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Miller's rule and the static limit for second-harmonic generation
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We formulate a simpli6ed model for the second-harmonic generation susceptibility, using recently
derived sum rules to determine the relevant parameters. We show that Miller's empirical rule can
be obtained from this model in a natural way and Miller's constant can be computed for many
semiconductors using the well-known empirical pseudopotential parameters. The resulting static
limit is consistently found to be in agreement with experiments.

I. INTRODUCTION
A large number of papers have been recently published

on the theoretical calculation of the second-harmonic
generation susceptibility function )t(2l (u, u) in semicon. —

ductors without a center of inversion. They are all
founded on the calculation of the relevant matrix ele-
ments on the basis of the known band structure. Calcu-
lations have also been performed recently on asymmetric
quantum wells, 2 where the efFect of the lack of specu-
lar symmetry is considered, in addition to the contri-
bution originating Rom the lack of inversion symmetry.
All the above calculations display strong peaks in corre-
spondence to single transition resonances and to double
transition resonances, but fail, in most cases, to repro-
duce the correct static limit g( l(0, 0). Furthermore, no
satisfactory theoretical explanation has ever been given
for the approximate validity of the Miller's rule, which
allows the expression of the second-order susceptibility
in terms of the first-order one as

where the tensorial indices give the directions of polar-
ization and applied fields, and L,~ I, is a constant when
the frequencies u and 2u are in the transparency region.
Miller's rule would also require L to be the same for
difFerent materials, but this has been found not to be
strictly correct. Theoretically, the validity of this rule
has been proved only in the simple case of the anhar-
monic oscillator.

We think that the shortcomings of the existing sophis-
ticated theories are due both to the extreme sensitivity
of y(2l to the constituent parameters (matrix elements
and energy differences), and to the fact that a limited
number of matrix elements are selected, where a sum on
a complete basis set would be required. Both limita-
tions have been shown to be a large source of errors in
two-photon processes since the requirement of gauge in-
variance is violated. In the case of )t( l (~, ur) a number of
very stringent requirements have been recently obtained
as a consequence of time causality, " which are expected
to be violated in any approximate calculation. They are
summarized in the following seven sum rules:
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with n = 0, 2, 4;

(u Imp( l(ur, u)d(u = 0
0

(4)

with n = 1, 3; and finally

II. SIMPLIFIED MODEL FOR THE
SECOND-HARMONIC SUSCEPTIBILITY

Prom the general theory of the nonlinear susceptibili-
ties we have

where N is the electron density, V(x) is the external
potential experienced by the electrons, and the average
is performed in the ground state of the system.

In this paper we propose a simplified model for
)t(2l(u, ur), which is based on the choice of a single reso-
nance &equency, but can be forced to satisfy the above
described sum rules. We will show that imposing the
sum rule requirement provides a justification for Miller's
rule, allows a calculation of Miller's constant, and leads
to values of the static limit )t( l(0, 0) which are consis-
tently in agreement with the experimental values. In
Sec. II we will describe our simplified model and show
how imposing the sum rules leads to Miller's formula (1).
In Sec. III we will show how Miller's constant and the
static limit can be computed Rom crystal pseudopoten-
tial theory, and will give examples for a large number of
materials. Conclusions and discussions are presented in
Sec. IV.
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where V is the volume of the system, @„are the station-
ary states with energy E = fur, g labels the ground
state, and x is the dipole operator. The positive broad-
ening p ~ 0+ accounts for the causal behavior of the
response.

After straightforward algebra, expression (6) can be
reduced to the following form:

We can now substitute the above expressions (ll) into
(8), to find that the susceptibility takes the forin

1
2ms c)x c)x Bx (4id' —Id')(id' —id')2'

(12)

The above expression can be written in terms of the linear
susceptibilities, recalling that their expressions for the
single resonance model are

n+ (~d„—~dg —2id —ay)
In

n We finally obtain

Ne2

m

a'v

x;,i(~ ~) =(2) n2+
(idp —id —tP) (idp —2(d —'z 7)

+ + (id M —(d)
idp —(d —tP

(8)

where n' labels all "doubly resonant" states, i.e., states
for which another state n" exists such that cd ~ —cd ~

cd II —cd~. While in atomic or molecular systems these
states are unlikely to occur, in crystalline solids the pres-
ence of bands ensures their existence in most cases. The
real coefficients n are given by appropriate sums over a
complete set of interxnediate states and do not depend
on the frequency cd. No approximations have been intro-
duced in deriving (7). In our simplified model we con-
sider a single resonant &equency cdp, so that expression
(7) reduces to

(14)

which is an explicit expression for Miller s rule, with a
specific definition of Miller's constant. Since expression
(14) has been derived in the single pole approximation,
it is expected to be satisfied at &equencies far below or
above the typical transition frequencies of the considered
system. The resonance pole cdp may be identified, follow-

ing, e.g. , Phillips, as the average gap between valence
and conduction bands. We stress, however, that cdp enters
expression (14) only via the linear susceptibility, which
is a well-defined measurable quantity and can be taken
&om experiments. Then the only remaining problem is
to compute Miller's constant.

We can now impose all the above described sum rules.
We obtain that the oscillator strengths n; must satisfy
the following linear system of equations:

any + cdpng + n3 = 0)

III. STATIC LIMIT

The static limit can be obtained from expression (14)
by taking the limit cd —+ 0. We obtain

zz nq + cdpn2 + 3cdpn3 ——0,

5

64 ny + cdpng + 5cdpn3 —c

a'v
(2 ) Ba 8Rj8cg p ( i ) 3 (15)

where

1 e3 83Vc =
16 m3 Ox; Bx&Bx& p

The solutions of (9) are

64 c 22 c 2 c
n2 = ———5) n3 = ——

49 Cdp 9 Cd() 3 Cdp

(10)

where the static susceptibility factor y( )(0) automat-
ically includes local-field effects, which are difficult to
estimate and account for a few percent of the total.

The calculation of the expectation value of the third
derivative of the crystal pseudopotential can be car-
ried out by considering the fact that the contributions
to the static limit originate &om the valence electrons,
and the potential to which they respond is in effect the
pseudopotential. Since we have demonstrated that the
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TABLE I. Parameters used in the computation of the
static limit of y . The lattice constant a can be obtained
from the cation-anion spacing d (A.) as a = 4d/v 3. The lin-
ear susceptibility is taken from the dielectric constant e (in
order to rule out vibrational efFects) as yi l (0) = (e —1)/4vr.
The last four columns report the computed and the experi-
mental values (Refs. 13—16) of yi (0, 0) and b, in units of
10 esu.

1000

100

GaSb 2.65
GaAs 2.45
InSb 2.81
GaP 2.36
InAs 2.61
ZnSe 2.45

14.4
10.9
15.7
9.1

12.3
5.9

(th) (exp)
103 104
94 92
134 112
128 82
154 118
217 180

z~'&(0, o)
(th)
125
46
216
34
112
12.8

~&'l(0, o)
(exp)

130 + 13
43 + 2

174+ 16
20 + 2

86 + 9
10.6 + 1

10

10 100 1000

y„(0,0) (th. ) (10 ' esu)

electron-electron interaction does not contribute to the
sum rule constant, the bare (or unscreened) pseudopo-
tential Vz(r) is needed. Assuming that the pseudopoten-
tial is taken in local form in the case of III-V and II-VI
compounds, we can write

PEG. 1. Comparison between theoretical and experimental
results for g (0, 0). Full squares: this work. Empty squares:
Fong and Shen's results (Ref. 18), obtained with the same
empirical pseudopotentials. Observe that the results are re-
ported on a logarithmic scale.

V„(r) = ) V„(C)e' (16)

where C d.enotes the reciprocal lattice vectors. The de-
sired expectation value is given by

= —0 ) iG;G~Gkn*(C) Vp(G), (17)(
03V

Xi Xj XI 0

where 0 is the unit-cell volume, and n(C) is the Fourier
transform of the electron density.

We observe, however, that in the definition of the pseu-
dopotentials the screening due to the interaction between
valence electrons is often taken into account. If this is
the case we must subtract the Hartree contribution due
to the electron density so that, in reciprocal space,

The experimental values of the only nonzero element

y~4 (0, 0) = y~„,(0, 0) for GaP ' GaAs, ' GaSb
InAs, ~4 InSb, ~s and ZnSe (Ref. 16) are converted using
the Levine-Bethea scale, as recommended in Ref. 17.

The comparison between the computed and the ex-
perimental values of y( )(0, 0) shows a remarkably good
agreement in all the materials investigated. As shown in
Fig. 1, this compares very favorably with the theoreti-
cal calculations of Fong and Shen based on the same
pseudopotentials. The reason is due to the fact that their
calculations do not allow for the separation given in ex-
pression (15) between Miller's constant, which depends
weakly on the material, and the Grst-order static suscep-
tibility, which in our case is taken &om experiments. The
origin of such a strong simpli6cation must be traced to
the sum rule constraint in our simplified model.

IV. CONCLUSIONS

where Vz' is the screened pseudopotential. The Hartree
correction to (17), however, turns out to vanish because
of time reversal symmetry.

For the purpose of illustration we have carried out a
calculation of the static limit y( ) (0, 0), using expressions
(15) and (17). We have considered a large number of
III-V and II-VI compounds for which the pseudopoten-
tial parameters V„(C) and the valence electron densities
n(G) have been known for a long time, and experimental
data of y(~)(0) and y& )(0, 0) are available. Specifically,
the pseudopotential parameters are taken Rom Cohen
and Bergstresser~~ and the density tranforms n(C) &om
Chelikowski and Cohen. i Moreover, we report in Ta-
ble I the experimental values of y(~)(0) and y( )(0, 0).

We have shown that the sum rules of the second-
harmonic susceptibility can be used in a simple model
based on a resonant state to derive an explicit expres-
sion which veri6es Miller's rule. Miller's constant is eval-
uated from the pseudopotential parameters appropriate
to a number of zinc-blende compounds. When this is
combined with the experimental Grst-order susceptibili-
ties, remarkable agreement is found with the experimen-
tal values of y( )(0, 0).
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