
PHYSICAL REVIEW B VOLUME 51, NUMBER 1 1 JANUARY 1995-I

Temperature-dependent Ruderman-Kittel-Kasuya- Yosida interaction
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We develop a method that provides an analytical expression of the free-electron spin susceptibility for
arbitrary temperature. The result can be further reduced by using the low-temperature approximation, which
shows that the oscillation decays exponentially as exp( AT kFr—) in the long-range limit, and the wave number

of the oscillation varies as kp-k+[1 —(7r /12)T' j, where T' is the normalized temperature with respect to the
Fermi energy. The result contradicts what Darby has proposed, especially in the long-range region. On the

other hand, in the short-range region, where the Sommerfeld expansion method is valid, numerical study shows

that Darby's result agrees with ours fairly well.

In the Ruderman-Kittel-Kasuya- Yosida (RKKY) interac-
tion, the variation of the form of the interaction with tem-
perature is of interest, especially in the long-range limit. The
original development of the RKKY interaction was based on
the assumption of a perfect Fermi gas with no lattice effects
and no other polarizing moment present. In such an ideal
system, the coupling constant between local spins in the
RKKY interaction is proportional to the itinerant spin sus-
ceptibility, if the interaction between itinerant and local spins
is treated as a point interaction. In the long-range limit at
T=O, the free-electron spin susceptibility x(r), which rep-
resents the spin polarization due to a point interaction, has an
oscillatory decaying form cos(2kFr)/r . At nonzero T, the
long-range oscillation of the free-electron spin polarization,
and therefore the interaction between local spins, is damped
as the Fermi surface becomes blurred with increasing tem-
perature. In his earlier work, Darby has proposed that the
temperature-dependent x(r) is proportional to

j t(2kFr)
exp

m t ksTI
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in three dimensions at low temperature. This expression was
derived from March and Murray's work on the spatial elec-
tronic charge distribution around perturbations. March and
Murray used the Sommerfeld expansion to derive numeri-
cally the temperature dependence of the asymptotic form of
the potential which results in

distribution near the Fermi surface. Therefore, this kind of
approach is not applicable for the study of the long-range
behavior.

In the present study, we propose a method that properly
elucidates the effect of temperature on X(r). Our method
does not require any restrictions on the property of the inte-
grand as the Sommerfeld expansion does. The analytical
low-temperature approximation reveals that the amplitude
decay of X(r), which is algebraic at T=O, becomes an ex-
ponential form in the long-range limit as a function of both
temperature and distance, and the oscillation period varies
with temperature.

Earlier work" done by de Gennes has shown that the spin-
spin coupling of the RKKY interaction, which is reduced to
the free-electron susceptibility x(r) in an ideal system, be-
comes damped exponentially due to finite electron mean free
path effect by elastic, pure potential scattering in a randomly
disordered system. More recently, Shegelski and Geldart ex-
tended this study to the more general system which includes
an sd spin-exchange scattering and have found that, in this
system, this sd spin-exchange scattering at finite temperature
does also lead to a damping in the effective spin-spin cou-
pling.

We start out with the real space representation of X(r) of
the free-electron gas employing the linear response assump-
tion, and x(r) becomes
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and suggested the above Gaussian form from this approxi-
mate result. In the Sommerfeld expansion, it is assumed that
the integrand multiplied by the Fermi distribution function is
nonsingular and not too rapidly varying in the neighborhood
of e= p, . This condition cannot be satisfied in the derivation
of the long-range behavior of x(r) because the amplitude of
the spin oscillation at long range is very sensitive to the

rn /Le
x(r) 2 3g2 2

J
dkkf(k)»n(2«) (4)

where f(k) is the Fermi distribution function. By changing
the order of integration, the above equation becomes
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FIG. 1. The schematic representation of the
poles of the Fermi distribution function of the
free electron and the contour for the integral in

the complex k plane.
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This result obtained under the linear response assumption is
identical with that of Darby's first-order perturbation in real
space. The order of integration cannot be interchanged in one
dimension because the singularities at q=O and k=O con-
tribute differently depending on the order of the integration.
However, in three dimensions, the singularities are at
q= ~ 2k only and they do not make any differences even
though the order of integration is interchanged.

At T= 0, it is easy to show that y(r) is reduced to the
usual RKKY interaction,

mp, g
2

y(r, T=O) =
3 2 4! sin(2kFr) —2kFrcos(2kFr)]
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from Eq. (4) as has been discussed in Kittel. For finite tem-
perature, we begin by rewriting Eq. (4) as

1 + ep'(k /2 kp)2) (k
—
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The schematic representation of the locations of the poles in
the complex planes are shown in Fig. 1. Each of these poles
approaches the real axis as T goes to zero. The integral in
Eq. (6) can be calculated by moving the contour of integra-
tion in the upper half plane as shown in Fig. 1. The contri-
bution from the semicircle vanishes when the contour is
shifted out to infinity. Therefore the contour integral is re-
duced to the integral along the real axis and the sum of
residues at the poles in the upper half plane. Since each of
the poles is simple, the integral along the real axis J becomes
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The lower bound of the integration is extended to —~ using
the symmetry of the integrand and compensated by an addi-
tional factor —,'. In the complex plane, the free-electron gas
Fermi distribution function f(k) = 1/(1+ expI (pti /2m)(k
—kF)]) has poles at the points

k„+ = rg„e'"&, k+*= g e'~
n
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where r/„= (kf +(!2(2n+ 1)/P'] m) ), y„=1/2arctan! 2
X(2n+1)m/p'kz], p' = pfi/m, and n is an in.teger. No-

tice that k„and kn
* are complex conjugates of each other.

These are simple poles, since, by expanding

1+e~ ~ + ~ in a series around the pole kn, we get

This form guarantees that J is real because k„+'s and

k„s are symmetric about the imaginary axis. It is an exact
result for arbitrary T and r. Analytical summation is not
possible because of complicated form of k„'s and k„'s, but
the numerical evaluation of the above equation can be done
in a straightforward manner. The summation converges quite
fast especially for large r. The resulting free-electron spin
susceptibility is an oscillatory decaying function which de-
cays faster at finite temperature than that for T=O. The en-
velopes of g(r) for two temperatures are plotted in Fig. 2.
Figure 2 shows that the decay of g(r) is exponential asymp-
totically, but it is neither a simple algebraic nor exponential
function in the intermediate r.

For low enough temperature, the summation can be sub-
stituted by integration
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FIG. 2. Envelopes of y(r) at two different
temperatures, T' =0.01 and 0.05. The upper three
curves are those for T' = 0.01 and the lower three
curves are those for T'=0.05. The dotted line
represents Eq. (1), the dashed line represents Eq.
(16), and the solid line represents Eq. (10).
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The integrands in Eq. (12) satisfy the Cauchy-Riemann con-
dition. So the integration is straightforward and the result is
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limit can be factored out as an exponential form, which is
contrary to Darby's prediction. For 2kFr (1, the integrand in
Eq. (4) does not vary rapidly near e= p, , so the Sommerfeld
expansion can be useful for the approximate derivation of the
integral. In fact, the Sommerfeld expansion predicts the tem-
perature dependence of the amplitude quite well in the low-
temperature region and at short range. However, in the re-
gion where the condition 2kFr & 1 is not valid, the
Sommerfeld expansion method cannot predict the long-range
behavior properly, as can be seen in Fig. 2 in which
ln[r y(r)] obtained from Eqs. (1), (10), and (16) are plotted
against ln(r) for two different temperatures.

The exponential damping factor in the lowest order of
temperature is

Here ko =koe'"o and ko =koe' ~p where

ko=(kF+47r /P' ) i and t an2q& p= 2' /P' kz, or using the
normalized temperature T' =k&T/eF,

e
—mT'KI; r (17)

and

kp =kF(1+ 7r T' ) ' (14)

tan2cpo = AT'.

By taking the imaginary part of the integral J, finally we
get

2
fPl Pg

g(r) = 2kpr sinttpp

(2m)'A,

sin(2kprcosyo) —2korcos(2kprcosipp+ yp)
X 4

(16)

This equation can be reduced to zero-temperature expression
Eq. (5) as T~O, since limr pko=kF and limT ppp=O. At
finite temperature, both the amplitude and the period change
according to temperature. The susceptibility at finite tern-
perature cannot be expressed as a simple product of the
temperature-dependent damping factor and zero-temperature
susceptibility like F(T,r)j,(r), but it can be shown that the
asymptotic form of the damping factor in the long-range kp-k~[1 —(m /12)T' ]. (18)

since kp-kF(1+ m T' /4) and sing&p-(vr/2) T' at low tem-
perature. Figure 2 shows that the decay of y(r) obeys an
exponential form in the long-range limit. Kohn and Vosco
remarked that if the width of the Fermi distribution function
in k space near the Fermi surface is Ak, the amplitude of the
oscillation decays by an extra factor e " for large r. The
diffuseness of the Fermi surface Ak at finite temperature
may be defined as f'(kF)hk-1. Since f'(kF)=PA kF/4m
in the free-electron gas, Akr =2T'kFr, which is qualita-
tively consistent with the exponent in Eq. (16).The exponen-
tial decay in the long-range limit was also found in the one-
dimensional case numerically.

The wave number depends on temperature to the second
order as kpcosipp kF[1+(77 /8)T' ]. The magnitude of the
temperature-dependent variation of the wave number is the
same order of magnitude as that of the difference between
the chemical potential and the Fermi energy. If the chemical
potential is used for the Fermi distribution function instead
of the Fermi energy, kF in Eq. (14) should be replaced by
k&[1 —6(m/2) T' ]. Then the wave number in the second
order becomes
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This variation of period with respect to temperature is only
order of 0.01 percent even at room temperature.
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