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Quasiparticle band structure of bulk hexagonal boron nitride and related systems
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The quasiparticle band structure of bulk hexagonal boron nitride is studied within the GTV
approximation for the self-energy operator. The inBuence of the interlayer distance on the band
structure is investigated both within the local density approximation and the quasiparticle ap-
proach, and the importance of an interlayer state in determining the gap is demonstrated. Also, the
quasiparticle band structure for an isolated sheet of boron nitride is calculated. We show that the
equivalent of the interlayer state in the case of the isolated boron nitride sheet plays the same role
as in the bulk case in determining the band gap.

I. INTRODUCTION

Recently, using an analogy between carbon- and BN-
based materials, the existence of BN nanotubes has been
suggested. ' Because these nanotubes can be viewed as
being generated by rolling a sheet of hexagonal BN onto
itself, this simple structure has been the object of re-
newed interest. ' Further, it has been shown that, in
the case of multiwall or small single-wall nanotubes, the
effect of intra- or interwall interactions on the electronic
levels could be reproduced in a band-folding analysis by
allowing the isolated BN sheet to interact more or less
strongly with neighboring BN layers. In addition, the
intrinsic properties of bulk BN strongly motivate this
study, since cubic BN is an extremely hard material
and displays the largest heteropolar gap of all III-V com-
pounds. In this work, both bulk hexagonal BN and the
isolated BN sheet are investigated. To our knowledge,
this is the erst quasiparticle calculation for bulk hexago-
nal boron nitride. We also have examined intermediate
structures composed of a periodic repetition of BN lay-
ers with an interlayer distance varying from d=5.5 A. to
d = 13.5 A and analyzed the effect of the interlayer inter-
action on the band structures. We will use the notation
BN(d) for these compounds.

Because the density functional theory is a ground-state
formalism, standard local density approximation (LDA)
band structure calculations do not yield the true quasi-
particle energy levels. In particular, it is well known that
the LDA underestimates the band gap of most semicon-
ductors. In this work, we show that the LDA not only
underestimates the gap of the structures under study,
but also yields an incorrect ordering of the conduction
bands in the case of the isolated BN sheet. In fact,
for this system, the self-energy correction is strongly
band dependent and k dependent and therefore plays a
more drastic role than one would expect from the sim-
ple "scissor" approach sometimes used to describe the re-
sults of self-energy corrections. The quasiparticle calcula-
tions are carried out using the Hybertsen-Louie method.

which is based on Hedin's GW approximation for the
electron self-energy operator. This approach has been
shown to yield for semiconductors bulk, ' ' surface,
interface, and superlattice quasiparticle energies ac-
curate to within 0.1 eV when compared to experiment.
Recently, the method has also been successfully applied
to complex molecular solids such as solid C60.

The paper is organized as follows. In Sec. II, the the-
oretical methods and the technical details are discussed
for the LDA and quasiparticle calculations. In Sec. III,
the LDA band structures are given and the wave func-
tions of the states controlling the band gaps are plotted.
In particular, it is shown that an interlayer state forms
the bottom of the conduction band in most structures.
In the case of an isolated sheet, the interlayer state trans-
forms into a state with a large extension into the vacuum,
away from the plane of atoms. In Sec. IV, the quasiparti-
cle band structures are given and the differences between
the quasiparticle and the LDA results are discussed. Dis-
crepancies with a previous quasiparticle band structure
calculation performed on an isolated BN sheet are ana-
lyzed. In Sec. V, a summary and conclusions are given.

II. THEORETICAL METHODS

A. LDA ab in~bio pseudopotential calculations

We carry out ab initio pseudopotential LDA calcula-
tions, using a plane-wave expansion for the pseudopo-
tentials and wave functions. The energy cuto6' for the
electronic wave functions is set at E,„t——36 Ry. Boron
and nitrogen pseudopotentials are generated following
the Troullier and Martins pseudopotential generation
scheme. The Ceperley-Alder exchange and correlation
potential is used. The BN bond length is set to the
experimental distance of 1.45 A. . The distance between
two layers is chosen to be 3.34 A. for hexagonal BN. For
this structure, AR stacking with each B atom on top of
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a N atom is imposed in each unit cell. A 4 x 4 x 2 grid in
the Monkhorst and Pack scheme is used to generate 20
points in the irreducible Brillouin zone (BZ). The con-
ventional notation for the hexagonal BZ is reproduced
in Fig. 1. Among these 20 irreducible k points, ten are
located in the I'MK area and ten in the ALH area.

For BN(d) structures, we choose an AA stacking with
B atoms (respectively N atoms) on top of each other.
This permits us to reduce the size of the unit cell by a
factor of 2 as compared to the stacking in bulk hexagonal
BN, and makes no difference in the limit of the isolated
sheet. In addition, both the isolated sheet and the inter-
mediate BN(d) structures have the Ds& symmetry, while
bulk hexagonal BN transforms according to the symme-
tries of the smaller C6p, group. The interlayer distance
is varied between d = 5.5 A and d = 13.5 A until sta-
bilization of the electronic energy levels is achieved. We
then obtain the band structure of the isolated BN sheet
within this supercell approach.

B. First-principles quasiparticle approach to
electron excitation energies

In the self-energy approach used to compute the quasi-
particle energies, ' the quasiparticle equation of motion
is written

t&+ &-t(r) + &~(r)j+"(r)

+ d r Z(r, r'; E ~)@ (r') = E 4' (r), (1)

where T is the kinetic energy operator, V, t the external
potential, and V~ a mean-field electron-electron interac-
tion potential (the Hartree potential in this case. ) The
self-energy operator Z, which includes the effects of ex-
change and correlation, is nonlocal, energy dependent,
and non-Hermitian in general.

Foll'owing Hedin's work, Z is taken to be the first-
order term in an expansion in successive powers of the
screened Coulomb interaction W:

Z(r, r'; EqP)

dE'
G(r, r'; E —E')W(r, r', E'), (2)

FIG. 1. High-symmetry points and directions are labeled
for the irreducible part of the hexagonal Brillouin zone.

where G is the dressed one-particle Green's function.
This is the so-called GW approximation. Our approach
is to make the best possible approximation for G and
W. As shown in previous GW calculations in semicon-
ductors, the LDA wave functions accurately describe the
quasiparticle wave functions in semiconductors so that
we may approximate

) . ~nk)(nk~

nk
E —E k —ig'n

(3)

with ~nk) being the LDA eigenfunctions and E k the self-
consistent quasiparticle energies (q is a negative infinites-
imal for energies above the Fermi energy and a positive
infinitesimal below) .

The screened Coulomb interaction W = V x e is
calculated in Fourier space using the Hybertsen-Louie
~~hem~ 6, is V is the bare Coulomb potential and
the inverse dynamical dielectric matrix. In calculating

, the static polarizability P is evaluated in the Adler-
Wiser formulation ' within the random phase approx-
imation (RPA). Local field efFects are taken into account
so that the polarizability matrix is nondiagonal in recip-
rocal space. After inversion of the static dielectric ma-
trix e(q, w = 0), we extend e to finite frequencies using
a generalized plasmon pole model which yields a dif-
ferent pole at vc ~ (q) for each element c& &, (q; w) of
the inverse dielectric matrix. The strength and position
of each pole are uniquely determined by imposing that
e~ ~, (q; cu) satisfies both the Kramers-Kronig relations
and a generalized f-sum rule.

The quasiparticle excitation energies are then calcu-
lated using the expression

Since Eq. (4) is a self-consistent equation, we start by cal-
culating the self-energy operator at the LDA eigenvalues
and iterate by using the updated eigenvalues until conver-
gency. Usually, one or two iterations are enough to con-
verge the eigenvalues to within 0.1 eV. The validity of Eq.
(4) is based on the fact that the LDA and quasiparticle
wave functions are, in general, in excellent agreement.
Thus one needs only to calculate the diagonal elements
of the difference Hamiltonian, Z(E~~k) —V"DA.

The dielectric matrix is truncated at ~q+ C
~

= 3 a.u.
This is enough to describe the local field effects in the
present cases. The k-point sampling used for the Bz
summations involved in the calculation of both the di-
electric matrix and the self-energy matrix elements is the
same as those used in the LDA calculations. We include
40 bands per atom in the unit cell to perform the sum-
mation over the conduction bands for the calculation of
the RPA independent-particle polarizability. The same
number of bands is used to calculate the Green's func-
tion. Finally, a cutofF of ~q+ G~ = 4 a.u. is used to con-
verge the bare-exchange contribution to the self-energy
correction. Coulomb-hole and screened-exchange terms
converge faster, and we set ~q+ G~ & 3 a.u. for these
calculations. This gives quasiparticle energies converged
to within 0.1 eV.
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III. R,ESULTS

A. LDA calculations
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In Fig. 2, the LDA band structure for bulk hexagonal
baron-nitride is plotted along high-symmetry directions
of the BZ. The energy levels at high-symmetry points are
reported in Table I. Because of layer-layer interactions,
the dispersion along the c axis is non-negligible as can be
seen &om the band structure along the I'A, ML, and KH
directions. Within the LDA, we And that bulk hexagonal
BN is a large-gap semiconductor, with an indirect gap of
3.9 eV between the top of the valence band near K and
the bottom of the conduction band at M. The top of

the valence band, located near K along KI' (we will use
the notation Tq for this point), is very close in energy to
the highest occupied molecular orbital (HOMO) state at
H (within room temperature in our calculations). The
direct gap at I' is found to be 5.95 eV. Both the indi-
rect band gap and the direct gap at I' are smaller than
in cubic ' and wurtzite BN. The direct band gap at
I' is the most structure sensitive. It changes by 2.5—3
eV between the cubic or wurtzite and hexagonal struc-
tures (as discussed below, this is due to the "interlayer"
nature of the conduction band minimum in the case of
the hexagonal structure). This should help to identify
the structurality of tubular BN in its recently predicted
novel forms. In Fig. 3(a), 3(b), and 3(c), electron den-
sities are given for the bottom of the conduction band
at M and the highest occupied state at K and H, re-
spectively. For the lowest unoccupied molecular orbital
(LUMO) state at M, the charge density is localized on
the boron atoms while for the HOMO state at K and H,
the charge density is localized on the nitrogen atoms. All
of these states display a m- or 7t*-like character. We note
the difference of charge localization for the HOMO states
at K and H. In addition, a phonon-assisted optical tran-
sition &om H to M would require phonons propagating
along the c axis. We expect these two features to help in
the identification of the states involved in either p-type
doping or optical experiments.

We study also the lowest unoccupied state at I'. The
corresponding charge density is represented in Fig. 3(d).
This state has most of its charge concentrated in the in-
terlayer region. The xy-average charge density plotted
along the c axis shows a strong maximum at the mid-
point between the two neighboring BN layers. This state
is the analog of the interlayer state in graphite. The
remaining charge on the BN planes is located mostly on
the nitrogen atoms. This is in contrast to graphite where
the on-plane charge for the interlayer state is equally dis-
tributed on each carbon atom. The difference in ionicity
between B and N explains this feature for hexagonal BN.

As intermediate structures between bulk hexagonal BN
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FIG. 2. (a) LDA band structure and (b) GW band
structure for bulk hexagonal boron nitride plotted along
high-symmetry directions of the BZ. The energies are in eV.
The top of the valence band within the LDA is taken to be
the zero of energies. The edges of the LDA gap are indicated
by horizontal lines as a guide to the eyes.

k point
r,„
I'3„
I'3„
r,„
r.v

r.v

r,.
I'3
K3v
Kg„
Kg„
K3v
K3v
Kg,

LDA
-17.94
-17.65
-6.33
-4.12
-1.45
-1.32
4.63
10.06
-14.14
-8.05
-7.89
-7.17
-0.14
4.50

GR'
-19.87
-19.57
-7.33
-4.80
-1.69
-1.57
5.96
12.61
-15.91
-9.01
-8.82
-8.45
-0.14
6.19

TABLE I. Bulk hexagonal BN eigenvalues at high-
symmetry paints. The energies are in eV. The top of the
valence band is taken to be the zero of energies for both LDA
and GTV results.
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and an isolated sheet, we study the BN(d) "gedanken"
compounds. We vary the interlayer distance d &om 5.5
A to 13.5 A. . Stabilization of the band structure is ob-
served for d larger than 11.5 A. . This is established by
comparing with the band structure of the system with
d = 13.5 A. . With the interlayer distance increasing from
d = 5.5 A. to larger values, the energy of the valence
states and lowest unoccupied states hardly changes, ex-
cept for the lowest unoccupied state at I' which moves
up in energy. This is not surprising since this state is
the analog of the interlayer state in bulk hexagonal BN
and has a very large extension into the interlayer region.
We show in Fig. 4 the evolution of the charge density
for this state for d = 5.5, 9.5, and 13.5 A. . As one can
see, the corresponding wave functions from neighboring
planes strongly overlap for d = 5.5 4 and d = 9.5 A. .
Only for d = 13.5 A does this overlap begin to be neg-
ligible and we get noninteracting BN layers. In the case
of d = 13.5 A, we also plot the average potential along
the t" axis. This potential is very Hat in the middle of the
interlayer region, ensuring that indeed BN layers are not
interacting. We list in Table II the energy of the band gap
edge states at I', K, and M. The eigenvalues stabilize for

(4c) v„(z)

(4a)

(4b)
3

'V

p

0 1

0 1

FIG. 4. Contour plot in a plane perpendicular to the BN
layers of the charge density of the LUMO state at I' for (a)
BN(d=5. 5), (b) BN(d=9.5), and (c) BN(d=13.5). BN layers
are indicated by horizontal lines. N atoms are represented
with filled circles and B atoms with empty circles. In addi-
tion, the charge density averaged over planes parallel to the
BN layers is represented as a function of the distance to the
BN layers. This charge density is normalized to unity within
one unit cell. In (c), contours labeled 1, 2, and 3 correspond
to a charge density of, respectively, 0.14x10, 0.43x10
and 0.28x10 electron/a. u. The maximum charge density
is 0.85x10 electron/a. u. on the nitrogen atoms. The to-
tal potential averaged over planes parallel to the BN layers
[V,„(z)I is also represented. V „(z) varies from —2.05 Ry to
the vacuum level (origin of energies).

(3c)

FIG. 3. Contour plots in a plane perpendicular to the BN
layers of the charge density of selected states for bulk hexago-
nal BN. BN layers are indicated by horizontal lines. N atoms
are represented with filled circles and B atoms with empty
circles. In addition, the charge density averaged over planes
parallel to the BN layers is represented as a function of the
distance perpendicular to the BN layers; this charge density
is normalized to unity within one unit cell. (a), (b), (c), and
(d) correspond, respectively, to the LUMO state at M, the
HOMO state at K, the HOMO state at 0, and the LUMO
state at I'. In (d), contours labeled 1 and 2 correspond to
a charge density of, respectively, 0.16x10 and 0.63x10
electron/a. u. The maximum charge density is 1.26x10
electron/a. u. on the nitrogen atoms.

TABLE II. LDA HOMO and LUMO state energy at r, K,
and M for various interlayer distances d. The energies are in
eV. The top of the valence band K3„ is taken to be the zero
of energies.

State
r.„
r,.
K3„
K3
M3„
Mg

5.5
-1.43
3.97
0.00
4.41
-0.95
4.57

Interlayer distance (A)
7.5 9.5 11.5

-1.50 -1.57 -1.57
4.19 4.51 4.61
0.00 0.00 0.00
4.36 4.33 4.32
-0.97 -0.99 -0.99
4.49 4.45 4.43

13.5
-1.57
4.61
0.00
4.32
-0.99
4.43

d ) 11.5 A. . We check that, for BN(d = 13.5) there is no
dispersion along the I'A direction, which confirms that,
for such a layer-layer distance, two neighboring planes
are not interacting. For d ( 6.5 A. , the bottom of the
conduction band is at I' within the LDA. For larger in-
terlayer distances (and therefore for the isolated sheet),
it is at K. For all structures, the top of the valence bands
is at M. The LDA band structure for d =13.5 A. is rep-
resented in Fig. 5. Using our results for BN(d=13.5), we
conclude that, within the LDA, the isolated BN sheet is
a 4.3 eV indirect gap semiconductor.

The lowest unoccupied level at I' is a state which ex-
tends into the vacuum region with a maximum charge
density at about 3.3 a.u. away &om the plane of atoms.
Such a state is diKcult to understand in terms of B or
N atomic orbitals. We note in Figs. 3(a), 3(b), and 3(c)
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that the p -like orbitals associated with the BN sheet
have a maximum charge density which is localized at
most at 0.75 a.u. away &om the atomic layer. Another
important feature of the LUMO state at I' is that its
effective mass is calculated to be m* = 0.95 + 0.05 in
units of the free-electron mass (the value varies slightly
along the different planar directions). Therefore, this
state displays a nearly-free-electron (NFE-) like charac-

ter and an electron in this state would be mainly sensitive
to the crystal potential averaged over the plane parallel
to the BN layers. We write this potential V z(z), where
z is the distance of the electron &om the BN layer to
which it is bound. Following this idea, we solve the one-
dimensional Schrodinger equation for an electron in the
V „(z) potential associated with an isolated BN sheet.
In practice, we use the V „(z) potential we calculate for
the BN(d=13.5) structure and set the vacuum level to
the value of V „(z) at 6.5 A away from a given BN layer.
We plot this potential in Fig. 6 together with the charge
density for the bound state (n=0, 1,2) solutions of this
one-dimensional Schrodinger equation. The most impor-
tant result is that the n=2 level (located —0.55 eV below
the vacuum level) is very similar in shape to the charge
density [represented in Fig. 4(c)] of the NFE state in
BN(d=13.5). In particular, the n,=2 level charge density
has a maximum at around 4.1 a.u. away &om the BN
layer. This is larger than the value of 3.3 a.u. we Gnd for
the NFE state but the qualitative agreement is satisfying
considering the simplicity of the model. Thus our phys-
ical picture is that the NFE planar state is indeed the
n=2 loosely bound state due to the attractive planar av-
erage potential of a BN sheet but slightly modified by the
discrete atomic potentials. The n=0 and n=1 states are
so tightly bound to the BN sheet that they are strongly
modified by the crystal potential and become indistin-
guishable &om states obtained within a tight-binding de-
scription. We believe that such NFE plane states could
be a very general feature of isolated crystalline sheets.
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B. Self-energy calculations

We have performed self-energy calculations for
bulk hexagonal BN, BN(d=5.5), BN(d=7.5), and
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FIG. 5. (a) LDA band structure and (b) GW band struc-
ture for an isolated BN sheet plotted along high-symmetry
directions of the BZ. The energies are in eV. The top of the
valence band within the LDA is taken to be the zero of en-
ergies. In (a), the edges of the LDA gap are. indicated by
horizontal lines as a guide to the eyes. In (b), the edges of
the GW gap are indicated by solid horizontal lines and the
LDA gap by dashed horizontal lines as a guide to the eyes.

0
0 4 6 8

z (a.u. )
10

FIG. 6. (a) V,„(z) potential and (b) bound eigenstate
charge densities are represented. The potential is in Ry and
the distance in a.u. Positions of the eigenvalues Lith respect
to the vacuum level are represented by horizontal lines in (a).
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BN(d=13.5). As a first step, the static inverse dielectric
matrix eG&, (q) is calculated within the random phase
approximation. From this calculation, the macroscopic
dielectric constant can be extracted using the relation
e~ = eon (q = 0). We find aM=4. 9 for bulk hexagonal
BN and eM=3.3 for both BN(d=5. 5) and BN(d=7. 5).
This can be compared to the experimental value of
E~ = 4.5 for cubic BN, and to the recently calculated
value of 4.14 for both cubic and wurtzite BN.22 Using the
Philips and van Vechten empirical relation [see formula
(6) of Ref. 5], one can see that the larger the average gap
the smaller the macroscopic dielectric constant. There-
fore the ordering of the dielectric constants for the cu-
bic, wurtzite, and hexagonal bulk materials is consistent
with the values for their respective gaps. However, owing
to their different dimensionality, the plasmon energy for
bulk BN structures and the isolated sheet may be signifi-
cantly different and such an empirical relation cannot be
straight forwardly used.

The quasiparticle band structure of bulk hexagonal BN
is represented in Fig. 2(b). The main effect of the self-
energy correction is to open the gap from 3.9 eV (LDA
value) to 5.4 eV. Within the GW approximation, the
calculated band gap is smaller for bulk hexagonal BN
than for bulk cubic BN by 0.9 eV. This is consistent with
the closing of the gap going from diamond to graphite (in
the case of BN, the ionicity gap prevents the occurrence
of semimetallic behavior). Quasiparticle eigenvalues are
reported in Table I together with the LDA energies for
high-symmetry points. Because the self-energy is weakly
k dependent in this case, the GR band structure is very
similar to the LDA band structure. In particular, the gap
remains indirect between the top of the valence band at
Tq near K and the bottom of the conduction band at M.
We note that the self-energy correction for the highest
occupied state at H and K are nearly identical so that
the LDA energy difference between the top of the valence
band and the HOMO state at K is not changed by the
self-energy correction and both states remain very close
in energy.

For BN(d=5. 5), the self-energy correction
AE(E P+) = E~~& —E"P+ is represented in Fig. 7. In
contrast to bulk hexagonal BN, the self-energy correc-
tion EE(E I, ) is strongly k dependent. In particular,
the correction to the lowest occupied state at I is neg-
ligible, while the self-energy corrections for the LUMO
states at K and M are both equal to 0.6 + 0.1 eV. As
a result, not only is the gap opened up in the quasi-
particle approach but, in addition, the ordering of the
lowest conduction bands is modified. In particular, the
bottom of the conduction band is displaced from K to
I' by the quasiparticle treatment. Therefore, within the
GTV approximation, the gap is indirect between K and
I'. We note that, because the LUMO state at I' displays
a nearly-free-electron-like character, it is not surprising
that the LDA exchange-correlation potential and the self-
energy operator yield the same expectation value for this
state [see Eq. (4)].

We performed the same self-energy calculation for
BN(d=7.5). The self-energy corrections to the LDA
eigenvalues are similar to those obtained for BN(d=5.5)
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FIG. 7. The self-energy correction E~& —E & versus the
LDA eigenvalues E„"I, is represented for BN(d=5. 5). The en-

ergies are in eV. The hollow hexagon represents the self-energy
correction for the LUMO state at I'.

TABLE III. Selected energy levels at I', K, and M for
BN(d=5. 5), BN(d=7. 5), and BN(d=13.5) within the LDA and
GW approximation. The energies are in eV. The top of the
valence band is taken to be the zero of energies for both LDA
and GW results.

r,„
I'3„
r.„
r,.
K3v
Kg„
K2v
K3v
Kg
Kj
Mi
M3v
Mg„
M3v
Mg,
M3,

d=5
LDA
-17.81
-5.31
-1.43
3.97

-14.16
-7.98
-7.18
0.00
4.41
12.32
-14.73
-8.92
-4.22
-0.95
4.57
9.19

.5
GW

-19.74
-6.21
-1.64
5.52

-15.82
-8.84
-8.37
0.00
6.45
14.44
-16.42
-10.15
-4.72
-1.15
6.65
11.42

d=
LDA
-17.81
-5.32
-1.50
4.19

-14.16
-7.99
-7.19
0.0
4.36
12.10
-14.73
-8.91
-4.24
-0.97
4.49
9.24

7.5
GW

-19.75
-6.23
-1.61
5.58

-15.84
-8.86
-8.40
0.0
6.46
14.16
-16.05
-9.92
-4.73
-1.08
6.39
12.26

d=
LDA
-17.98
-5.40
-1.57
4.61

-14.37
-8.21
-7.35
0.00
4.27
11.93
-14.94
-9.10
-4.44
-0.96
4.43
9.25

13.5
GW

-19.92
-6.31
-1.68
6.00

-16.05
-9.08
-8.56
0.00
6.37
13.99
-16.26
-10.11
-4.93
-1.07
6.33
12.27

within the accuracy of the method. This is exemplified in
Table III for selected k points. The stability of the quasi-
particle corrections for d ) 5.5 A. allows us to obtain the
quasiparticle band structure of the isolated boron nitride
sheet. For this structure, we find the quasiparticle gap to
be 6 eV and the conduction band minimum I'. The gap
value is intermediate between the gap for bulk hexagonal
and cubic BN (respectively 5.4 and 6.3 eV within the GW
approximation). We note that layer-layer interaction in-
creases the dispersion of the electronic bands and tends
to reduce the gap. This effect can be used to understand
the smaller gap of bulk hexagonal BN as compared to
the isolated sheet.
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We note that the present results show some discrep-
ancies with a recent self-energy calculation for an iso-
lated BN sheet. The work in Ref. 3 was based on the
M@ller-Plesset perturbation theory and STO-3G Gauss-
ian orbitals were used. The most important difference
between the two sets of results is that the state predicted
in the present work to be the bottom of the conduction
band within the GW approximation (the LUMO state at
I ) was reported to be 12.3 eV above the lowest occupied
state at K in Ref. 3. This state is shown here to have a
very large extension in the vacuum region. Such an ex-
tended. state is easily described using a plane-wave basis.
However, a localized basis such as STO-3G or a Slater-
Koster-type (3s, 3p, 3p„,3p, ) basis2s would have difE-
culty in reproducing the extension of such a wave func-
tion away &om the atoms. A previous tight-binding (TB)
calculation performed on bulk hexagonal BN shows that
the LUMO state at I' is (within the TB calculation) lo-
cated 10 eV above its "LDA—plane-wave basis" analog
(we aligned the bottom of the conduction band at K in
both calculations). This is consistent with the results of
Ref. 3 where the use of a limited localized basis under-
binds the extended states.

IV. CONCLUSION

We have calculated the quasiparticle band structure of
the most common allotropic form of bulk BN which is
hexagonal. The band gap is indirect and calculated to
be 5.4 eV (that is 0.9 eV smaller than in cubic BN). The
isolated BN sheet has also been studied. The band gap

of the sheet is calculated to be 6.0 eV. The bottom of
the conduction band is a state with charge density which
has a very large extent into the vacuum region. This
feature makes its study diKcult for theoretical methods
based. on the use of localized bases. The present re-
sults have been used to calculate the quasiparticle band
structure of BN nanotubes. In particular, the LUMO
state for these tubes is found to be a nearly-free-electron
state with charge density localized along the axis of the
tubes. This free-electron tubular state is derived from the
LUMO state of the isolated BN sheet when the planar
structure is rolled into a tubular shape. The BN tubes
have been predicted theoretically to be metastable (as
are their graphitic analogs), and a recent experimental
study reports the observation of B C„N nanotubes.
Therefore it would be most relevant and interesting to
apply the present self-energy method to BC3 and BC2N
hexagonal structures.
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