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A connection is proposed between the anomalous thermal transport properties of amorphous solids and the

low-frequency behavior of the Eliashberg function. By means of a model calculation we show that the size and

frequency dependence of the phonon mean free path that has been extracted from measurements of the thermal

conductivity in amorphous solids lead to a sizable linear region in the Eliashberg function at small frequencies.
Quantitative comparison with recent experiments gives very good agreement.

The functional form of the Eliashberg function u F(to) in

amorphous metals has been the subject of debate for a long
time. Experimentally, there is uniform agreement that in

amorphous simple metals the low-frequency part of the
Eliashberg function is strongly enhanced over what is ob-
served in crystalline materials. ' The functional form at low
frequencies, although difficult to determine experimentally,
is usually found to be linear. This experimental observation
has given rise to a substantial theoretical debate. Bergmann
and many others argued that a disorder enhancement of the
electron-phonon coupling leads to a linear low-frequency be-
havior of the Eliashberg function, in accord with experiment.
This was disputed by Schmid and by Keck and Schmid,
who claimed that this disorder enhancement was spurious,
and due to an incorrect application of the Frohlich model to
disordered materials. Schmid's calculation gave instead
u F(to~0)-to, in disagreement with experiment. The

result was also confirmed by others. Since different
models and different calculational methods had been used by
these various authors, the theoretical problem was widely
considered unsolved for a long time. This disagreement was
finally settled by Reizer and Sergeyev, who explicitly
pointed out the errors in Ref. 4 and showed that a correct
calculation leads to Schmid's result independent of the
model and the method used. This led to the unsatisfying
situation that a theoretically credible result, viz. , Schmid s
n F(to~0) to, di-sagreed with experiment, while incor-
rect arguments led to a F(to~0) —co in agreement with the
experimental observations. This situation was summarized

by one of us, who also argued that no existing comparison
between theory and experiment had been careful and accu-
rate enough to really rule out Schmid's result. However, re-
cent experiments by Watson and Naugle have shown that
Schmid's result is not compatible with experiments on arnor-

phous CuSn alloys.
At this point it is important to distinguish between

Schmid's general theory for the electron-phonon coupling in
impure metals, and his and others' specific model calcula-
tions. Since the work of Reizer and Sergeyev showed that
Schmid's general theory is physically correct„ the search for
reasons behind the discrepancy between his results and ex-
periment should then turn to the model assumptions. On the
electronic side the main assumption is that of nearly free
electrons. It is hard to see how this could qualitatively fail in
simple metals as long as the resistivities are moderate, and

the electronic states are effectively three dimensional. On the
phonon side, Schmid assumed undamped Debye phonons, an
assumption that is necessary in order to obtain the co law as
the asymptotic low-frequency behavior. As was shown in
Ref. 9, the inclusion of phonon damping by electrons leads
to a linear low-frequency asymptotic behavior (albeit with a
prefactor that is too small by several orders of magnitude to
explain the experimental results), which then crosses over to
Schmid's co law. The prefactor of the linear term is propor-
tional to the phonon damping. This raises the possibility that
very strong phonon damping (which would have to be of
other than electronic origin) might lead to a linear term in
ot F(to) whose prefactor is large enough to account for the
experimental observations.

In order to pursue this last point, let us recall that besides
the problems with the Eliashberg function mentioned above,
amorphous materials have properties of entirely phononic
origin that are hard to understand. In particular the thermal
conductivity ~ shows an enigmatic behavior. Even though it
has been stressed that the thermal conductivity is not under-
stood in any temperature region, the general phenomenology
is clear, consistent, and well documented. ' As a function
of temperature T, the thermal conductivity behaves like
K T for T/0" ~10, with 0' the Debye temperature. The
origin for the phonon scattering in this region is not known
for certain. The phenomenological two-level system concept
has often been invoked in this context, but no consensus
has ever been reached. For 10 ~T/0~10 the thermal
conductivity is approximately independent of T. This is the
so-called plateau region, which is characterized by strong,
and strongly frequency-dependent, phonon scattering of un-

certain origin. Finally, for T/8~10 the thermal conduc-
tivity becomes T dependent again, but it is not even clear
whether the heat transport in this region is by phonons, much
less what the scattering mechanisms are.

This poor state of physical understanding notwithstand-

ing, the above phenomenology is remarkably universal, and
seems to be characteristic of amorphous materials, both
insulating and metallic. It has been used to deduce the
following behavior of the phonon mean free path lph as a
function of frequency. For frequencies to~10 k~8/trt, l~h
is a linear function of frequency. For intermediate frequen-
cies, 10 ~fata/k~8~10, l~h goes as a high power n of
frequency. n has been reported to be at least 4, and possibly
larger. This intermediate frequency regime corresponds to
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the plateau region in the thermal conductivity. At still higher
frequencies, co~ 10 'k&O/A„ the phonon mean free path ei-
ther becomes frequency independent, or is a linear function
of frequency again.

In this paper we propose a connection between the ther-
mal properties of amorphous materials as described above,
and the low-frequency behavior of the Eliashberg function.
In particular we show that Anderson's phenomenological
functional form of the phonon mean free path, if used in
Schmid's theory for the electron-phonon coupling, explains
the observed behavior of the Eliashberg function as well as
the observed behavior of the thermal transport. Let us start
from the expression for the Eliashberg function, based on
Schmid's general theory, that was derived in Ref. 9,

4~~b(q) yb(q)
ImDb(q, co) =

I:~'—~b(q)]'+ 4~'yb(q)
(Ib)

where y(q) is the phonon damping coefficient. In writing
Eqs. (1) we have assumed a free-electron model with NF the
electronic density of states per spin at the Fermi level. We
have also assumed Debye phonons with one longitudinal and
two transverse branches labeled by b (b=L, T), speed of
sound cb, and dispersion cub(q) =cbq. ab(q) in Eq. (1a) is
the electronic contribution to the sound attenuation coeffi-
cient, for which we use the standard Pippard result,

~b(q) = ~b fb(ql) (2a)

where I~b( u/cF)(bp, /p;, „)/l with uF the Fermi velocity, l
the electronic mean free path, and p, and p;,„ the electronic
and ionic mass density, respectively. The functions fi r are
given by,

1 x arctan(x)

3 x —arctan(x)
(2b)

1
fr(x)= 3 I2x +3x—3(x +1)arctan(x)] . (2c)2x

With phonon damping exclusively by electrons, as was as-
sumed in Ref. 9, one has yb(q) = cbab(q)/2. Here, however,
we will consider the possibility of nonelectronic contribu-
tions to yb(q). Accordingly, we write

yb(q) = y b qD g(q/qD) (3)

where qz is the Debye wave number, y is a number, and g is
some function that determines the wave number or frequency
dependence of the phonon damping. The latter we model
after Anderson's proposal, " which has been extracted phe-
nomenologically from thermal transport measurements in
amorphous materials. Anderson's model consists of the three
distinct regions mentioned above: (1) a low-frequency region
where the damping is a linear function of frequency, (2) an
intermediate region where the damping goes as a large power

2 = 1 b
u F(ru) =

2 2& ub(q) 2 ImDb(q, co)
2m N~ b COb

(1a)

Here Db(q, co) is the retarded phonon propagator, whose
imaginary part reads,

of the frequency, and (3) a high-frequency region where the
damping is independent of frequency. The intermediate re-
gion corresponds to the characteristic plateau that is ob-
served in the T-dependent thermal conductivity. We thus
model the function g(x) in Eq. (3) as

x/y+ (x/y)"
g(x) = 10 3 10n+( / )n (4)

Here y is the onset of the plateau region in units of the
Debye wave number, the width of the plateau region has
been assumed to be one decade, and n is the power that
characterizes the frequency dependence of the phonon mean
free path in the plateau region.

Before we turn to a numerical evaluation of the integral,
Eq. (1a), that determines u F(co), let us consider the low-
frequency behavior analytically. Asymptotically, a F(cu)
—co/cu, with a slope co . The latter we estimate for a
clean system, i.e., in the limit l~oc. In this limit only lon-
gitudinal phonons contribute, and we can use the asymptotic
form of the function fi in Eq. (2b), fi(x~~) = nx/6 Then.
we obtain,

y qL) ~v~~ p, ~ dx—g(x)
con 67r kF ( cL / pjgng p x (5)

Typical parameter values are qD/kF=1, uF/ci =10, and

p, /p;0„=10 . For the parameters y and n in Eq. (4) we
take y=0.02 and n=4. Finally, y determines the overall
scale for the phonon mean free path l~h. A typical value is

lych= 1 cm at a frequency of 1 GHz. With cL
=2X 10 cm/s this corresponds to y=2X 10 . This yields
ez/cu =1700. With a Fermi energy A=10 eV we obtain
co =6 meV. This value for co is of the same order of
magnitude as the one typically obtained from tunneling
experiments. '

Now that we have seen that we obtain promising results
for a F(co~0) with reasonable parameter values, let us cal-
culate o. F(ao) numerically, and compare quantitatively with
experiments. Watson and Naugle have performed a detailed
study of amorphous SnCu. For the stoichiometry
SQO 87CUp y3 they quote the following parameter values:
e„=1.54X10 " erg, k„=1.59X10 cm ', v~=1.84
X 10 cm/s, l = 9.58 X 10 cm, qD ——1.31X 10 cm
ci = 1.6 X 10 cm/s, cr=8.1&& 10 cm/s. Of these, the
electronic parameters are much better known than the two
sound velocities. Using these parameters, as well as n=5,
y=0.015, and y=8.0X 10, we have calculated a F(co)
for frequencies up to 1.6 meV, which was the lower-
frequency cutoff in the experiment of Ref. 10. The high-
frequency behavior resulting from our calculation would not
be realistic anyway due to our using a Debye model. The
result was shown in Ref. 10, and was used as low-frequency
input in a McMillan-Rowell inversion procedure to obtain
u I' from tunneling data. It is also shown again as the curve
labeled n =5 in Fig. 1. For the inversion procedure an over-
all factor multiplying the calculated u I' was used as a fit
parameter. The need for such an overall scale factor is not
surprising, given our free-electron model. The factor used for
the best 5t is equivalent to a deviation of the density of states
in Eq. (1a) from its free-electron value by 14%. A compari-
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FIG. 1. Results for the Eliashberg function u F as a function of
energy or frequency for different values of the exponent n in Eq.
(4). All other parameters were held fixed at the values given in the
text. u F has been normalized by its value at co= 1.6 meV, which
is 0.436, 0.279, 0.208, and 0.200 for n = 6, 5, 4, and 3, respectively.

son between the calculated and the measured tunneling den-
sity of states then provides a measure of how well the low-
frequency input describes the actual system. Watson and
Naugle found that our calculated n F does very well, al-
though not quite as well as if one assumes a strictly linear
low-frequency behavior. It should be stressed that our calcu-
lation used the parameters as provided by the experimental-
ists, some of which are not known very accurately. Since the
inversion procedure is quite involved no attempt was made
to fine tune the parameters.

This result shows that Schmid's theory with a phonon
damping that accounts for the thermal transport properties
characteristic of amorphous metals gives good agreement be-
tween the calculated Eliashberg function and tunneling data.
In contrast, the same theory with phonon damping by elec-
trons only is not capable of explaining the experimental
results.

In addition to this comparison between theory and experi-
ment, let us demonstrate the effects of some parameter
changes on o. F. We consider the four results for n F shown
in Fig. 1. The curve labeled n=5 was obtained with the
parameters as given above. The slight bulge in this curve
results from the leveling off of the phonon mean free path at

the high-frequency end of the plateau region. This moderates
the rapid increase of n F at lower frequencies, which is due
to the strong frequency dependence of the phonon mean free
path. With a weaker frequency dependence of the phonon
mean free path in the plateau region, i.e., a smaller exponent
n in Eq. (4), the initial slope of n F is much smaller, and
over the frequency range considered u F shows a purely
positive curvature. Conversely, a still larger exponent n leads
to a purely negative curvature of n F. This is demonstrated
in Fig. 1. The curves with stronger curvature all led to sub-
stantially less good agreement with experiment than the one
for n=5. We have also considered the sensitivity of the re-
sult to the ratio of the longitudinal and transverse speeds of
sound, which is not known very accurately. We have found
only a very weak dependence of the functional form of
a F on this ratio in the region 1.8(cL Icz(2.5. Finally, we
have changed the damping parameter y with all other param-
eters held fixed. This was found to have a very similar effect
to changing n, with n F changing from negative to positive
curvature as y is increased, or the phonon mean free path at
a reference frequency is decreased. The effect of changing

y by a factor of 10 was roughly equivalent to changing n by
1. For instance, with n = 4 and y= 8 X 10 we obtained a
curve that was hardly distinguishable from the one for n =5
shown in Fig. 1. Generally, we found that with reasonable
parameters for simple metals we need 4«n «6 in order for
our explanation of the behavior of a F to be viable.

In conclusion, we have shown that Schmid's theory of
electron-phonon coupling in impure metals can account for
the observed low-frequency behavior of the Eliashberg func-
tion in amorphous simple metals if one assumes a strong
phonon damping consistent with the one extracted from mea-
surements of the thermal conductivity. While the physics un-

derlying the strong damping is not known, this observation
unifies two seemingly unconnected, and separately mysteri-
ous, properties of amorphous materials. It suggests that
strong phonon scattering is a very fundamental feature of the
amorphous state, and that understanding its origin would ex-
plain many different properties of amorphous materials at
once.
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