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Kramers-Kronig relations and sum rules for the second-harmonic susceptibility
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A set of Kramers-Kronig relations are obtained for the second-harmonic generation susceptibility
y( )((o, u). Together with the asymptotic behavior in the frequency variable they give a set of sum
rules up to the fifth moment of the susceptibility.

I. INTRODUCTION

The tight connection between causality, the Kramers-
Kronig (KK) relations, and sum rules has been pointed
out in many fields of physics. In linear optics, in par-
ticular, these concepts have played a fundamental role.
This has not been the case yet in the study of nonlinear
optical phenomena, mainly because of the experimental
diKculties in performing phase-amplitude measurements
of the complex nonlinear susceptibilities. Very recently,
however, a direct experimental verification of the nonlin-
ear KK relations has been reported for the photoinduced
modi6cation of the complex re&active index and for the
third-harmonic generation susceptibility, in agreement
with the theoretical predictions.

Kramers-Kronig relations follow directly &om the
causality principle, and have therefore been the subject
of much theoretical study, especially in the case of non-
linear response. ' Recent experiments have proved that
it is possible to carry out phase-amplitude measurements
of third. -order susceptibilities in a wide &equency range,
and to verify the relevant KK relations.

The existence of sum rules for the nonlinear optical
functions has been recently pointed out, using the dy-
namical short-time response of the system. In particular,
it has been shown that the nonlinear modification of the
absorption coefBcient has a vanishing average when inte-
grated over the kequency of the probe beam, in agree-
ment with experimental findings. Other sum rules, up to
the third moment of the susceptibility, have been found.

We now concentrate our attention on the particu-
lar case of the second-harmonic generation susceptibility
gl l((o, (o) with the purpose of obtaining all the appro-
priate KK relations and the relevant sum rules. We will
erst derive the high &equency limit and show that it van-
ishes as u . Then we will prove that this implies the
existence of three types of KK relations and of a set of
sum rules, up to the fifth moment of the susceptibility.

In Sec. II we derive the asymptotic limit for yl2l((o, od)

and the KK relations. In Sec. III we give the relevant
sum rules. Conclusions are presented in Sec. IV.

II. ASYMPTOTIC BEHAVIOR AND
KRAMERS-KRONIG RELATIONS

The second-order contribution to the nonlinear polar-
izability P(t) in terms of the electric field E(t) is

P~ l(t) = dt, dt G, q(t, t )
0 0

x E, (t —t, )E„(t—t, )

where the Kubo response function in second order, with
Cartesian indices i, j, k, is

G,'.,'„'(t„t, ) = —,(1+P)0(t, )0(t, —t, )Vh2

x T ( xA,. (—t, ), [x, (—t, ), x;] p, ) (2)

V being the total volume, P a permutation of the pairs
(ti, j) and (t2, k), 0 the Heaviside function, x denot
ing the total position operator P xl l (n = 1, ..., N
number of electrons), and po a stationary density ma-
trix (such that [po, Ho] = 0). The total position oper-
ator evolves according to the unperturbed Hamiltonian
H() —P p /2m+ V(ri, ..., rN).

The phenomenon of second-harmonic generation can
be obtained with monochromatic Belds by performing the
integrals in (1), and considering the contribution at fre-
quency 2u. We obtain

g,,~(~, ~) = f de+ f d~ G~,'.l(t„t2)e (4)

The asymptotic behavior of Eq. (4) as (o —+ oo can be
obtained by integrating by parts on w+ and assuming
that G& ~ and all its derivatives vanish at infinite times.
We obtain

P* (t)2 = &',k(od od)Ei(t) Er (t)

where y~ l(io, (o) is the Fourier transform of Gl i(ti, t2)
with (oi ——(o2. Defining r+ = ti+t2 and r = (ti —t2)/2,
we have
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(.) - f«a'+-G"(ti t2) + .+
(Cd, Cd) =-

( i'Cd )
rn+ I

m

The evaluation of (5) is performed using (2) and car-
rying out the derivatives analytically. It is convenient
to split G( ) into a product of a causal function f
8(ti)0(t2 —ti) and a dynamical contribution

g(tl, t2) = ( Xi, (—t2), [2:,(—t, ), X;] ) (6)

where, in order to simplify the notation, we have replaced
the trace on the density matrix by the average on the
occupied states ( )p. The mth-order derivative then
reads

We then consider the derivative of the causal function f
and can confine ourselves to the first one, which gives a
nonzero contribution in lowest order. We have

Of = b(t, )8(t, —t, ) .

By inserting (12), (10), and (11) into (8) we obtain that
the first nonvanishing derivative in expression (7) is

(12)

G,,„(ti, t2) =
07.+

vre3N 03V
32m3 Ox, x jXI, p

x [b(t, )8(t, —t, ) + b(t, )0(t, —t, )] .

(13)

Using (13), performing the integral on I, and taking the
limit ~+ ~ 0+, we immediately obtain the asymptotic
behavior

Ne BV
(2) 8m3 Bx,8+I, 8x" o —6

X,~g(Cd~ Cd) = +0 Cd (i4)

(7)

We first consider the derivatives of the dynamical contri-
bution (6); these can be written in terms of derivatives
on the times tq and t2 as

0" "
n~ Op 0" p

p=o

The derivatives in (8) can easily be performed using the
following expressions for the time derivatives of the po-
sition operator:

d—x;(—t)
dt

,x;(—t)

dt ~'( t)

d4„,x;(—t)

pi
)m

1 BV
mOX;

1 OV . OV
m2 OX,Oxj Ox;OxjBxjpj —ih

1 0~V . 84V
pjpI —2ih 2 pjm Ox; OxjBxI, Ox; OxjDxp

0 V 02V t9V

OX~OX ~ Bxg OX~Oxj Oxj

04g 52 03V
Bt4, m3 Bx;Bx,bxk

As can be seen &om the second derivative, which repre-
sents the totajt force acting on the system, only the exter-
nal potential appears, since the internal electron-electron
contributions cancel out. Using (9) in expressions (8) and
(7) one can show, after some algebra, that the first non-
vanishing contributions to (8) are those with n = 4 (and
p = 3, 4). Specifically,

(,)
2~ Reg(') (~', ~')
7i p Cd —Cd

and two additional sets of independent KK relations:

Rey dcd )
p Cd

and

%Cd p

Rey
7l Cd p Cd —Cd

~'4Re (') ~' ~'
Imp( )(cd cd) = —

2 ctcd ~ (17)
%Cd p

—Cd

We have not specified the tensorial indices because the
above KK relations are the same for all of them.

While dispersion relations (15) were already given by
Kogan, discussed by Price and Caspers, and have
been employed by Sipe and co-workers to simplify their
calculation of y(2), the dispersion relations (16) and (17)
are different and must also be satisfied by the second-
order susceptibility. They may find direct application in
analyzing and interpreting the experimental data.

It is to be noticed that the asymptotic behavior in (14) is
different &om that of the susceptibility in a pump-and-
probe experiment. This implies different KK relations,
because in this case we can consider all types of analytical
functions which vanish sufBciently fast at infinity, cd

with n ( 4. Therefore we obtain the first set of KK
relations similar to those of the linear case:

2 cd Imp (cd, cd )Rey dCd
7t p Cd —Cd

III. SUM RULES

g4g h2 03V
m Ox;OxjOxI,

As in the analogous case of pump-and-probe
experiments, the derived KK relations and the knowl-
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0, 0
2 Imp (&, Ld )

cLQJ

p Cd

We also obtain, considering the limit ~ = 0 in the KK
relations (16) and (17), the following sum rules:

balmy( ) (ur, cu) du = 0
0

(19)

Rey( ) (ur, u)du = 0
0

(20)

edge of the asymptotic behavior give the sum rules which
the susceptibility must obey. In the present case, by con-
sidering u = 0 in (15), we obtain the following property
of the static limit:

In the last expression we have specified the tensorial in-
dices because the value of the constant depends on them,
while the preceding sum rules are independent of them.

Both the real and the imaginary parts of the nonlinear
susceptibilities display a strong dispersive behavior, as
shown by the set of vanishing sum rules. On the other
hand, the Gnite-value sum rule (24) may be taken as an
indication of the overall strength of second-harmonic gen-
eration in a given system. We wish to note that the above
sum rules are completely general and have not been found
previously to our knowledge, except for the sum rules
(19) and (20) which were previously given by Peiponen
for the specific case of the anharmonic oscillator. We have
also verified that the anharmonic oscillator, as expected,
obeys all the sum rules here derived.

IV. CONCLUSIONS

u Imp( )(u, cu)du = 0
0

(21)

w Rey (w, w)dw = 0
0

(22)

(23)

We next use the superconvergence theorem on the
KK relations (17), and compare the asymptotic behav-
ior thus obtained with the asymptotic behavior indepen-
dently derived in expression (14). This gives the two
additional sum rules

The main result of this paper is to have given the gen-
eral asymptotic behavior of the second-harmonic suscep-
tibility y( ) (u, w). From this, three sets of KK dispersion
relations are obtained, and in turn seven sum rules are
found.

Apart &om the relevance per 8e of the KK relations
and sum rules here given, we wish to emphasize that they
can be of great help in analyzing available experiments,
to connect the phase and amplitude of the susceptibili-
ties, and to establish if other contributions exist outside
a given frequency range. They can also be very valuable
in assessing the validity of computational methods, since
in general exact calculations are not possible.

and

f (d Imp s(4), id)d(d = ——

(24)
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