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Distribution of large currents in finite-size random resistor networks
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The distribution of large currents in random resistor networks is controlled by current enhancing
defects. For randomly diluted networks the critical defect is linear and consists of two lines of
insulating bonds separated by a conducting bond. For networks in which the conductances take
two values (0 ( Gz ( Gz) the critical defect for very large currents was shown previously to be
a funnel shape with a 45 opening angle. We show that for an intermediate range of currents the
critical defect is a funnel shape with an opening angle which differs from 45 and depends on the
ratio Gq/G2 and the relative concentration of the two conductances. For small currents the critical
defect is linear. Finite-size corrections to the asymptotic result for the distribution of large currents
are discussed.

Random resistor networks (RRN) have served to illu-
minate the transport and breakdown properties of dis-
ordered materials. One of the simplest models of break-
down is the random fuse model where the resistors in
the network change irreversibly to insulators if the cur-
rent exceeds a threshold value. In this model, breakdown
is initiated in resistors carrying the largest currents so
it is of interest to understand the distribution of large
currents in random resistor networks. More generally,
RRN s provide a convenient setting for developing in-
sights into the distribution of extreme or rare events in
random systems.

In several previous studies the authors and their
collaborators have addressed the question of large cur-
rents in random resistor networks. In these papers, the
asymptotic scaling behavior of the distribution of large
currents was found. In the present paper we discuss "cor-
rections to scaling" in the distribution of large currents in
two-dimensional random resistor networks. The starting
point for understanding the distribution of large currents
in RRN's is the idea of a critical defect The most .prob-
able local configuration of resistors which can produce a
given current is called the critical defect for that current.
By identifying the probability of finding a given current
with the probability of finding the associated critical de-
fect, the distribution of large currents can be estimated.
The shape of the critical defect depends upon the distri-
bution &om which the resistors are chose~. For random
dilution (i.e. , a finite fraction of insulating bonds) Li and
Duxbury showed that the critical defect consists of two
adjacent slits of insulating bonds separated by a single
conductor, see Fig. 1(a). The size of the required slit
grows linearly in the size of the current in the central
conductor.

If all the resistances in the network are finite, Machta
and Guyer showed that the critical defect for large cur-
rents is a funnel-shaped region with a 45 opening angle,
see Fig. 1(c). The upper and lower quadrants of the fun-
nel are composed of good conductors while the left and
right quadrants are composed of bad conductors. The

size of the large current channeled into the center of the
funnel scales as a power of the funnel size as discussed
below.

By identifying the probability of a large current with
the probability of the associated critical defect, one can
obtain the expected largest current I

„

in a finite net-
work of size L

I „(lnI) (1)
and the asymptotic behavior of the distribution, P(I) of
large currents in an infinite network

P(I) exp( —cI r ). (2)

These formulas are valid for large L and I. The average
current density is normalized to unity.

The exponent 0, depends on the critical defect and thus
on the underlying distribution of resistors. For random
dilution the result is

If the conductances take two nonzero values, 0 ( Gj (
G2 then

where G = Gz/G2. In both cases cr is determined by the
relation between the current in the critical defect and the
number of resistors required to make the defect.

In the liznit G ~ 0, cr(G) ~ 1/2, whereas for random
dilution, G = 0, o. = 1. This discontinuity is due to the
fact that the asymptotic critical defect is one dimensional
for G = 0 and two dimensional for G ) 0. References 4
and 5 suggested that for a given finite current there is a
crossover froxn the 45 funnel to the two-slit configuration
as G is made small. In this paper we show that the
situation is somewhat more complex and that the critical
d.efects for intermediate currents are funnel shapes with
opening angles differing from 45

We have studied the shape of the critical defect for var-
ious values of the current and G using both analytic and
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numerical methods. To simplify the calculations we first
consider the case where the fraction, f, of bad conductors
is close to zero. In this case, the density of configurations
with S bad conductors and T good conductors is nearly
independent of T and we11 approximated by f . The crit-
ical defect for current I is then the configuration with the
smallest number of bad conductors able to produce cur-
rent I. Although the asymptotic critical defect depends
only on whether G = 0 or G ) 0, for finite currents the
shape of the critical defect depends on both f and G.

First we report the results of the numerical work. We
calculated the current in the central bond of the configu-
rations of Fig. 1. The current as a function of the number
of bad conductors is presented in Fig. 2. It is seen from
this figure that it is necessary to go to large defects be-

fore the 45 funnel is the critical defect. In Fig. 2, it is
seen that for G = 1/4 the two-slit defect produces more
current for a given size until the defect has about 100 bad
conductors. Thereafter the 26 funnel is dominant until
the funnel size reaches nearly 500 bonds when finally the
45 funnel produces the largest current.

In Ref. 4 we used continuum methods to analyze the
45 funnel and show that it is the asymptotic critical
defect. Here we use the continuum methods to estimate
the shape of the critical defect for finite currents. The
results are in reasonable agreement with the numerical
calculations. For a funnel with a diagonal of length 2l
and an opening angle P, see Fig. 3, the maximum current
i in the central bond of the defect is given by

a)

c}
FIG. 1. Lattice funnels (a) two slits; (b) 26.6' funnel; (c) 45' funnel. The applied current is in the y direction.
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FIG. 4. Geometry of the continuum two-slit defect. The
region of bad conductance is shaded.
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FIG. 2. The current enhancement R = I „/Ioat the fun-
nel apex (Io is the applied current) for the 2-slit ( ); 26.6'
(+) and 45' (Q) funnels of Figure 1. 8 is the number of bonds
in the funnel, the calculations were performed on 150 x 150
lattices and G = 1/4.

i „-v(l/a)'

where a is the bond length and v is an implicit function
of P:

tan vP tan v ——P) = G.
2

The number of bad conductors in this defect is given by

S = (I/a) sin 2P. (7)

FIG. 3. Geometry of the continuum funnel showing the
opening angle P and the diagonal length /. The region of bad
conductance is shaded.

As discussed in Ref. 4, Eq. (6) is derived by approxi-
mating the lattice funnel by continuous regions with two
dig'erent conductivities as shown in Fig. 3. Ohm s law
and the equation of current continuity are solved with
appropriate boundary conditions along the diagonals. In
the continuum limit, the current density at the center
of the funnel shape diverges as r . When the lattice
cutoff is included we arrive at Eq. (5).

For a given i „wecan use Eqs. (5)—(7) to solve for
the P which minimizes S. Under the assumption that
the critical defect is funnel shaped this yields the criti-
cal opening angle within the continuum approximation.
It is straightforward to verify &om these equations that
for S (or equivalently i „)less than a crossover value
S,(G), the funnel defect carrying the largest current has

P g 45 . The optimum opening angle arises from a trade-
oK between the behavior of i „which diverges most
strongly in l at 45 and the number of bad conductors
in the lattice which is minimized when P is small. For

S & S,(G) the divergence in i „dominates and the
largest current is found in the 45' funnel. In agree-
ment with the numerical work, we find that the crossover
to the 45 funnel occurs at relatively large sizes, e.g.
S,(0.25) 350 compared to a crossover near 500 bonds
for the numerical study. For G = 0.25 and S = 350,
we find that i = 1.96 in the 45 funnel. That is to
say that the central bond of this funnel carries a current
which is about twice the typical bond current. This is
somewhat smaller than the numerical result of 2.6.

It is also possible to study the two-slit defect in the
continuum approximation. As the size of the two-slit
defect increases the central current reaches a maximum
value, i2,~. This value can be estimated using the contin-
uum version shown in Fig. 4. The analysis of the current
in the central region of the defect proceeds by imposing
current continuity across the horizontal boundary a-b and
electric field continuity across the vertical boundary a-c.
The result is i2, ~

= 1/G. This result is an overestimate,
for example when G = 0.25, the numerical results shown
in Fig. 2 suggest that i2, j 2.5, but is expected to yield
the correct scaling of i2, ~ with 1/G.

How does the critical defect depend upon f, the frac-
tion of bad conductors? The numerical work applies to
the small f regime since the background lattice consists
entirely of good conductors. The continuum approxi-
mation, Eqs. (5)—(7), is explicitly independent of f and
yields the same result for either P or vr/2 —P. However,
the assumption that f is either near 0 or 1 is implied in
Eq. (7). If f is near zero or one then only the number
of minority conductors enters into the expression for the
density of the defect. If both kinds of conductors must
be specified as is the case when f —0.5 then the effec-
tive area of the defect does not shrink according to Eq.
(7) and the advantage gained by having the angle devi-
ate from 45 is lost. If f is near 1 rather than near zero
defects consist of a configuration of good conductors in a
background of bad conductors. In this case, it is the good
conductors whose area must be minimized and the solu-
tion of Eqs. (5)—(7) with p ) a/4 is the appropriate one.
Thus, if good conductors predominate, the critical defect
for intermediate current values will be a funnel with an-
gle greater than 45 . For small currents, the appropriate
linear defect is a line of good conductors parallel to the
current fiow. The maximum current enhancement due to
a line of good conductors can also be estimated by the
continuum method as 1/G.

As is clear from either the numerical work or the above
analysis, the current in a funnel defect is a very weak
function of angle for small defects however as the defect
size increases beyond S,(G) the difference between the
current found in the 45 funnel and funnels with other
angles increases with S. This can be seen by considering
derivatives of i „with respect to P,
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dZm~x =0,
2'

&max

with n(G) defined in Eq. (4). This result supplements the
arguments given in Ref. 4 that the 45 funnel controls the
very large current tail of the distribution of currents in a
random resistor network. The conclusion is that currents
in a random resistor network which are many times larger
than average are almost surely found in 45' funnels.

On the other hand, for the range of currents (and as-
sociated defect sizes) accessible to numerical simulation
many types of configurations will contribute to the cur-
rent distribution. For example, the largest expected de-
fect size in a RRN of size 200 x 200 with f = 0.25 is

roughly 10 —20 bonds. It is therefore surprising that nu-
merical studiess s for P(I) are in reasonably good agree-
ment with the asymptotic predictions of Eqs. (2) and (4).
An indication of why this is so is found in the fact that
i

„

is a weak function of P until very large values of 9 are
reached. This suggests that a range of favorable defect
shapes all contribute to the current distribution in a way
which is similar to the 45 funnel. The numerical studies
yield effective values of n which lie above a(G) and which
deviate toward o. = 1 as G becomes small. This is ex-
plained by the crossover from one-dimensional (two-slit
or line) defects with n = 1 to the two-dimensional funnel
defect. For large but finite sample sizes, the crossover
occurs at a current which scales as l/G.
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