Ng(z). We calculate the energy
dispersion from the zeroth-order wave functions (,(z) by
treating the term A2k2/2m(z) in Eq. (3) as a first-order
perturbation. We obtain exn = E, + A%k?/2m},, where
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the variation of the electron effective mass m} in the
ground and excited states is included in this treatment.
In this perturbation theory approach, the electron effec-
tive mass is given by

RNy I N
mW m

B

where myjy;, is the electron effective mass in the well, mp
is the electron effective mass in the barrier, and p,, is the
integral of |s’;,,(z)|2 over the wells.?3 Clearly, by includ-
ing the mismatch of the electron effective mass m(z) in
the z direction, we obtain an energy-dependent effective
mass for the electron subbands, whose wave functions
are not confined to the quantum-well regions but extend
into the barrier regions as well. The variable background
dielectric constant is accounted for through €(z). These
effective masses for the energy subbands are definitely
influenced by doping and temperature through the en-
velope functions (,(z) determined self-consistently from
Egs. (3) and (4).242% Our numerical calculations show
that m? increases with the band index.2® The bare con-
fining potential V4 (z) is taken as zero inside the well and
0.81z eV outside, where z is the mole fraction of Al in
GaAs/Al,Ga;_,As quantum wells. We take z = 0.32 in
our numerical calculations. In Eq. (4), Ny (2) is the dop-
ing concentration and the integrated total charge on the
right-hand side of Eq. (4) is zero by charge neutrality. For
a given temperature, the Fermi energy is determined it-
eratively from the charge neutrality condition. We make
the standard assumption that all the donors are ionized
even at low temperatures. The doping is taken to be uni-
form throughout the barrier and the envelope functions
are zero at the two ends far away from the interfaces of
the quantum well.

The poles of the Green’s function expansion coefficients
Gx,n(w) in Eq. (1) are obtained from Dyson’s equation.
The quasiparticle energies correspond to the solutions of

Wk,n = wl(:],), + 2:k,'n (wk,n) 3 (6)

where hwl((ozl = ek,n — i and the self-energy is given by

Tien(w )_z/‘” dw’ "’MZ/(z )2Gk an (@)

x / dz/ dz' (n(2)Cn (2")Cnr (2)Cnr (1)
— 00 — oo
><Vvsc (Zazl;qaw _w,) . (7)
Therefore, many-body and temperature effects con-
tribute to the self-energy through Eq. (7) in conjunction

with the equation for the screened potential, which is
given by

w) = / dz" e (2,2";q,w) ve (2”7 ZIQ‘I) s
(8)

where the bare Coulomb interaction is wvy(z,2'59) =

Vic (2,2'5q,
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2me? exp(—q|z — 2'|)/esq, with €, = 4megey for an aver-
age background dielectric constant ;. Equations (6)—(8)
give the quasiparticle energies with exchange and correla-
tion effects included. However, in this paper, we restrict
our numerical calculations to the Hartree and exchange
contributions to the quasiparticle energies as a first step
in our determination of the role played by the Coulomb
interaction on the plasmon excitation energies.

From these results, we obtain the tunneling density of
states as

1 1

1
X h2k2 A ) (9)
zk:E—En k>, (k) +ik/T

2m},

where 7 is a phenomenological scattering time, d.d, is
the cross-sectional area of the quantum-well structure,
and k = 27(n,/d;, ny/dy) with ng,n, = 0,£1,+2,... .

III. LINEAR RESPONSE THEORY

In this section, we use linear response theory to ob-
tain the dispersion relation for plasmon excitations in a
double-quantum-well structure.

A. Dispersion relation for plasmon excitations

In self-consistent-field theory, the inverse dielectric
function is a solution of the integral equation

e (21,2259, w)

=6 (21 — 2z2) +/ dzs/ dz4 vp(21, 235 9)

XX (Z3,Z4;q,UJ)€ 1(Z4>Z2;q’w) . (10)

Therefore, screening involves polarization effects which
are described in terms of the density-density response
function x°(z,2';q,w). If exciton binding within an
electron-hole pair plays a role, vertex corrections to the
polarization function must be included. In the ladder
approximation, we have?”:28

x° (21, 225 ¢, w)

= > T (0,0)n (21)6n(22) G (22)Cnt (1) (1)

n,n'

where the polarization function is given by

(0) (q ) =9 d’k fO(fk,n) - fo(ek"‘q,"')
W= (2m)2 Aw + ex,p — €k—q,n’ + Y
xrnn’(kv qvw) . (12)

Here «y is a parameter due to impurity and phonon scat-
tering, fo(e) is the Fermi distribution function,

d’p
nnt (K, q; = Voni (k —
Lon(k,qyw) =1+ (2n)? o (K = P)
fO (ep,n) fO (ep—q,n’) an’ (paq7w) )

" +€pn — €p—qn’ + 1Y

(13)
and V2% (k) is the static-screened exciton interaction

whose screening length depends on the density of states
at the Fermi energy of the 2D electron gas. We have?®

ex N o— 27”32 Fn"' (lk — kll)
Vi (ke = K) = ( .. )|k—k'|+qssw(|k—k'|>’
(14)

where the electron screening and subband form factors
are defined as

S (k- K|) = T dz/ dz’

e_lk_k |1=—=" In(2)?, (15)

/ dz/ dz' e~ lk—K|lz=='|
< |Ca(2) [ |G (2)]7, (16)

and g, is a screening length which depends on the density
of states of the 2D electron gas.

The contributions from the many-body and tempera-
ture effects to the quasiparticle energies are more clearly
identified if closed-form analytic results for the self-
energy are obtained. In order to simplify our calculations,
we replace the Green’s function in Eq. (7) by a Hartree
approximation. By setting e~!(z — 2;q,w) = §(z — 2'),
we neglect the screening effects which are given by the
second term in Eq. (10). Consequently, we obtain the
following approximation for the exchange part of the self-
energy:

REg = — Z/ G
x /_ _ds / 2 Ga(2) G () () (2)

Fom (k — K'|)

2me?
€sq

x ——e 1= fo (ex—qunr) (17)

which is a generalization of the result of Bandara et al.3°
to finite temperature for the correction to the Hartree
energy E, in Eq. (3). Since Ef(’,‘flh is independent of fre-
quency, the quasiparticle energy is given by a closed-form
analytic result. The numerical results presented in this
paper were obtained by calculating the integral over the
2D wave vector q in Eq. (17) exactly®! and not limiting
the calculation to the long wavelength limit g — 0.
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We have solved Eq. (10) for e (z,2';q,w) when the
Coulomb potential is included and obtained the following
analytic result:

6_1 (211 2254, (-U)

=8(21 — 22) + 3 TN (¢, @) wnnt (2154)

n,n'

X Kppt (Zz;q,w) ) (18)

where
wom (2130) = / " dzg v (21,253 0) Ca(28) G (25) (19)

and

Ko (254, 0) = / 4z Cu(2)ewr(2') €2 (250, w)
(20)

After multiplying Eq. (18) by (o(21){s(z1) and integrat-
ing over z;, we obtain

Zeaﬁ;nn’ (q,w)Knn’ (z;‘LW) = Ca(z) Cﬂ(z) s (21)

n,n'

where we define the form factored Coulomb potential by

Umm'inn' (@) = /_Z dz /:: dz' {m(2)Cme (2)vb(2, 25 q)
XCn (2")Cnr (2) (22)

and the dielectric tensor by

Capsmn’ (@, @) = Sandpn — Uapinn (DTN (g, 0).  (23)

Clearly, the poles of the inverse dielectric function in Eq.
(18) correspond to the zeros of the determinant of the
dielectric tensor in Eq. (23). Thus we obtain an analytic
formula for the plasmon dispersion relation in a double
quantum well corresponding to an electronic transition
between the subbands as

Det €ag;nn'(q,w) =0 . (24)

The formalism presented here includes the effect due to
interband scattering of the electrons and our plasmon dis-
persion relation in Eq. (24) agrees with the result of Das
Sarma and Madhukar! (see their Appendix A). In the
limit, when the envelope functions {,(z) for the nth sub-
band describe extremely strong confinement, the over-
lap of the wave functions can be neglected. Specifically,

]

0
€11;11  €11;12  €11;21  €11;22 1- Vln(ll)
€12;11  €12;12  €12;21 €12;22 — 0
€21;11  €21;12  €21;21  €21;22 0
€22;11 €22;12 €22;21 €22;22 —V1H§(i)

when only two degenerate subbands are included and we
approximate the amplitude of the wave functions by &
functions centered on planes at z = ag and z = by, the
positions of the 2D EG’s within the wells, our results
for the symmetric and antisymmetric plasmon excitation
energies in the long wavelength limit, agree with Ref. 1.
That is, with [(1(2)|? = §(z — ao), |(2(2)|? = §(z — bo),
and 2a = |ag — bo|, Eq. (22) yields

uu;u(‘]) = 27"@2/5.9(17
(25)
u11;22(‘1) = 27r62 exp(_an)/esqa

which may be used in Eq. (24). We now present closed-
form analytic results for the symmetric and antisymmet-
ric modes when tunneling is included, which generalize
those of Ref. 1.

B. Analytic results for plasmon excitations
with tunneling

We now turn to analytic calculations of the plasmon
excitations in a double-well system when the two orig-
inally degenerate ground state energy levels in the two
wells are split due to tunneling. The higher energy levels
will be ignored in these calculations. The width of each
well is b with —a — b < z < —a for one quantum well
and a < z < a + b for the other quantum well. We shall
treat the tunneling as a small perturbation for which the
wave functions corresponding to the ground (1) and first
excited (2) states can be approximated by

@) =wul D)0ED) @
G(2))  v2\1 -1/ \4(z+a))’

where 1(z) is the ground state wave function of an elec-
tron in a single well whose center is at 2 = 0. When
the electrons are strongly localized in the wells, we make
the approximation that the overlap of the wave functions
can be neglected. The two-subband approximation in
conjunction with Eq. (26) yields, in the 2D EG limit, the
following results for the matrix elements in Eq. (22) when
we take |¥,(2)]2 = 4(2) (n = 1,2):

Uy1;11 = U11;22 = U22;11 = U22;22
= 27e? (1 + e*zq") /(esq) = V1,
U12;11 = U12;22 = U21;11 = U21;22 = U11;12
= uUgz;12 = Upp;e1 = Uzz;21 = 0,
U12;12 = U21;21 = U21;12 = U12;21
=2me? (1 —e7%9%) [(e,q) = Va.  (27)

Making use of Egs. (27) in Eq. (23), we obtain the
dielectric tensor for the two-band model as

0 0 ~v,Y
0 o]
1-V) —vul® 0 (28)
1,19 1-v,n® 0
0 0 1— WY
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In a straightforward way, it can be shown that the zeros of the dielectric tensor in Eq. (28) are given by the solutions
of the two equations

Vilg) [ (q,0) + 11§ (g,0)] = 1,
(29)
Va(o) [ (q,0) + Y (g, 0)| = 1,

which describe the symmetric and antisymmetric modes of oscillations for the double-layer structure. Equation (29) is
similar to the dispersion relation for single quantum wells derived in Ref. 32. To identify which one of these equations
describes symmetric plasmon modes and which antisymmetric modes, we refer to the Appendix.

When the difference in the effective mass (m}) for the ground subband and the first excited state (m3) is negligible
and vertex corrections are neglected, the polarization functions are given by the formulas

() m* m* hg® \® 2,,2 hg? \* 2,2

Iy, (g, w) = 1+ﬁq2 W= —q%v%, — w+ﬁ - q%v3, s (30)
0 m [ hg? \? ha? \?
(0) m* m* hg? \* 2,2 hg® \* 2,2

I35 (q,w):——wﬁ2 1+ﬁ w+AQ—2m* — q?vg, — w+AQ+2m* - q%vg, , (32)
(0) m* m’ rg® \* 2,,2 hq? ’ 24,2

1% (q,w)=—ﬂ_ﬁ2 1+7iq2 w—AQ—2m* —q%v%, — w—AQ+2m* — q%v%, , (33)

where vy, and vy are the Fermi velocities for the subbands 1 and 2, respectively, and AQ = (E; — E;)/A. Equations
(30) and (31) are valid when w > Bg%/2m*. Also, in deriving Egs. (32) and (33), we assumed that w > AQ + Aig?/2m.
The results in Egs. (30)—(33) can be further simplified in the quasiclassical approximation when ¢ < kr and fw < €p
and we have

1) (q,w) = _:;12 [1 - ﬁ] ; (34)

1Y (g,0) ~ [1 ~ T/;f:qm] : (35)

. - 7 2
mh VW + A2 - g2 (vE, +vd,) /2

1 (g, 0) » - = (37)

]_ —_
V= 897 — g2 (3, + v3,) /2



51 TUNNELING DENSITY OF STATES AND PLASMON . .. 7079

Substituting Eqgs. (34) and (35) into Eq. (29), we have
shown that the symmetric modes are not affected by
tunneling and, in the quasiclassical approximation, their
normal mode frequencies are given by

2 *

—2qa m_ _
Eﬂ(1+e )M2 2

e w

2 2
Vw? —q?vi,

w

——————7¢]=1.@&

2 2
W = @V,

If we make use of AAQ K ep, we can take vp; = vpy =
vp; then

wy = 2o, (39)
V@F -1
where
Qe(@) =1+ ——o (40)

kTr (1 + 6_2‘1“)

in terms of the Thomas-Fermi wave number kpp =
2m*e?/e,h%. In the long wavelength limit (¢ < krr),
Eq. (39) becomes

2
wi B %L‘ieq (1 + e_zqa) , (41)
where n, is the total electron density. This result may
also be obtained directly from Eq. (38) when qup; 2 < w.
Equation (41) agrees with the result of Das Sarma and
Madhukar! for vp; = vpe and with the same electron
effective mass in the two quantum wells.
Turning now to the antisymmetric modes, we obtain

from Eq. (29) in the quasiclassical limit

me? m* w
— 1—e 292y °_ |9 _
e U R P Yo anr s ot

w

RV ey qzﬁ%] =1, (42)

where 9% = (v%; + v%,)/2. Clearly, the solution of Eq.
(42) depends on tunneling. In the limit AQ < qoF, Eq.
(42) yields the result

2 _ Q2

B Q*[3Q* — 1]
R Toro1

Q% -1

where Q_ is defined in Eq. (40). Equation (43) reduces to
the frequency of oscillation for the antisymmetric mode
in the absence of tunneling (A2 — 0) that was given by
Das Sarma and Madhukar! for ¢ < ktr.

Our result that the symmetric mode is not affected by
tunneling but the antisymmetric mode depends on the
charge transfer between the wells can be explained as
follows. For the symmetric mode, the sign of the charge
density fluctuations in each quantum well is the same

w (qvF)? + AQ%,  (43)

(see the Appendix) and the double-well structure is com-
pletely symmetric with respect to the midplane at z = 0.
As a consequence, the probability for an electron to tun-
nel from the well on the right-hand side to the one on the
left-hand side and vice versa will be same, thereby caus-
ing tunneling to have no effect on the symmetric mode.
On the other hand, there is a preferred direction for elec-
trons to tunnel when the charge density fluctuations in
the wells have opposite signs, which would definitely im-
pact on the plasmon frequency for this case.

There are two points we would like to discuss before
presenting our numerical calculations in Sec. IV. The first
concerns the use of the é-function approximation for the
amplitude of the wave functions. Results similar to the
dispersion relations in Eq. (29) have been obtained for
finite well width with no overlap of the wave functions
for electrons in different wells. However, an advantage of
taking the b — 0 limit is that in the plasmon dispersion
relations, we used the quasiclassical approximation ¢ <
kr and iw < ep. If both energy levels are occupied, then
kpb ~ 1 so that ¢b < 1. In this long wavelength limit,
the results for the dispersion relations when b is finite are
the same as those for the é-function approximation.

The second point has to do with a result of Das Sarma
and Madhukar! that the separation between the wells
must exceed a certain critical value, otherwise the plas-
mons are Landau damped. Their calculations were based
on a model consisting of degenerate energy levels in
the two quantum wells with no tunneling between them
(AQ = 0). When only the two ground degenerate energy
levels in the two wells are included, the dispersion rela-
tion for plasmon excitations is given by the determinantal
equation

1- U11;11H(1(P '—Uu;zzng)

=0, (44)

—un;zzn(ﬁ) 1- u11;11H(2%
where 11,11 and uq1;22 are given in Eq. (25). As a spe-
cial case of the dispersion relation in Eq. (44), we take
the Fermi velocities to be equal vg; = vpe so that the
polarizability functions in Egs. (30)—(33) are the same.
Equation (44) then becomes

[1 — (u11;11 + U11;22) H(ﬁ)] [1 — (u11;11 — U11;522) Hﬁ’]

=0. (45)

When the result in the first (second) set of square brack-
ets in Eq. (45) is zero, we obtain the dispersion rela-
tion for the symmetric (antisymmetric) plasmon excita-
tion modes. In the quasiclassical approximation, Eq. (45)
yields, in conjunction with any one of the results for the
polarization functions in Egs. (34)—(37), when vp1 = vpa
and AQ = 0, the plasmon excitation energies for the sym-
metric (+) and antisymmetric (—) mode

Qi

quF.
Vei-1

Equation (46) clearly shows that wy > gup so that there

wi = (46)
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is no Landau damping for either mode for any value of the
well separation 2a in the quasiclassical regime. There-
fore, the conclusion by Das Sarma and Madhukar! that
the separation between the charged layers must exceed
some specific critical value if the plasmons are not to be
Landau damped is not correct. This result in Ref. 1 was
obtained when w > qur, which they referred to as the
high-frequency limit. This corresponds to ¢ < krp in
Eq. (46), which becomes

krr (1 £ e 292
wy X Mqu—————)—qvp . (47)

After this, the limit 2qa < 1 was taken in Eq. (47) so
that the antisymmetric mode frequency becomes w_ =~

(kTFa)l/ 2 qup on which was imposed the condition that
a > 1/kyp if this mode is not to be Landau damped.

IV. NUMERICAL RESULTS AND DISCUSSION

In our numerical calculations, we choose a tempera-
ture of T = 50 K, assume that the entire structure is
charge neutral, use infinite barrier boundary conditions,
and completely symmetrize the second derivative terms
in solving Egs. (3) and (4). We choose an electron ef-
fective mass for the bulk material making up the bar-
rier region and the well region as mg = 0.08m. and
mw = 0.67m,, respectively, where m, is the free-electron
mass. The bare confining potential V;(z) is taken as zero
inside the well and 0.26 eV outside. Also, the background
dielectric constant for the barrier region and well region is
chosen as 12.0 and 13.0, respectively. The width of each
barrier is 100 A and the quantum-well width is 75 A.
In Figs. 1 and 2, we show plots of the conduction band

0.5 T T T

]

04

V(z) (eV)
o
w
T

02

A

0.1 1 | 1
0 100 200 300 400

z(A)

FIG. 1. Conduction band edge of the double-layer quan-
tum-well system. The single-particle eigenstates are calcu-
lated in the self-consistent Hartree approximation using Egs.
(3) and (4). The following parameters are chosen: the well
width is L, = 75 A, the dopant density in each barrier re-
gion is 20.0 x 10" cm ™2, and the electron effective mass in the
well and barrier regions is m* = 0.067m. and m* = 0.08m.,
respectively.

0.15 T T T

0.10

0.05

0.00
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FIG. 2. Electron wave functions of the lowest three
single-particle eigenstates calculated in the self-consistent
Hartree approximation using Eqgs. (3) and (4). These wave
functions correspond to the conduction band edge in Fig. 1.

edge and the lowest four electron wave functions when
the doping in each of the barriers has a volume density of
20.0 x 107 cm™3; we assume that all donors are ionized.
For this, the total volume density of the dopant charge
is 12.0 x 102 cm™2, the chemical potential is p = 0.345
eV, and the Fermi wave number is kp = 0.0614 A1,
The conduction band edge shows band-bending effects
obtained by solving the Hartree equation (3) in conjunc-
tion with Poisson’s equation (4). Figure 3 shows a plot
of the averaged (reciprocal) subband effective mass m},
defined in Eq. (5) as a function of the subband index
n, while Fig. 4 is a plot of the corresponding subband
edge E° and the chemical potential u. Only four sub-

] S -
15+ 2 .
T~ 1
E 1} 5 6 .
€
4
13 - =
3 4
12 PR U WA TN WU SO S [T ST S T S N O ST N
0 5 10 15 20

FIG. 3. Averaged reciprocal electron effective mass 1/mj,
in units of the free-electron mass m. as a function of the sub-
band index n, for the modulation doping used in calculating
the results in Figs. 1 and 2. The lowest six electron effective
masses are labeled by their indices.



0.6

04

Energy (eV)

02 n | I il 1 | 1 I L

FIG. 4. Conduction band edge ES (o) and the chemical
potential p (O) for the modulation doping used in calculating
the results in Figs. 1-3. For convenience, solid lines are used
to connect these points.

band edges lie below the chemical potential. The origi-
nal degenerate subband energies are split by tunneling.
For example, the two lowest and next two lowest sub-
band edges only have an energy difference of about 0.1
meV, but this difference increases for the higher lying
subbands. In Fig. 5, we present the wave functions for
the ground and first two excited states when the vol-
ume dopant density in the left barrier is increased to
30.0 x 10'7 cm~3, but the dopant density in the other
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g
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L 1 ] ! ]
0 100 200 300 400
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FIG. 5. Electron wave functions of the lowest three

single-particle eigenstates calculated in the self-consistent
Hartree approximation using Egs. (3) and (4). These wave
functions were calculated when the barrier regions were asym-
metrically doped with a dopant volume density of 30.0 x 107
cm™? within the barrier on the left and 20.0 x 10*7 cm™3
within the middle barrier and the barrier on the right. The
inset shows ¢1(z) x 10™% and C2(z) % 1073,
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FIG. 6. Tunneling density of states as a function of energy
for the double-layer quantum-well system. Curve A is for
barrier doping with volume density 20.0 x 107 ¢cm~2 and
assuming all donors are ionized. Curve B corresponds to a
volume dopant density in the left barrier of 30.0 x 10'7 cm ™3,
but the dopant density in the middle and right-hand barriers
is unchanged as 20.0 x 107 cm™3.

two barriers is unchanged as 20.0 x 10'7 cm~3. All other
parameters in the calculations are the same. In this case,
the chemical potential is 4 = 0.405 eV. When the struc-
ture is asymmetrically doped the splitting between the
ground states is about 12 meV. In Fig. 6, the tunneling
density of states is plotted as a function of the energy for
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FIG. 7. Plasmon excitation spectrum as a function of
the wave vector ¢ in units of the Fermi wave vector
kr = 6.14 x 1072 A~! for the double-layer quantum-well
system. Here w, is the excitation energy of the symmet-
ric mode and w_ the excitation energy of the antisymmetric
mode. Only the ground and first excited subbands were in-
cluded in these calculations. The well widthis L, = 75 A, the
dopant density in each barrier region is 20.0 x 107 ¢cm ™2, and
the electron effective mass in the well and barrier regions is
m* = 0.067m. and m* = 0.08m., respectively.
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FIG. 8. Plasmon excitation spectrum as a function of
the wave vector ¢ in units of the Fermi wave vector
kr = 6.63 x 1072 A~! for the double-layer quantum-well sys-
tem, asymmetrically doped in the barriers only. Only the
ground and first excited subbands were included in these cal-
culations. The well width is L, = 75 A, and the dopant
density in the left barrier is 30.0 x 10'7 cm ™3, but the barrier
between the wells and the right-hand barrier have a volume
doping density of 20.0 x 10*7 cm™3. The electron effective
mass in the well and barrier regions is m* = 0.067m. and
m” = 0.08m., respectively.

the double-layer quantum-well system. Curve A is for the
case when the doping in each of the barriers has a volume
density of 20.0 x 1017 cm™3 and all donors are ionized.
Curve B corresponds to a volume dopant density in the
left barrier of 30.0 x 1017 cm ™3, but the dopant density in
the other two barriers is unchanged as 20.0 x 107 cm~3.
In Fig. 7, we plot the plasmon excitation spectrum as
a function of the wave vector ¢ in units of the Fermi
wave vector kg = 6.14 x 1072 A~ for the double-layer
quantum-well system. Here both the symmetric (w4 )
and the antisymmetric mode (w_) show some structure
associated with the difference in the Fermi velocities for
the two subbands. Only the ground and first excited
subbands were included in these calculations. The well
width is L, = 75 A, the dopant density in each bar-
rier region is 20.0 x 1017 cm 3, and the electron effective
mass in the well and barrier regions is m* = 0.067m, and
m* = 0.08m,, respectively. Also, we choose the parame-
ter due to impurity and phonon scattering as v = 0.01p
in the polarization function HSLOL, (¢,w) given by Eq. (12).
We compare the results in Fig. 7 with Fig. 8 where the
doping in each of the barrier regions is not the same.
The volume dopant density in the left barrier is chosen
as 30.0 x 10'7 ¢cm~3, but the dopant density in the other
two barriers is unchanged as 20.0 x 1017 cm™3. All other
parameters in the calculations are the same as in Fig. 7.
In this case the dip in the plasmon excitation curve oc-
curs at a larger value of the dimensionless wave number.
The Coulomb repulsion between the electrons in the two
wells and the tunneling cause the originally degenerate
modes to be significantly affected in Fig. 7. In Fig. 8
where the energy levels are displaced due to the asym-
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metry in doping, the weaker tunneling causes the two
modes not to have as large a dip as in Fig. 7.

V. CONCLUDING REMARKS AND SUMMARY

In this paper, we presented a self-consistent field theory
to calculate the electron wave functions in the Hartree ap-
proximation for a double-quantum-well structure. The
exchange contribution to the quasiparticle energy was
obtained by making use of the Hartree wave functions.
Our formalism allows for arbitrary doping of the bar-
rier regions and we assume that all the donors are com-
pletely ionized. In our numerical calculations, the doping
is taken to be uniform throughout the barrier and the en-
velope functions are zero at the two ends far away from
the interfaces of the quantum well. Our numerical re-
sults show that when the barriers are unevenly doped,
the built-in electric field causes the electrons to be more
localized in one of the wells and the region of localization
depends on the subband index (see Fig. 5). This asym-
metry of the wave functions has an effect on the plasmon
excitation spectrum which we demonstrate in Figs. 7 and
8. Also, we have presented closed-form analytic results
for the plasmon excitation spectrum in the long wave-
length limit. Owur results show that tunneling does not
affect the frequency of the symmetric mode, but the con-
tribution due to tunneling on the antisymmetric mode
is calculated explicitly. Das Sarma and Madhukar! have
concluded from their calculations done in the quasiclas-
sical limit that the separation between the wells must
exceed a certain critical value, otherwise the plasmons
are Landau damped. Their calculations were based on a
model consisting of degenerate energy levels in the two
quantum wells with no tunneling between them. Equa-
tion (46) clearly shows that there is no Landau damping
for either the symmetric or antisymmetric mode for any
value of the well separation 2a. Specifically, it follows
from Eq. (39) that the symmetric mode will not be Lan-
dau damped in the quasiclassical limit (¢ <« kp). At
small values of ¢ (¢ < krr,a), we have w ~ ¢q. At
large values of ¢ (krr,a € ¢ < kp), wy asymptoti-
cally approaches the boundary of single-particle excita-
tions (w — qup) as ¢ increases so that there is Landau
damping of w; outside the quasiclassical region. The lim-
iting behavior of the antisymmetric mode is more com-
plex. As a matter of fact, this mode may be considered
as an intersubband plasmon excitation between the low-
est symmetric and the next antisymmetric level in double
quantum wells.® It follows from Eq. (42) that as ¢ — 0,
w2 — (1 + 2ktra) AQ?. Therefore, the deviation of w_
from the subband spacing A2 is produced by depolar-
ization fields similar to intersubband plasmons in single
quantum wells.32 As q increases, the antisymmetric mode
approaches the linear dispersion when ¢ > krg and we
have w > qup. That is, this mode will also not be Landau
damped in the quasiclassical region. As a matter of fact,
the Landau damping of this mode begins when the w_
curve crosses the boundary of the single-particle excita-
tions associated with transitions from the ground to the
first excited level, i.e., w = AQ + qup.
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APPENDIX

In this appendix, we show that Eq. (29) describes sym-
metric and antisymmetric modes for a double-quantum-
well system. The density matrix can be written as

ps (), 2,1 25t) = D D |6 k) faar i (D) K|
a,af k,k'
(A1)

where r|| is a 2D vector, k = (kz, ky) fakar )k (t) is the
probability of the system to make a transition from the
state |a;k) to the state |a';kl,k;) at time t. In the
absence of the external perturbation, the value of pg in
equilibrium is

pO(rHVZyriPZ,) = ps(r“,z,rh,z';t = —OO)
=23 Ik} fo(can)(aikl,  (A2)
o,k

where fo(€ax) = 1/{exp[(€ax) — ©)/kBT] + 1} is the
Fermi distribution function. Now we consider a system
close to thermal equilibrium, perturbed by an external
force. We assume that the external force is weak enough
so that the difference between the expectation value of
any physical quantity and its equilibrium value is lin-
ear in the force. In this case, the equation of motion of
the density matrix in Eq. (A1) is linearized by setting
ps = po + p1 and the total Hamiltonian H = Hy + H,,
where H;(r||, z;t) represents the perturbation part of the
Hamiltonian due to both the external electric field and
the induced density. Keeping only first-order terms, we
have

inoP

~ [H. H, .
ot [H41, po] + [Ho, p1]

(A3)
For a periodic force with Hi(r,z;t) =
Hy(r||, z;w) exp[—i(w + 3/7)t] and pl(r“,z,ri!,z';t) =
pl(r”,z,rh,z';w)exp[—i(w + i/7)t], with 7 denoting a
phenomenological optical broadening parameter from im-
purity scattering, we obtain the matrix elements of the
perturbed density matrix from Eq. (A3) as

. ~(me/esq)0Fy X — (re/euq)dFy et ),
& (g, z;w) = { —(me/€aq)6Fp €792+ — (me/e,q)0Fy e9(:72),
—(me/€sq)0 F e~a(z+a) _ (me/esq)0Fy e—4(z—a)
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(o k|pi(ry), 2, 1)), 2"s w)|'; k')

= Ha,k;a’,k’ (w)<a7k|H1|a,’kI>’ (A4)
where

fO (ea,k) - fO (ea’,k’)
hw — [€ar k' — €ax] +iB/T

IIo ko X (w)=2 (A5)

In the random-phase approximation, the perturbed
part of the Hamiltonian is separated into two terms
consisting of the external and induced potentials
due to density fluctuations so that Hy(r),z;w) =
—e [ (x|, 2) + (x|, 2;w)], where & is a solution
of Poisson’s equation

32‘I>ind(q, z; w)

527 _ qzlﬁind(q,z; w)

4me

6 a,a’ \4) e o' .
03 e 0 Gal)Ger () - (46)
Here 6faa'(¢,w) is equal to the sum over k of
(a;k]pl(r”,z,rfl,z’;w)|a’;k —q). The envelope function
in the z direction is (4(2z). Equation (A4) can be ex-
pressed as

8o (a:0) = —€ [055(9) + Panr (9, w)] Tk (4, w)
(A7)
where II((XOO)[, is the polarization operator defined in Eq.
(12) and

B (q, ) = /_oo dz Ca(2)B™(q, 2 w0)Cur(2).  (AS8)

We now solve Eq. (A6) when only the two lowest tun-
neling states are included in the calculation and the over-
lap of these wave functions is neglected. For this, the
envelope functions are given by Eq. (26). In the extreme
case when |(z)|? is approximated by §(z), Eq. (A6) be-
comes

82<I>i“d(q,z;w)

5.2 - ?®™(q, z;w)

2mwed

= 27r66F1 6(2 — a) +
€g €s
where 0F) = §f11 +0fa2 +0f12 +6f21 and 6F2 = 6f11 +
6fa2 — 0 f12 — 6 f21. The solution of Eq. (A9) is

Fy 6(z+a) , (A9)

z< —a
—a<z<a
z>a.

(A10)

From Egs. (26) and (A10), the matrix elements of the induced potential ® (g, w) defined in Eq. (A8) are given by



7084 GODFREY GUMBS AND G. R. AiZIN 51

®11(q,w) = P22(q,w) = —j‘; (6f11 + 6f22) (1 + e729%), (Alla)
®12(q,w) = Pma(g,w) = *:z (8f12 + 8f21) (1 —e29%). (A11b)

Substituting Eq. (A7) into Eq. (All) and setting ¢°* = 0, we obtain the equations determining the plasmon
excitation energies as

[V1 (H(ﬁ) + ng;)) - 1] (6f11 + 6f22) =0, (A12a)
[Vz (Hg‘;’ + ngy) - 1] (5f12+621) =0, (A12b)

where V; 2 = me?/(g5q) (1 £ €729%). When the first of the two equations in (29) is satisfied, from Eq. (A12b) we obtain
6 f12 = —0d f21. This solution corresponds to the case when the signs of the charge density fluctuations in each quantum
well are the same [see Eq. (A10)]. Therefore, the first equation in (29) describes in-phase density fluctuations, i.e., the
symmetric mode. When the second of the two equations in (29) is satisfied, from Eq. (A12a) we obtain 6 f;; = —0 faa.
This is the solution when the signs of the charge density fluctuations in each quantum well are opposite. Therefore,

the second equation in (29) describes out-of-phase density fluctuations, i.e., the antisymmetric mode.

* Also at The Graduate School and University Center of the
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