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Nature of the thermopower in bipolar semiconductors
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The thermo-emf in bipolar semiconductors is calculated. It is shown that it is necessary to take
into account the nonequilibrium distribution of electron and hole concentrations (Fermi quasilevels
of the electrons and holes). We find that electron and hole electric conductivities of contacts of
semiconductor samples with connecting wires make a substantial contribution to thermo-emf.

INTRODUCTION

In calculating thermo-emf and explaining its nature, it
is common to consider at erst the unipolar case. The
physical transparency of this phenomenon and the clear-
ness of calculation lead to the following paradoxical re-
sults: in the case of a bipolar medium the situation seems
to be equally obvious, and so the same calculation scheme
is used. The aim of this paper is to show that the situa-
tion changes in bipolar media in principle, &om the point
of view of both the physics of the proceeding processes
and the methods of thermo-emf calculations.

Let us begin with the unipolar situation. Dating back
to the paper of Thomson in 1856 the theory of the origin
of the thermo-emf in this case has found its most precise
description in the publications of Seeger and Kaydanov
and Nuramski. It is necessary to connect the electric
circuit (Fig. 1) for determining the thermo-emf in the
case of the absence of electric current (broken circuit). A
semiconductor sample whose thickness is 2a (—a ( x (
a) contacts with a heater with temperature Tq on the
surface x = —a and with a cooler with temperature T2 on
the surface 2: = +a. The connecting wires are made of the
same material (metal) and are hooked up to the terminals
of a measuring compensating circuit which allows us to
measure the difI'erence of voltage yb and p in the absence
of an electric current. Leads of connecting wires have
equal temperatures [for example, T' = (Tq + T2)/2] at
points b and c. As follows &om Ohm's law, for a closed

where lz (x) = p, (x) —ep(x) is an electrochemical po-
tential. At the same time,

' dP-(x) d
dx (2)

As is well known, the expression for the density of the
electric current is of the form

j„=cr„(x) V' " —n„(x)V'T ),p„(x)
e )

where o (x) is the electric conductivity and n (x) is
the thermoelectric power. In the absence of an electric
current dy, (x)/dx = e n (x)dT/dx Let us em.phasize
that this correlation is correct all over the circuit, where
o (x) g 0, e.g. , outside the region [6, c], where o (x) -+ 0
(this condition provides j = 0 everywhere in the circuit).
Therefore the expression (2) can be rewritten in the form

electric circuit V = j(R+ r) (V is the emf of the power
source, r is the source's resistance, R is the resistance
of the external load, and j is the density of the electric
current). If R -+ oo (broken circuit), then the density of
electric current j ~ 0 and V = jR = y, —yb.

Since the electron's chemical potentials lz (x) are equal
in the points b and c, then

semiconductor

T2 p,„—p„= e n„(x) dx
C

T2 +1
eoM dT+ en dT+

T T2
e 0'M dT,

FIG. 1. The electric circuit for measuring of thermo-emf.

where cr and cr~ are the values of n (x) in the semicon-
ductor and in the connecting wires. Finally we have for
the difference p —yb, which coincides with the thermo-
emf V of the broken circuit,
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V = y —ps = (a„—aM)(Ti —T~). account (6) and knowing that V'Pp = —V'P, [see (7)],

To simplify the calculations we have assumed that Ti-
T2 &( T* which does not restrict the generality. Since
usually IaMI « Ia I

then

[~-(x)a-( ) + ~p(*) .(*)]&»P, (x) 1
e o.(x)

V = a„(Ti —T2).

+CLThe last expression coincides formally with j V'[rp—

(V-/e)1 dx.
Thus the general scheme of calculating the thermo-

emf comes to the following for a unipolar broken circuit.
The gradient of the electrochemical potential VP,„(x) is
obtained by setting expression (3) equal to zero. Then
integration of V'p (x) in the anticlockwise direction (to-
gether with multiplying by e i) gives the value of the
thermo-emf. It is important to emphasize that, as above,
the extreme points of the circuit (b and c) would have the
same temperatures.

It follows &om (2), in a unipolar medium, that even
if the condition of quasineutrality is not fulfilled and
nonequilibrium electrons (this notion will be defined
more exactly below) arise, the gradient of concentration
of these carriers n does not give a contribution to the
thermo-emf [the summand (Oy, /gn)V'n disappears from
the expression for V]. This argument confirms the fol-
lowing idea of Ioffe: the potential difference created by
the bulk concentration's gradient is compensated by the
contact potential difference ("diffusion voltages" ) on the
boundaries +a and —a.

Let us note in conclusion that the obviousness of the
above scheme is lost when thermo-electric current 8ows
in a closed circuit [j„g0, see Eq. (13)].

I. BIPOLAR SEMICONDUCTORS:
TRADITIONAL APPROACH

The systems of equations for electrons and holes are
analogous to (3):i s

j„=o.„(x) +V' ~-(x)
e

I p(*)
jp = ~p(x) -&

e

—a„(x)V'T

—ap(x) V'T (6)

I I = ~a ~ =I J +e&

is the hole electrochemical potential, and cz is the band
gap. It is important to emphasize that in expressions (6)
V'p, = (Op/BT)V'T usually. The full current j is equal to

j = j~+jp = 0) (8)

if a bipolar semiconductor is represented as in Fig. l.
It is easy to obtain V'[P (x)/e] &om (8) taking into

Here j„is the density of the hole electric current, o„(x)
and a„(x) are the electric conductivity and thermoelec-
tric power of the holes [a„(x) and a„(x) have opposite
signs],

V = V " dx = —(o.„a„+o„ap) (Ti —T2).I -(*)
e 0

(9)

This expression, especially the method of the calcu-
lation, causes serious objections. Really, the electron
concentration and hole concentration should be lower in
the heating lead in the stationary state due to thermo-
diffusion if bulk and surface recombinations are absent.
In contrast, these concentrations should increase in the
cooling lead. On the one hand, this causes the appear-
ance of appreciable diffusion currents in expression (6)
[V'p, = (Bp /Bn)V'n]. On the other hand, it leads to a
violation of relation (7). Two Fermi quasilevels P and
p,„arise instead of a single level of the electrochemical
potential, and as a result ~V'p, „~ g ~V'Pp~. In this case
the procedure described in the beginning of this section
becomes incorrect, because the single common "gradi-
ent of electrochemical potential" of electrons and holes
is absent. Moreover, if bulk and surface recombinations
are absent then both partial currents j„and j„should be
equal to zero, not only the full current j (j„+j„=0). As
a result we have two equations (j„=0, j„=0) for both
thermoelectric fields V'(p„/e) and V'(pp/e) instead of one
equation (8). One more problem arises when bulk and
surface recombinations take place: the correct determi-
nation of electron and hole equilibrium concentrations.

Finally, the question remains how to obtain the
thermo-emf in this case, and which physical phenomena
determine its value. The answer to the first of these ques-
tions has been given, where the general scheme was pro-
posed for calculation of an emf of any nature. It follows
6.om this paper that

~n dpn ~p dip~~ dl
(eo dx eo dx )

dl, (10)

where integration is carried out clockwise. Let us note
that expression (10) is always correct (for a broken circuit
just as in the case of a flowing thermoelectric current).
The second item in (10) coincides with the expression (9).
The first item in (10) vanishes (it is equal to zero identi-
cally in the unipolar case) and expression (10) turns into
(9) if electrons and holes have a single, common electro-
chemical potential level. Correlation (7) does not hold if
electrons and holes Bow 6..om the hot lead to the cool one
and electron and hole Fermi quasilevels appear. In this
situation the first item in (10) difFers &om zero and the

~(x) = ~-(x) + ~p(x).

Then we find the thermo-emf V (it is assumed that
a„,p )) aM and Ti —T2 « T' as above):
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gradients of concentrations and corresponding di8'usion
currents contribute to the thermo-emf.

II. THERMOELECTRIC PHENOMENA
IN BIPOLAR MEDIA

AT &(T*. (12)

Let an arbitrary semiconductor be de6ned by the
function»J, (T') which is found from the condition of
electroneutrality. Then p becomes a function of the
coordinate p„(T(x)) in the temperature field (11), and

0 Te
po (x) = po (T') + byo (x), b»Jo (x) = — " b,T

bp„« y,„(T') . (l3)

Function (13) gives, uniquely, the concentration distri-
bution in the sample:

no(x) = no(T') + bno(x),

no(T') = p„(T*)exp » '.(T*)

T* 2) T* 2a T" (14)

Here p„(T) oc T ~2 is the density of states at the bottom
of the conduction band.

If we introduce (here it was assumed that the energy
gap e~ is independent of temperature)

»;(T') = —e~ —».'(T')
then we can write

»;(x) = »,'(T') + h»,'(z)
analogously to (13). Then the hole concentration is

bp„= —bp„,

»(z) = »(T ) +»o(x)
» „'(T')

po(T') = pp(T*) exp

hpo(*) = »(T') (p„(T ) 3 AT x p„
2 T' 2a T'

Let us go on to the description of an approach to explo-
ration of the thermo-emf, which does not involve either
the contradictions or the incorrectness pointed out above.
Note that some aspects of this approach have previously
been expounded. ~'8

Let us restrict ourselves to the erst case

LT
T(z) = T* — x,

2G

for simplicity. Here Ti is the heater temperature at the
point x = —a, T2 is the condenser temperature at the
point x = +a, T' = (Ti + T2)/2, and DT = Ti —T2.

The condition when the temperature field of the quasi-
particles (electrons, holes, and phonons) is common and
is a linear function of coordinates has been obtained
earlier. Let us assume that

/hp„ i
(& T*, LT T*

T* max[
f
po /, [

po /]

are necessary.
It is important to emphasize that no(x) and»(x) are

not "equilibrium" concentrations (see the Appendix). In-
verted commas are used here because it is impossible to
use the term "equilibrium, " strictly speaking, in the pres-
ence of a temperature field (11).

The situation becomes nonequilibrated in the authen-
tic sense (see the Appendix) when the gradient of elec-
trochemical potential becomes nonzero because of taking
into account the terms o. VT and apVT. Let us examine
this situation, assuming that bulk and surface recombi-
nations are absent, and under the condition of a broken
circuit (as in Sec. I).

In this case the stationary distributions of concentra-
tions

n(x) = ni(x) + bn,

and electric potential

p(*) = hpi(z) +hp

are described by the system of equations j = 0, j„=0,
and

d'(hp) = 4vre(hn —hp)

[expressions for n ( i),xpi(z), and bpi(z) are contained
in (A3) and (A7)].

Let us note [see (6)] that the quantities [p (»J,„)are(~) (i)

the "equilibrium" electron (hole) chemical potentials; see
(A3) and (A7)]

p,„=p„' +by„,(i)
Pp = Pp +bPp)(i)

bn = bp„,
no(T*)

bp = bop,
»(T')

which are contained in the expressions for j and jp are
not already connected by expression (15), e.g. , they are
compatible with Fermi quasilevels. As for quantities o.
and o.p, depending on p, and pp respectively, they are
determined by the quantities p (T') and»J, „(T*),since
we carry out all calculations up to the members of or-
der (b,T/T*). Thus bno, hpo, hni, bpi, and bpi (hp
h»io, $p, hpz, and hpi) are not incorporated into the
system of equations for finding hn, hp, and hp (or hp
hp„, and hp). As a result, the determining of unknown
quantities needs no calculations presented by formulas
(13)—(16) and (Al) —(A7). We shall recall, however, that
these calculations are necessary if we have to take into
account recombination. Conditions (A5) and p~ o

——0

where p~(T) oc Ts~2 is the density of states at the top of
the valence band.

Let us note that condition (12) is not sufFicient for the
correctness of formulas (14) and (16) in contrast to (13)
and (15). The additional conditions
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are used for determining integration constants.
Then

hp = Ai (e" —1) + A2 (e —1) + orb, T
2Q

($p,„=+e hp + e a„T(z) + e C„
bp„= —e 6p —e n„T(z) + e C2.

Here

n„np(T*) + n„pp(T*)
np(T*) + pp(T*)

(17)

hp~ —~ = Vcr» bp,„(0) = hp, „(0) = 0.

Then expressions (17) turn into

AT x t' o.„(„+o.„(„l sinh Az
hp = o!—— A+

2 a ( („+(p ) sinhAa

x
bp,„=+e b(p —e o.„AT—,

2Q

x
bp = —ebp+ eo. AT —.p

2G
(18)

As follows &om formulas (17) and (18), hp g —bp„,
e.g. , two Fermi quasilevels really appear.

If we use the condition of quasineutrality Aa » 1, then

Constants Ai 2 and Ci 2 [see (17)] are connected by cor-
relations

np (T*)C, —p p (T*)C2.(T*) + p. (T*)

(&C2 —(-Ci = (~.4+ ~-&-)T2+ (&-+ 4)~.
[for definitions of ( and („,see (A4)].

For determining all the constants presented in (17), it
is necessary to give conditions h&p~ + and hp„(or hp„ )
at x = 0, for example.

Let [see (A5)]

Thus there are two Fermi quasilevels even in the
quasineutrality approximation and the condition of
quasineutrality reduces to the equality hn = bp [compare
with (A7)].

When the semiconductor is unipolar [for example,
np(T*) )) pp(T*)] bn = hp « pp(T*) « np(T*), and
bp = 0, e.g. , the redistribution of concentration and
Fermi level change do not take place. This is in accor-
dance with the results of the Introduction.

To conclude, let us note that expressions (19) could
be derived from the equations j = 0 and j„=0 only
without using the Poisson equation, assuming at once
that the relation bn = bp takes place when Aa » 1.

III. THERMO-EMF OF BIPOLAR
SEMICONDUCTOR

As was noted above, the thermo-emf is described by
the expression (10) in a bipolar medium, and it is impor-
tant to emphasize that this expression does not contain
the electric potential p(z). The latter is quite natural if
we wish to use the correct determination of the thermo-
emf, which is formed by forces of nonelectric origin, but
not to use the artificial scheme which was presented in
the first section.

Let us assume that a semiconductor sample is placed
in the interval —a & x & +a. It is connected with an
instrument by metal wires with chemical potential p, M
which does not depend on temperature. Let the thermo-
electric power nM be equal to zero (n~ && n, n„). We
assume that p (T*) = pM for simplicity.

As vras noted, the first integral in expression (10) tends
to zero when electrons and holes have a single level of
chemical potential (hp = —6p&). So we have

bn=bp=e

x
cILT—

)
2G

pp(T*)
no(T*) + pp(T*)

np(T')
np(T') + pp(T*)

(T')p (T')
np(T*) + pp(T*)

n„)AT
2Q

o.„)AT —,
2G

n„) —. (19)
LT x

( o-„d o„d—bp,„—"—hp,„jdl
(eo dx ecr dz ")

dl.

Taking into account that hp and Spy oc b,T [and so
o and o'„depend on np(T*) and pp(T*)], we get

(20)

o.(T') d(hV-) —o,(T*) d(hey) + —"
[hS -(—a) —hV-(+a)] ——"[h~~( ) —h~u(+a)]-—a —a e e

[o (T )~ +oi(T )~p](T2

(=(-+4
The second and third terms in the expression (20) cor-

respond to the contributions of the jumps of p and
p,„on the surfaces x = +a to the first integral (10).
The analogous contribution of the second integral is ab-

sent, since in our problem temperature is continuous at
x = +a [compare with (A5)]. Two additional terms
[(( o.'/() + ((„n„'/()]AT~ appear in expressions (A5)
and (20) if the thermoconductivity of planes x = ka
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is a finite quantity, and thus the temperature has discon-
tinuities LTg. The index "s" serves to show the relation
to the planes x = +a.

We find &om expressions (20) and (17):

byi(x). Here the situation is analogous to the process
of establishing thermodynamic equilibrium in heteroge-
neously doped semiconductors. The following distribu-
tions of the electric potential byi(x), concentrations, and
chemical potentials:

V "" ""AT (21) ni(x) = no(x) + bni(x), pi(x) = pe(x) + b'pi(x),

For example, the Fermi quasilevel contribution to the
thermo-emf compensates completely the conventional
thermo-emf expression (9). The nonzero thermo-emf is
caused only by Fermi quasilevel breaks in the contacts of
the semiconductor sample with connecting wires. Let us
emphasize once again that the last assertion is true with
any form of boundary conditions on planes x = +a.

~,"(x) = p,'(x) + bl,"(x)
correspond to "equilibrium" when the electrochemical
potential is constant:

CONCLUSION

Thus the thermo-emf V is determined by thermoelec-
tric powers o. z and surface characteristics ( z. Com-
paring formula (21) with formula (9) we see that taking
into account Fermi quasilevels in the thermo-emf changes
its value substantially. So if n o (T*) + o.zo~(T*) = 0
then expression (9) becomes zero but the value V ob-
tained Rom (21) does not equal zero. In the general case
expressions (9) and (21) may have different signs.

Returning to the unipolar case ((„))(„) we come to
the expression (5) as was noted above. I et us notice only
that the condition („))(„does not follow &om the con-
dition po(T*) )) no(T*) in a hole semiconductor. The
problem is that the ratio of the electron mobility to the
hole mobility can become very large in some semicon-
ductors [for example, it is more than 80 in InSb (Ref. 5)],
and the transition &om expression (21) to (5) does not
always take place.

It is clear that use of expression (21) can essentially
change the calculated value of the eKciency of a thermo-
converter. We would like to finish with one comment.
It is impossible to say anything about the order of mag-
nitude of V in typical experimental situations, because
nobody knows the value of (.

p (x) —ebpi(x) = —e'g —pz (x) —ebyi(x) = const.

(Al)

g~(1)
bni ——np(T*) ~".

g~(1)
bpi = po(T*) T'. ,

(A2)

bye ———bp„.(~) (i)

Thus there are two unknown independent functions.
It is necessary to use the Poisson equation to determine
them, besides Eq. (Al),

d'(bpi) = 4vr e (bni —bpi ) . (A3)

It is easy to formulate boundary conditions for Eqs.
(Al) and (A3) if we introduce electron and hole elec-
tric conductances per unit area of the contacts of the
semiconductor sample with connecting wires (( and (z,
respectively). If the thickness of the junction b is negligi-
ble compared to the thickness 2a of the bulk semiconduc-
tor and cr' (cr„') is the junction conductivity of electrons
(holes), we have (cr' and o' are supposed to depend on
b)6

The functions bni(x) and bpi(x) are connected with

bp and biz [see (14) and (16)] naturally by the for-
mulas
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APPENDIX

We choose the origin of y(x) at the point x = 0
[V (*)1.=6 = 0].

Then the condition of continuity of electric current in
contacts in the broken circuit [considering that n
o.„=0 in the connecting wires and pM does not depend
on temperature (metal)] is reduced to

The chemical potential p (T(x)) [see (13)]correspond-
ing to concentrations ne(x) and po(x) is heterogeneous
in space. So difFusion currents will arise in the process
of the establishment of "thermodynamic equilibrium, "
which leads to redistribution of concentrations, the ap-
pearance of bulk charge layers, and an internal ther-
moelectric field characterized by the electric potential

1
(&bl &

— (-bP - — = 8'--+(&)v., 6e e ~=+a
(A5)

bp„+ bp( ) —e b(pg

Condition (A5) in the "thermodynamic equilibrium
state" turns into
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since y = yg ——0 and bp,„=—bp
As a result, for hei, hp,„(8p„=—hp, ) and 8ni(x) (x) (x)

[no(T*) &pi ———po(T') Sni] we And

dpo (T*) AT x
dT* e 2a '

S~, =up, =S&(') =a~(') =0.

Here

hei ——h pl ) (x) + 2 C sinh Ax,0

e
S&~') = 2ee sinhA~,

bng ——2 C e sinh Ax.
no(T*)

T+ 1/2
A

4me'[no(T*) +go(T*)) )

(A6)

At first sight it seems that Eq. (A3) implies the con-
dition hni ——6pi only. But we see from (A7) that the
condition of quasineutrality reduces to the stronger re-
quirement bnz ——by~ ——0 in a bipolar medium as in a
unipolar semiconductor during the process of establish-
ing "equilibrium. "

It is clear that functions ni(x) and pi(x) have to be
named the "equilibrium" concentrations of the carriers
because

is the Debye radius.
It is necessary to formulate boundary conditions either

on by~ or on bp for determining the constant C. It is
natural to assume that Spi~ + ——0. Then

d 1p('i(x) —e bpi(x) = 0,
dx

By,o (T*) AT I
OT* 2 e 2 sinh Aa

If the condition of quasineutrality holds, e.g. , Aa )) 1,
as usual, takes place, then

These functions must participate exactly as "equilib-
rium" concentrations in the expressions for the bulk and
sur face recombinations.
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