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We have calculated electron—optical-phonon scattering rates in ultrathin GaAs/Al,Ga;_.As alloy
quantum-well systems of finite depth, based on a fully microscopic lattice dynamics approach for the
phonon spectra. A pseudo-unit-cell model is utilized to calculate the lattice-dynamical properties of
the Al,Ga;_.As alloy system together with the two-parameter Keating potential and the long-range
Coulomb potential between ions. The polar interactions of quantum-confined electrons with GaAs-
and AlAs-like optical modes are presented for both intrasubband and intersubband transitions,
and the comparison with other theoretical calculations made. Good agreement is obtained for the
1—1 and 2—1 transition rates between the microscopic pseudo-unit-cell model and a macroscopic

two-pole dielectric continuum model.

I. INTRODUCTION

The electron—optical-phonon (e-ph) interaction in
quantum wells (QW’s) and superlattices (SL’s) is a topic
of continuing interest, since the transport properties of
high-speed heterostructure devices are primarily gov-
erned by the carrier interactions with phonons. The pres-
ence of heterointerfaces may give rise to the confinement
of optical phonons in the layers and the localization in
the vicinity of interfaces. Therefore, the e-ph interactions
in heterostructures may differ from those in the bulk ma-
terials, particularly in QW’s having very thin well width
and ultrathin-layered SL’s.

Several approaches have been applied to calculate
e-ph scattering rates in heterostructures.! Recently,
a fully microscopic calculation was reported for
GaAs/AlAs systems by Riicker et al? on the basis of
ab initio phonon spectra.® Although a great majority of
heterostructures contain alloy semiconductors, the exist-
ing microscopic theoretical treatments of e-ph scattering
probabilities are limited to binary/binary material sys-
tems. This limitation is due to the fact that in general,
accurate microscopic studies of alloy SL’s require large
supercells to simulate alloy disorder,® and, therefore, the
subsequent Calculation of e-ph rates becomes intractable,
even for relatively thin SL’s.

The purpose of this paper is to investigate the e-ph
interaction in GaAs/Al,Ga;_,As alloy QW’s, based on
a different fully microscopic approach to the lattice dy-
namics of the alloy. The GaAs/Al,Ga;_,As alloy sys-
tem is of great importance for many high-speed electron-
ics and optoelectronic devices because the lattice mis-
match between GaAs and Al,Ga;_,As is extremely small
(less than 0.15% at 300 K), such that the concentration
of undesirable interface states is negligible. In this re-

0163-1829/95/51(11)/7046(12)/$06.00 51

spect, Al,Ga;_,As alloys have been studied as proto-
typical ternary materials. Their long-wavelength optical
phonons display a two-mode behavior throughout the
whole composition range and have well-defined disper-
sive character.®> As mentioned above, modeling alloys
to study lattice-dynamical properties, without using any
mean-field approximations (average-t-matrix,® coherent
potential,” etc.), requires the introduction of large su-
percells to treat the disorder. We have proposed a sim-
pler technique based on the pseudo-unit-cell concept re-
ported by Chang and Mitra in 1971,% instead of using
a huge supercell, and our results have been presented.®
Related works by Bechstedt et al.1%1! have recently ap-
peared which follow a similar approach to calculate the
lattice dynamics in heterostructure alloy systems. This
model has proven to be a simple approach to calculate
general features of the lattice-dynamical properties of al-
loys. However, since the pseudo-unit-cell model imposes
translational invariance in the mixed crystal system, it
contains no information on alloy disorder effects such as
broadening or alloy scattering. In this paper, we use this
simple model for the lattice dynamics of alloys to calcu-
late the e-ph interaction in the alloy QW system. Since
our calculation is in the framework of three-dimensional
dynamics, the theory is not restricted to long-wavelength
modes nor certain phonon propagation directions. Our
results are compared with the results using a macro-
scopic theory of phonon modes based on the dielectric
continuum model (DCM). In Sec. II, the general for-
mal setup for the calculation of electron—optical-phonon
interactions is illustrated. We describe our microscopic
calculation of phonons in Sec. III. Results and discus-
sions on the scattering rates in QW’s are presented in
Sec. IV. As an application of the technique, numerical
results are given for a GaAs/Aly 3Gag 7As alloy QW sys-
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tem and compared to the results obtained using the DCM
(Sec. V). Finally, Sec. VI contains our conclusions.

II. ELECTRON-OPTICAL-PHONON
INTERACTION IN QW'’s

For the polar interaction of quantum-confined elec-
trons with phonons, the interaction Hamiltonian H pp

J

is given by —eyp, where e is the electron charge and ¢
is the electrostatic potential associated with the lattice
vibrations.’? In a quantum-well (QW) grown along the
z direction, the total scattering rate of an electron with
in-plane wave vector k|| from subband i to subband j,
making use of Fermi’s golden rule, is obtained as follows
(assuming parabolic bands):*3
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where kfl is equal to kj & q|; and the plus (minus) sign two-parameter Keating potential'® and the long-range

is for phonon absorption (emission). m* is the effective
mass of the conduction band, A is the in-plane normal-
ization area, and ng, is the Bose function for the phonon
occupation, which is given by

Mgy = Say@ny - (2)

The term /Aw* appearing in the energy-conserving § func-
tion satisfies the relation

+hw* = +hw, + (E] — E,), (3)

where (E; — E;) is the energy difference between the final
and initial electronic subbands. In the last line of Eq. (1),
integration over all possible kfl has been performed and

k{? is defined as

2m*w*

5 (4)

The coupling factor g;; is given by the overlap integral,

ki = ki F

gi(q)) = /5;(2)90;“ (2)&:i(2)d=. (5)

Here, £;(z) is the normalized envelope function of the
ith quantized electron state, the solution of Schrédinger’s
equation within the effective-mass approximation,'* and
©q, (2) is the potential associated with the quantized
phonon mode v. By symmetry arguments, g;; is nonzero
only for phonons with symmetric potentials for intrasub-
band scattering (¢ = j), whereas phonons with antisym-
metric potentials contribute to the intersubband scatter-

ing (¢ # j).

III. CALCULATION OF PHONONS
IN ALLOY SEMICONDUCTORS AND SL’s

We start from a recent calculation'® of the phonon
spectra of polar semiconductor SL’s, based on the

Coulomb interaction between ions, which was shown to
reproduce the characteristic features of the phonon spec-
tra in these systems. The short-range Keating potential
for the crystal is expressed in the following form:
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where x,,.. (¢) = x(¢s') — x(0k) is the bond vector from
atom « to atom x’ in the £th unit cell, d,: is the equilib-
rium bond length, and a, is the bond-stretching force
constant between the two atoms. Bc.'x is the bond-
bending force constant between the bonds centered at the
atom x and di,n,, is the product of d,; and d,». Summa-
tions k' and k" are taken over all nearest-neighbor bonds
and n represents the number of atoms in the unit cell.
The values of a and (B for bulk GaAs were fit to
existing experimental data.!® For AlAs, a and (3 were
assumed for simplicity to be equal to those of GaAs.
The resulting AlAs longitudinal optical (LO) phonon
dispersion®® is significantly overestimated with respect to
ab initio calculations,'™!® which were recently confirmed
by second-order Raman scattering experiments.'®2% This
approximation has some minor implications for the cal-
culated scattering rates, as will be discussed in Sec. IV.
The long-range Coulomb interaction can be calculated
exactly by using the conventional Ewald method?! with
an effective charge e*. The effective charge parameter
Z(= \;6:) is determined so as to reproduce the experi-

316nm’n”
4d2, .,

{x,m: (£) - Xor (£)

mental splitting of the LO and transverse optical (TO)
phonon frequencies of the bulk materials at the I" point.

The bulk optical bands of GaAs and AlAs do not over-
lap, so in a layered structure made of these materials, the
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optical modes are well confined within the parent crys-
tal slab and dispersionless, whereas acoustic modes are
extended.?? As an example, the calculated phonon dis-
persion curves of the (GaAs)2/(AlAs), superlattice (SL)
along the growth direction are shown in Fig. 1, using the
bulk parameters given in Table 1.22 It is assumed that all
the force constant parameters in the superlattice are the
same as those in the corresponding bulk materials, except
the effective charge parameter at the As interface plane,
which is determined by the average of the two constituent
bulk values.®

For ternary mixed crystals, the introduction of a large
supercell is usually required in order to simulate the ef-
fect of disorder in alloys. In the present work, we take
the simple pseudo-unit-cell concept® to study the lattice-
dynamical properties of alloys instead of using a huge su-
percell. In a mixed A, B;_,C crystal, where 0 < =z < 1,
the A and B ions are assumed to be distributed ran-
domly in their corresponding sublattice with a uniform
distribution (i.e., with no clustering). The pseudo-unit-
cell is formed by ions zA, (1 —z)B, and C, and this unit
cell is repeated in a mixed crystal. Probabilistically, the
pseudo-unit-cell may be thought of as a configurational
average unit cell. The fractional amounts of the A and B
ions located at the same sublattice site are proportional
to the concentrations and the corresponding forces in-
volving these ions are weighted by these factors.®24

Utilizing the pseudo-unit-cell model together with
the two-parameter Keating potential and the long-range
Coulomb interaction for the potential between the ions,

400

300 -
§ 200
3
100
0 i ! 1 L
0 1
q (units of /2a)
FIG. 1. Phonon dispersion relations of the (GaAs)z/

(AlAs)2 SL along the growth direction. The solid (dotted)
lines show longitudinal (transverse) modes.

TABLE 1. Bulk parameters used in the phonon calcula-
tions. The masses of the cations and anions are denoted by
m. and mg, respectively, @ and (B are the bond-stretching
and the bond-bending force constants, respectively, in units
of N/m, Z is the effective charge parameter, and ! and a are
the equilibrium bond length and lattice constant, respectively,
in atomic units.

me me a B Z l a
GaAs 69.72 74.92 36.18 3.96 0.664 4.626 10.68
AlAs 26.98 7492 36.18 3.96 0.78 4.626 10.68

the lattice dynamical properties of Al,Ga;_As can be
calculated within the three-dimensional framework.® The
equation of motion for the ionic displacement u(¢x) of
the ion & in the unit cell £ in the mixed crystal may be
written??

Muiia(tr) = = 3 (W) @ap(ls; €' Yug(€')),  (7)
k'8

where M, is the mass of the xth atom, and uq(¢k)
and ug(¢k) are the a- and B-Cartesian components of
u(¢k),a, 8 = z,y, z, respectively. iin(£x) is the second
derivative of u,(£x) with respect to time and c(x') de-
notes the concentration of the atom «/, i.e., ¢(Al) = z,
¢(Ga) = 1 — z, and ¢(4s) = 1. @ is the interaction
potential of the crystal (6) and

5%
= 8
Ouqa(£k)Bup(l's') |’ ()

D,p(Lk; LK)

where the subscript zero means that the derivative is eval-
uated in the equilibrium configuration. To obtain a more
natural set of equations with a symmetric force matrix,?*
Eq. (7) can be multiplied by c(x). Assuming that the dis-
placement u(¢k) is a traveling wave of the form

w(~)
Ve(r) M,

the equation of motion (7) becomes

u(fn) - ei[k~x(ln)—wt]’ (9)

[C — w?I)[w] = 0. (10)

I is the identity matrix and w is a 1 X 9 column matrix.
The dynamical matrix C is a 9 x 9 Hermitian matrix, the
elements of which are of the form

Cag(mc' | k) =

1 !
e & )

Xéaﬂ(&‘i; elnl)e—ik[x(ln)—x(t'n')]_ (11)

It is assumed that the bond-stretching force constant
a and the effective charge parameter Z vary linearly with

concentration?425 as
Gaas(T) = [1 — Ogans(l — T)]ag,a» (12)
aaias(z) = (1 — 0a1asT) Qa4 (13)
Zga(z) =[1 — Aaa(1 — 2)]23,, (14)

where z represents the Al mole fraction in the al-
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loy. a2,4.,0%4s and Z2, are determined so that
aGaas(0), @a1as(1), and Zg.(0) are the corresponding
bulk values. Values of the parameter fgaas,fa1as, and
Aga are determined to fit the experimental optical-
phonon frequencies at the long-wavelength limit. Then
the bond-stretching force constants of Al,Ga;_,As are
weighted in the obvious manner as follows:

aga—As = (1 - z)aG&As(m)’ (15)
apl-as = TAlAs(T), (16)

where a™’s are the weighted bond-stretching force con-
stants. The weighted bond-bending force constants 8%
are also determined by

BGa,_.asas = (1 —2)B, (7)
BRsGay_.Gay_. = (1 —2)%8, (18)
BX1, Asas = =0, (19)
BRsaral = €0, (20)
BRsalGay_, ==(1—2)B, (21)

where 8 = Bgaas = Baias- Note that these weighted
force constants already imply the ¢(k)’s in the summa-
tion in Eq. (11). We fit the effective charge parameter
Zga(z) to reproduce the GaAs-like LO and TO splittings
for the corresponding concentration, and Zaj(z) is deter-
mined so as to satisfy the relation for the effective charge
parameter of the alloy Al,Gaj_,As, Za1, Ga,_.As(Z), as

ZA1,Gay_.As(Z) = (1 — 2)Zga(z) + 2Zm(z)  (22)
= (1 - l')ZGaAs + xZA)As,) (23)

where Zgaas and Zajas are the effective charge parame-
ters of the bulk materials given in Table I. The parame-
ters obtained for Al,Ga;_,As are shown in Table II. The
Ga-As or Al-As bond-stretching force constant increases
with decreasing the corresponding cation concentration.
The effective charge of Ga also increases with decreas-
ing Ga concentration. A composition dependence of the
bond-bending force constant is not introduced because
its influence on optical branch is small compared to that
of the bond-stretching term.

The calculated values of the long-wavelength GaAs-
and AlAs-like optical-phonon frequencies of Al,Ga;_,As
as functions of x are compared with the experimen-
tal values?®~27 in Fig. 2. It shows the expected two-
mode behavior, AlAs-like modes at higher frequencies
and GaAs-like modes at lower frequencies. Alloying low-
ers the longitudinal modes more than the transverse ones.
The calculated frequencies agree quite well with most of
the experimental values. The fit for the AlAs-like TO
phonons is poorer because we fit the effective charge of
the Ga only, not that of the Al ions.

TABLE II. Fit parameters for Al,Ga;_,As alloy system.

Oa1as AGa
0.2184 0.6

0GaAs
0.4628

aoAlAs Z(%a
46.29 1.660

aoGaAs
67.35
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FIG. 2. Long-wavelength LO and TO phonon frequencies
as functions of z in bulk Al,Ga;_,As. The solid curves repre-
sent the results of the present calculation using the parameters
of Table II. Experimental data points are indicated by circles
(Ref. 25), squares (Ref. 26), and full circles (Ref. 27).

Figure 3 shows the phonon dispersion curves of a
(GaAs)z/(Alo.3Gag.7As), SL along the growth direction.
The AlAs-like LO modes are shifted to lower frequencies
and AlAs-like TO modes move to higher frequencies than
the corresponding modes of the GaAs/AlAs SL shown
in Fig. 1, which is consistent with the trend shown in
Fig. 2. All AlAs-like optical modes are confined and
dispersionless, whereas GaAs-like modes show different

400

300 -

100 )
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FIG. 3. Phonon dispersion curves for the (GaAs)y/
(Alo.3Gao.7As)2 SL along the growth direction. The solid
(dotted) lines show longitudinal (transverse) modes.
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features, owing to the presence of Ga ions in both lay-
ers of the (GaAs)y/(Alg.3Gag.7As)2 SL. This is due to
the fact that optical-phonon branches of bulk GaAs and
Aly 3Gag.7As overlap below the top of the LO GaAs-like
band of the alloy [which is lower than the LO(T") fre-
quency of bulk GaAs]. In general, superlattice modes
are expected to have extended or confined character, de-
pending on whether their frequency is allowed for both
constituents or just for one of them. By a naive ap-
plication of this reasoning, dispersionless confined LO
modes would be expected only between the top of the
LO continua of the two materials. The rest of the GaAs-
like LO phonons, whose frequencies fall in the overlap
region, would be folded and dispersive. However, it
has been noted that, even in the overlap regions, res-
onant modes may still exist, with significant displace-
ment amplitude only in one of the constituents. These
are called quasiconfined modes, to distinguish them from
the proper confined modes, which result in the frequency
range allowed for one of the two constituents only.2® Al-
though this quasiconfinement is not well pronounced in
the (GaAs)a/(Alg.3Gag.7As)2 SL case, it is clearly seen
in longer-period SL’s.

It has been reported that no microscopic interface
modes can be formed in GaAs/AlAs SL’s because there
is no new atomic pair at the interface.??:2° We were also
unable to find interface modes along the growth [001]
direction.'® Nevertheless, there are some modes which
show increasing localization at interfaces with increas-
ing q) and are identified as macroscopic interface modes.
These interface modes and confined modes fall very close
in frequency and thus mix strongly. Therefore, it is gener-
ally complicated to identify one of the GaAs (AlAs)-like
phonons as an interface phonon near the zone center,
without noting that macroscopic interface modes have
large angular dispersion in the long-wavelength limit.2-30
The contribution of these interface modes to the scatter-
ing rates is very important and will be discussed in the
following.

[ 1.247zf,
Vie) = { [1.247z + 1.147(z

€co(z) = 10.89 — 2.73z,

where f is the conduction-band offset parameter and, in
general, is taken to be 0.65.

For the electron wave function, we use the solu-
tions of Schrodinger’s equation within the effective-mass
approximation.!* The envelope functions of the low-
est subbands, 1 and 2, for both QW’s are shown in
Fig. 4. Of course, the electron wave functions of the
GaAs/Aly 3Gag.rAs QW, especially that of the second
subband, are more extended than in the GaAs/AlAs QW.
From the poor confinement of electron wave functions in
the alloy system, we can easily see that the infinite bar-
rier height approximation may introduce large errors in
the calculation of the overlap integrals g;;, and thus large
errors in the calculation of scattering rates.33:34

—0.45)]f, 0.45 < z < 1.0,
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IV. MICROSCOPIC CALCULATION
OF e-ph SCATTERING RATES

IN QW’s WITH ALLOY CONSTITUENTS

We have calculated the scattering rates for Frohlich-
type electron—optical-phonon interaction in QW’s, based
on the above microscopic description of the phonon spec-
tra. In a single QW, the potential oy (2) associated with
the quantized phonon mode v, whose sth atomic displace-
ment is u¥(q), is given by

_e:
‘Pq” (z) = Z 29”600

k iq) - uy(q))
2Njwy(qy) lq |

—uy, (q))sign(z — Tsz)) =izl T
(24)

where e} is the effective charge of the sth ion located at
r, in the unit cell, | is the area of the two-dimensional
unit cell, €5, is the high-frequency dielectric constant of
the appropriate layer, and N is the number of lattice
points in the normalization volume. Since performing
a lattice-dynamical calculation is much easier for a sys-
tem with three-dimensional periodicity, we simulate our
GaAs QW within a supercell geometry, i.e., we extract
the QW frequencies and displacements from the output
of a SL calculation. The wave vectors q of interest for
the calculation of the e-ph scattering in QW’s have the
largest component parallel to the interfaces because the
electrons are confined in the well, and we choose q along
the [100] direction. It is assumed that there is no dis-
persion of the optical mode frequencies along the [100]
direction since the range of q’s involved in the transi-
tions is limited.?

We consider two QW'’s, GaAs/AlAs  and
GaAs/Aly 3Gag.7As, with the same well width of 56.5
A. For Al,Ga;_,As materials, the barrier height V' (z)
(in units of eV) and the optical dielectric constant e ()
have, respectively, the forms31:32

0<xz<045 (25)

(26)

In many quasi-two-dimensional situations, the scatter-
ing rates involving the two lowest subbands are most
interesting. We first calculate the room-temperature
emission rates for the 1—1 and 2—1 transitions in the
GaAs/AlAs QW. In order to compare our results with
those of Ref. 2, we use the same parameters as the ones
they used (e& a5 = 2.07,eh,4s = 2.17). The results are
shown in Fig. 5. Our total scattering rates are in excel-
lent agreement with those of Ref. 2. Major contributions
are from GaAs- and AlAs-like interface (IF) modes, and
from the lowest-order confined mode with the appropri-
ate symmetry as mentioned in Sec. II, namely, the first
confined mode for the intrasubband scattering and the
second confined mode for the intersubband scattering.
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FIG. 4. Envelope functions of the two lowest electronic
subbands for (a) the GaAs/AlAs and (b) GaAs/Alo.3Gao.7As
QW'’s. The even (odd) function is for the subband 1 (2). The
GaAs layer is centered at z = 0; the dashed vertical lines
indicate the As interface planes.

Interface (IF) modes give a larger contribution than con-
fined modes as shown in Fig. 5. AlAs-like confined modes
also contribute considerably, while their contribution is
negligible in Ref. 2. To understand this result, we have
to recall that—due to the artificially dispersive charac-
ter of our LO branch of AlAs (see Sec. III)—confined
modes fall close in energy to AlAs-like IF modes,?® and,
therefore, they mix strongly, similar to what happens in
the GaAs-like range. This explains why, within our ap-
proximations, AlAs-like confined modes are also found to
contribute to the scattering rates.

Figure 6 shows the room-temperature emission rates
in the GaAs/Alp.3Gag.7As QW. AlAs-like mode contri-
butions are considerably reduced because the Al mole
concentration decreased from z = 1 to x = 0.3. However,
for the intersubband transition they are still comparable
to the case of the GaAs/AlAs QW, due to the fact that
the second subband wave function is extended far into
the barrier.

In the next section, we shall introduce a simple macro-
scopic model, the dielectric continuum model, which
was shown to provide accurate results for e-ph scat-
tering rates in the case of binary/binary structures.?
After deriving its formulation for the case of ternary-
semiconductor barriers, we shall compare its results with
the outcome of our microscopic calculation.

1 2-1
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FIG. 5. Calculated total intersubband and intrasubband
emission rates as a function of electron energy in the
GaAs/AlAs QW including all GaAs- and AlAs-like optical
modes (solid lines). The dashed-dotted lines show the contri-
bution of all GaAs-like modes, out of which the lowest-order
GaAs-like confined mode [first (w = 288.5 cm™!) for intra-
subband and second (w = 287.7 cm™ ") for intersubband tran-
sitions] and the GaAs-like interface mode (w = 269.4 cm™*
for intrasubband and w = 265.4 cm™! for intersubband tran-
sitions) give the dominant contribution and are shown by the
dashed and the dotted lines, respectively.

V. MACROSCOPIC DCM CALCULATION
OF e-ph SCATTERING RATES IN QW’s
WITH ALLOY CONSTITUENTS

In Ref. 2, macroscopic models were shown to be a very
practical tool to obtain reliable estimates of e-ph rates,
provided that they fulfill electrostatic interface boundary
conditions (as is indeed the case for the DCM), and that
appropriate input parameters are chosen to reproduce the
vibrational properties of the constituent materials. We
first review the formulation of the DCM,! give a detailed
derivation of explicit normalized formulas and results for
our prototype binary/ternary system, and verify their
validity versus the microscopic scheme of the previous

section.
Within the DCM, the semiconductors for the well

(GaAs) and the barrier (Al,Ga;_,As) are described by
a dielectric function with poles at TO mode frequencies
(wro) and zeroes for the LO frequencies (wpo). The
GaAs (material A) dielectric function is easily written as
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FIG. 6. Calculated total emission rates in a

GaAs/Alp.3Gag.7As QW, including all GaAs- and AlAs-like
optical modes (solid lines). The dashed-dotted lines show the
contribution of all GaAs-like modes, out of which the low-
est-order GaAs-like confined mode [first (w = 288.6 cm™")
for intrasubband and second (w = 288.2 cm™!) for in-
tersubband transitions] and the GaAs-like interface mode
(w = 285.2 cm™! for intrasubband and w = 265.2 cm™ " for
intersubband transitions) give the dominant contribution and
they are shown by the dashed and the dotted lines, respec-
tively.

w? — Ww?

ea(w) = €co, —(2—;‘0“). (27)
(w2~ wTOA)

As concerns the alloy, of course the DCM has to repro-
duce the two-mode behavior, namely, the two distinct
allowed frequency ranges corresponding to the vibration
of Ga-As and Al-As bonds, respectively. This is easily
obtained by writing the dielectric function for the alloy
material Al,Ga;_,As (material B) in the two-pole form,
2

(w? = wiyp) (w2~

2
w
eB(w) = €cop (wz L2B)

= wiip) (WP = wh,)

(28)

where wri1,, Wr2,, Wwrig, wrzy are the LO and TO fre-
quencies for GaAs-like and AlAs-like modes of the alloy
at q = 0. As discussed in Sec. III, these GaAs-like and
AlAs-like branches will fall at frequencies which are lower
than the corresponding bulk materials, and decrease with
decreasing percentage of the appropriate cation. The two
dielectric functions are shown in Fig. 7.

A detailed solution of the DCM for our case is pre-
sented in the Appendix. Several types of modes result,
namely, GaAs confined modes in the well, AlAs-like and
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FIG. 7. One-pole and two-pole dielectric functions for
GaAs and Alp.3Gag.7As.

GaAs-like confined modes in the barrier, and IF modes.
As shown by the frequency dispersions in Fig. 8, the
IF modes include three branches, one AlAs-like and two
GaAs-like, the latter being related to the frequencies of
pure GaAs and of GaAs-like alloy vibrations. The corre-
sponding potential profiles are displayed in Figs. 9-11.

In Fig. 12, we show results for emission rates as ob-
tained from the two-pole DCM, and compare them with
the corresponding data obtained within our microscopic
model. The agreement is excellent both for the total rates
and for the relative contribution of GaAs-like and AlAs-
like modes, thus supporting the accuracy of the DCM
also in the case of alloy-based systems.

Within the DCM, we also calculate the relative con-
tribution of IF phonons to the scattering rate, which is
found to increase as the well width L decreases. This is
apparent in Fig. 13, where the 1—1 emission rate for T’
electrons is shown as a function of L. The rates are calcu-
lated at the threshold for the emission of an AlAs phonon,
which corresponds to the peak value. For values of L
smaller than 60 A, the IF modes dominate, mainly be-
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370 B
360 | 1
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300 r B

Frequency (cm-1)

200 -~ _ _ ]

280 L _— - 4

270 - 3

260 : — s
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FIG. 8. Frequency dispersions of interface phonon modes
calculated within the dielectric continuum model for a
GaAs/Alo.3Gao.7As QW. Solid and dashed lines refer to sym-
metric and antisymmetric IF modes.
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FIG. 9. Potential profile for the first (n = 1) and the second
(n = 2) confined phonons in the well for a GaAs/Aly.3Gao.7As
QwW.

cause the quantized electronic levels are pushed at higher
energies and the electron confinement decreases.

A similar effect occurs in the dependence of the scat-
tering rate on the Al fraction in the Al,Ga;_,As alloy
barrier, as presented in Fig. 14. As expected, when =
gets smaller the AlAs contribution tends to disappear.
On the contrary, high values of  imply strong scattering
with AlAs-like phonons, in addition to the enhancement
of the confined GaAs contribution due to the increased
barrier height.

VI. CONCLUSIONS

We have presented calculations of the electron—
optical-phonon interaction in GaAs/AlAs and GaAs/
Alg 3Gag.7As QW’s. A pseudo-unit-cell scheme is suc-
cessfully utilized to derive the lattice-dynamical proper-
ties of Al,Ga;_,As alloy and alloy-based SLS. The con-
tribution of individual modes to the scattering rates was
examined. The results show that the lowest-order con-
fined and the interface mode give the dominant contri-
bution. To our knowledge, the present paper is the first
work which calculates the electron—optical-phonon inter-
action in alloy systems based on a microscopic description
of the phonon spectra. Our results for the emission rates
in the alloy QW system support the two-pole dielectric
continuum model calculations.
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FIG. 10. Potential profile for the first (n = 1) and the
second (n = 2) confined phonon modes in the barrier for a
GaAs/Alo,3Ga0,7As QW
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APPENDIX

In this appendix, we provide a detailed derivation of
the dielectric continuum model and give the explicit nor-
malized expressions of phonon potential and e-ph scatter-
ing rates for the general case of a quantum-well (material
A) embedded in a barrier material (material B), which
may be a ternary alloy. In this macroscopic approach,
polar optical vibrations produce a macroscopic field, ob-
tained from the solution of Laplace’s equation in both
materials,

ea(w) VZpa(r) =0 (material A), (A1)
ep(w) Vipp(r) =0 (material B). (A2)
125 ‘ ‘ ]
’\g 10.0 | |
& 75t .
o
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FIG. 14. Threshold emission rate as a function of the alloy
composition z in a GaAs/Al:Ga;_.As QW (solid line). The
dotted line refers to confined modes in the well, dashed and
dashed-dotted lines show, respectively, the contribution of IF
GaAs-like and AlAs-like modes.
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Because of translational invariance in the direction par-
allel to the interfaces, the solutions are written in the
form

p(r,t) = p(z) elarm—en, (A3)

and the boundary conditions at the interfaces will be

$a=¢sB (continuity of E)) ,
€a (w)%“—’f €B (w)ag;f (continuity of D,).

From these equations, we get three types of phonon
modes:

(i) Confined modes in the well when 4 = 0.

(ii) Interface modes (IF) if both €4 and ep are not
zero.

(iii) Confined modes in the barrier when eg = 0.

The electrostatic potential ¢(r) will be a linear combi-
nation of “normal modes” (i.e., of solutions of equation
eVip= 0),

p(r) = Z Ffulay) @ZH (2) e i (b + bt),

q.v

(A4)

where f, (q)) are the normalization coefficients. The elec-
tric field is then

E(r) = —Ve(r) = =) fu(q)) e

q| v
- v ~ d v 1
X | 2q (PQH ,eZE@q” (b+b ) (AS)

Following the Born-Huang approach,3® the equation of
motion in the binary material A (GaAs) can be written
as

pati(r) = —wio, pau(r) + e4E(r), (A6)

where p14 is the reduced mass of the ions, €% the effective

charge per unit cell, wro, the transverse frequency, u(r)

the ionic displacement, and E(r) the local electric field.
The effective charge is given by

*2
€4 = oo, 1AS) (WIZ,OA - "-’"Zro,;) . (A7)
In a ternary material B (Al,Gaj_.As), there are two
equations of motion,

pigliy(r) = —wh;, pipui(r) + ef, E(r), (A8)

with ¢ = 1,2 referred to GaAs-like and AlAs-like alloy

modes. The polarization now depends on the contribu-

tion of both pairs of oscillating ions (Ga-As and Al-As),

P(r) = l

5 (A9)

el ui(r) +ej uy(r)].
Assuming a two-pole dielectric function (27) and using
the Born-Huang equations, we get

2 ) (w;ﬂa — w%ls)

wr ’ (AlO)
e (w'.%'ZB - w%‘ls)

*2 2
elB - 6.OOBI‘I’IBS—Z (leB -
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wle'zs )

2 ) (w%zls —
w%ZB)

w.
T2p 2
(lea -

. (A11)

2 2
625 - EOOB““ZBS—2 (wL2B -

Moreover, from Born-Huang equations (A8), the electric
field is

(A12)

where A is referred to material A or the GaAs-like and
the AlAs-like modes of barrier (in our notation it can be
“A,” “l1g,” or “2p,” respectively).

Writing u”(r) as

u’(r) = ) u(q,z) e

q

(A13)

and using the standard quantization of displacements in
normal modes

u’(g),2) = ” 2:l?wu v¥(qy,2) (b+ bty , (A14)

it follows that

M 2 2 hQ
E(r) =) (i —w /57—
o e 2Ap W,

x el "T| VK(QH , z) (b + bT).

(A15)

Comparing (A5) and (A15), we obtain the displacements

. o d
vi(ay,2) = fulay) (lq” @) 8 Eq)qn)

y [2Aprw, ex
R pa(wE - wh)

Finally, we can substitute (A16) in the normalization
equation,

/ [v4(ay, 2)|* dz +/ v, (ay,2)|* dz
A B

(A16)

2
+ [ M@l dz =1, (a17)

and integrate, obtaining

[ RQ
fu(q“) - 2Aw,

2
6:4 Jl

pa(w} —wio,)?

Nl

ets Jo e J -
Hip (“)3 - w%‘lB)z H2p (wg - w%ZB)Z '
(A18)
with
2
2 d®y, (z)
Jy = F|otg () + || ] 4
1 A q” Agq (Z) + dz 2
J _/ 250, ( )’2 4 | 2Bal) 2 d
2= B 9 |®Bg \# dz z-
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The potential envelope @4, (2) and the frequency w, will
depend on which mode (confined or IF) we want to eval-
uate.

(i) Confined modes in the well (4 = 0,ep # 0). From
boundary conditions, solutions of Laplace’s equation are
®%(z) =0 and

v

1) = { e L)

sin (T

v odd

v even. (Alg)

For these modes, using (A7) and taking into account that
w, = wro for each v, the normalization coefficient from

(A18) will be

h w2, — w? 2 1
fu(<11|)=\/—~/4“’ L0, ) = ———. (A20)
2A WLOEoo 4 L v\ 2
Lo vV qﬁ + (7 )

(ii) Interface modes (€4 # 0,ep # 0). When e4 # 0

and ep # 0, solutions of Laplace’s equation,
dz v 2 v

@‘I’q” (z) = qj @, (2), (A21)

extend to both materials,

A et
Boell? + Cpe Nz, —
D, e %,

_L
2

L
z< 5

#, () = :
E.

(A22)

n NS
v INIA

From boundary conditions at the interfaces, we get the
dispersion relation w vs g for these modes as solution of
the equation:

1 [EA(W)

ifi(_‘i)] sinh(q“L) + COSh(q”L) =0. (A23)
ea(w)

2 les(w)

For a ternary barrier material like Al,Ga;_,As, we ob-
tain three pairs of branches (symmetric and antisymmet-
ric): one of them lies in the region of AlAs-like frequencies
and the others in the GaAs and GaAs-like regions. The
dependence on the alloy composition is contained in the
values of €, and wri,, Wr2g, Wrig, Wrap-

The coeflicients for the symmetric potential envelopes
are

AV — DV = eq“L/z,
1
B, =C, = ——+
’ e coshﬂlz£ ’
and for the antisymmetric ones,
A, =—D, = enl/2,

1

B,=-C,=——ry.
ZSinhﬂf

Integrating the potential over z, from (A18), we obtain
the normalization coefficients,
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2
“YLo wTO
1) = i |7 S0
A

2 2,2
—Wr1p Wr2p T WTip

2
+e wLIB
B 2 _,,2 2 ,,,2 2

(W —why )2 Why, — wWE,

1
2 2
—szB J
2 2 ’
— W.
T2p

2 2 2
Wi2p — WT2p “YLig
2

(w2 - WT23)2 “’%’13

(A24)

with

Jl = 2q|| (Blz, + Cs) sinh(q”L),
J2 = q) (A2 + D2)e~ L .
(iit) Confined modes in the barrier (€4 # 0,ep = 0).

Solutions of confined modes in the barrier are sine-like
functions,

sin%Z (z + B + %), z<-5
@Y (z)={ 0, —L<z2<4
' sin¥% (z — L) z> L
B 2)s =2
(A25)

where B is the barrier width. Notice that there are con-
fined modes in the barrier for both the longitudinal fre-
quencies of the alloy, wr1, and wra,.

With this potential the normalization coefficients will
be
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fulg)) = =1/3 Aw,,eooB \/7 ,—~——q” —

wLIB wTIB szg
x 2 _ 2. \2
(w2 — ‘*’T1B) “’TzB

- W%ZB

- w%‘zlg ’
where w, is the longitudinal frequency of GaAs-like or
AlAs-like modes.

For each type of mode, the Hamiltonian for e-ph inter-
action can be written as

He_pn(r)

wTIB

wTIB

Nl

2 2 2
wLZB - szB wLIB

(w2 — “J’%‘zs)z w%l,;

(A26)

= —ep(r)

—e>  fulg)®

q»v

Il

o z)ezqn I (b+bY), (A27)

with f,(q)) and &} @l given by the appropriate equation
for confined or interface modes.
For confined modes (in the well or the barrier), we have

2me? A Ngy + 1
Ciij(ky) = —4/—— v
i(ky) 3 (zw)zzu:( Ngu )
2,2
(5 0 )
xC;’./ d?k , (A28
4 l q” + qg ( )

where ¢, = vn/L for the well and ¢, = vmw/B for the
barrier, and

= [GE e, @6Ed= (429

q” + Qz

Using polar coordinates and after integration over all pos-
sible k| [see Eq. (1)] we get

dé

Lij(ky) =

m*Ae? Nng, +1 cv. 2
2kt L\ mae )V o gpa

Integrating over 6, for modes confined in the well we finally obtain

Ty (k) = m*ezlw%OA — wTOa Ngy + 1 Z
G = 2mh2 L WLO 4€004 Ngv

where

rie| o

The same can be done for confined modes in the barrier using the appropriate normalization coefficients.
At last, according to Eq. (1), the scattering probabilities for interface modes will be

Lij(ky) =

Ngqv

m*Aez y + 1 27

. (A30)
F 2m @ +q2 — 2k ” F 2'" “” cos @
7
; (A31)
v 2m w* _ 2 Zm‘w"
\/ (2K7 F 23" 4 g2)? — 2k (kf F 2t )
@7, z)g,(z)
(A32)
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where

2m*w*
Ko = [kl F =%

(A33)

and the coupling factor g;; is given by the overlap integral of the initial and final electronic state with the normalized

IF phonon potential,

95(q)) = / & (2) fu(a)) @y, (2)6i(2)dz.

(A34)
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